Каждая ячейка памяти компьютера состоит из. Логическая структура основной памяти. Каждая ячейка памяти имеет свой уникальный, т. Общая структурная схема процессора

Ячейка памяти Память компьютера состоит из отдельных «частиц» битов, объединенных в группы (регистры) по 8 бит (байт). 1 байт элементарная единица памяти. Каждый байт имеет свой помер (адрес), и содержимое двоичный код. Когда процессор обрабатывает информацию, он находит по адресу в памяти нужную ячейку, читает из содержимое, выполняет необходимые действия и записывает результат в другую ячейку памяти. Ячейка памяти группа последовательных байтов внутренней памяти. Машинное слово содержимое ячейки памяти Разрядность ячейки памяти и размер машинного слова в битах равны разрядности процессора






Быстродействующее ЗУ, реализованное в виде электронной схемы. ОЗУ доступно для чтения и для записи информации. Именно в ОЗУ хранится выполняемая в текущий момент программа и необходимые для нее данные, в ОЗУ данные можно редактировать, удалять, добавлять. Это память временного хранения. ОЗУ хранит информацию лишь в течение сеанса работы с ЭВМ – после выключения ЭВМ из сети, данные, хранимые в ОЗУ, теряются безвозвратно. ОЗУ энергозависимое устройство. Емкость современных моделей колеблется от 512 до 1024 Мбайт. ОЗУ – оперативное ЗУ (RAM – random access memory - память с произвольным доступом).


ПЗУ – постоянное ЗУ (ROM – read only memory - память только для чтения). Во многих ЭВМ ПЗУ реализуется отдельной микросхемой, в которой при изготовлении помещаются основные команды, осуществляющие первоначальное взаимодействие аппаратного и программного обеспечения. Этот вид памяти доступен лишь для чтения. После выключения ЭВМ информация сохраняется. ПЗУ – энергонезависимое устройство. В ПЗУ находится часть операционной системы BIOS (Basic Input- Output System).


КЭШ-память – промежуточная память между ОЗУ и ПЗУ «Сache» - тайник, склад (англ. слово). Используется для увеличения быстродействия компьютера. «Секретность» КЭШа заключается в том, что он невидим для пользователя и данные, хранящиеся там, недоступны для прикладного программного обеспечения. Использование этого вида внутренней памяти сокращает число обращений к жесткому диску. Отсутствие кэш-памяти может существенно (20-30%) снизить общую производительность компьютера.


Энергонезависимая память (CMOS-память, Complementary Metal-Oxid-Semicondactor) Различные параметры конфигурации компьютера, например количество и тип дисковых накопителей, тип видеоадаптера, наличие сопроцессора и некоторые другие данные, хранятся в так называемой CMOS- памяти. Микросхема CMOS-памяти также содержит обыкновенные электронные часы. Благодаря ним в любой момент можно узнать текущую дату и время. Чтобы при отключении питания компьютера содержимое CMOS-памяти не стиралось, и часы продолжали отсчитывать время, микросхема CMOS- памяти питается от специальной маленькой батарейки или аккумулятора, которые также находятся на системной плате



Адресация операндов в командах программы может быть:

l непосредственной;

l косвенной;

l ассоциативной;

l неявной.

Непосредственная адресация заключается в указании в команде самого значения операнда, а не его адреса.

Прямая адресация состоит в указании в команде непосредственно абсолютного или исполнительного адреса операнда. Прямая адресация регистра состоит в указании его имени.

Косвенная адресация имеет в виду указание в команде регистра или адреса ячейки памяти, в которых находятся абсолютный, исполнительный адрес операнда или их составляющие.

Ассоциативная адресация - указание в команде не адреса, а идентифицирующего содержательного признака операнда, подлежащего выборке (применяется в ассоциативных запоминающих устройствах).

Неявная адресация - адреса операнда в команде не указано, но он подразумевается кодом операции.

Адресация ячеек основной памяти ПК имеет две важных разновидности: относительную и стековую.

Относительная адресация

Абсолютный (A инд) адрес формируется как сумма адресов исполнительного (Aисп) и сегментного (A сегм):

A абс = A сегм + A исп.

A сегм - 20-битовый начальный адрес сегмента , который является увеличенным в 16 раз (сдвинутым на 4 бита влево) 16-битовым адресом сегмента A" сегм, хранящемся в одном из 16-битовых сегментных регистров. Начальный адрес сегмента в таком варианте всегда кратен 16 байтам, и он может быть полностью идентифицирован значением A" сегм (сегмент всегда состоит из целого числа параграфов, а параграф равен 16, то есть:

A сегм = 16 · A" сегм = A" сегм 0000.

16-битовый исполнительный адрес может в ПК представлять собой сумму 3-х адресов:

A исп = A смещ [+A баз ][+A инд ]

l A смещ - 16-битовый адрес смещения относительно начала сегмента (или относительно базы, если есть A баз);



l A баз - 16-битовый адрес смещения базы адреса операнда относительно начала сегмента;

l A инд - адрес индекса (или просто индекс) - дополнительная составляющая адреса операнда, использующаяся часто при программировании циклических процессов с массивами и таблицами. Индекс должен быть непосредственно задан в соответствующем регистре МПП.

При адресации данных могут использоваться все составляющие адреса:

A абс данных = A сегм + A исп = A сегм + A смещ [+A баз ][+A инд ]

A сегм = 16 A" сегм, A" сегм берется из регистра DS по умолчанию или из регистра ES, если это указано в программе. A баз и A инд берутся, соответственно, из регистров BX и индексных (SI или DI), а A смещ в явном или неявном виде указываются в программе.

При адресации команд программы могут использоваться только две составляющие адреса:

A абс команд = A сегм + A исп = A сегм + A смещ

A" сегм берется из регистра CS, а A смещ - из регистра IP.

Стековая адресация

В стековой памяти (стеке) доступ к ячейкам памяти не произвольный, а по принципу «последний записанный операнд первым считывается» (FILO).

A абс стека = A сегм + + A смещ

16-битовый адрес сегмента A" сегм берется из регистра SS, смещения относительно начала сегмента стека автоматически считываются из регистров BP (смещение базы стека - A баз) и SP (смещение активной ячейки стека, в которую записывается или из которой считывается информация, - «вершины стека» относительно базы - A смещ).

В защищенном (многопрограммном) режиме работы микропроцессора начальные адреса сегментов хранятся в таблицах дескрипторов и имеют длину 24 или 32 бита (в зависимости от типа МП) В сегментных регистрах в этом режиме хранятся селекторы, содержащие адресные ссылки на соответствующие таблицы дескрипторов.

Вопросы для самопроверки

1. Сформулируйте основные свойства алгоритма.

2. Рассмотрите способы записи алгоритма.

3. Приведите и поясните типовой состав машинных команд.

4. Рассмотрите возможные структуры машинных команд.

5. Поясните назначение системного и прикладного программного обеспечения.

6. Назовите основные режимы работы компьютеров и дайте им краткую характеристику.

7. Что такое прерывания работы программы и каково их назначение?

8. Назовите и поясните виды прерываний.

9. Рассмотрите последовательность действий машины при выполнении прерывания.

10. Назовите виды и особенности адресации ячеек памяти в ПК.

11. Напишите формулу для расчета абсолютного адреса данных.

12. Какие регистры микропроцессорной памяти используются для адресации данных?

13. Напишите формулу для расчета абсолютного адреса команды программы.

14. Какие регистры микропроцессорной памяти используются для адресации команд программы?

15. Напишите формулу для расчета адреса стека.

16. Какие регистры микропроцессорной памяти используются для адресации ячеек стековой памяти?


Глава 19.Элементы программирования на языке Ассемблер

После изучения главы студент должен знать:

· -назначение и области использования языка Ассемблера;

· -основные компоненты языка;

· -основные команды, директивы, модификаторы;

· -адресацию регистров МПП и ячеек памяти в ассемблере;

· -программирование процедур вывода информации на дисплей и ввода информации с клавиатуры;

· -структуру ассемблерной программы;

· -процедуры формирования программы формата EXE;

· -назначение, команды и варианты использования отладчика программ Debug.

Пользователь компьютера, равно как и прикладной программист, программы составляет, как правило, на машинно-независимом алгоритмическом языке высокого уровня (Basic, Pascal, FORTRAN, C, PROLOG и др.), однако иметь представление об основах программирования и на машинно-ориентированных языках грамотному пользователю весьма полезно для:

l лучшего понимания архитектуры ПК и более грамотного использования компьютеров; для разработки более рациональных структур алгоритмов и программ решения прикладных задач;

l возможности просмотра и корректировки исполняемых программ с расширениями EXE и COM, компилированных с любых языков высокого уровня, в случае утраты исходных программ (вызвав указанные программы в отладчик программ DEBUG и деассемблировав их, можно получить их отображение на языке Ассемблера);

l составления программ решения наиболее ответственных задач (машинная программа, подготовленная на машинно-ориентированном языке, обычно эффективнее (короче и быстрее на 30–60%) программ, полученных в результате трансляции с языков высокого уровня) и для реализации процедур, включаемых в основную программу в виде отдельных фрагментов в том случае, если они не могут быть реализованы ни на используемом языке высокого уровня.

Основные компоненты языка ассемблер

Алфавит языка

Алфавит языка составляют символы ASCII:

l буквы от А до Z (или от а до z, строчные и прописные буквы в ассемблере не различаются);

l цифры от 0 до 9;

l специальные символы: @, $, ?, ., _,–, +, *, ", “, ; ,: и др.

Из букв, цифр и символов: @, $, ?, .,_ формируются:

l простые сообщения: имена (идентификаторы) процедур (подпрограмм), переменных, директив, команд (метки), значения констант и переменных;

l составные сообщения: команды (операторы);

l директивы (псевдооператоры);

l модификаторы (операции).

Имена меток, переменных, идентификаторов могут быть длиной до 31 символа и начинаться должны обязательно не с цифры.

Константы (числа и строки)

Только целые числа

Различают:

l двоичные числа; заканчиваются буквой В;

l десятичные числа; без специального окончания или заканчиваются буквой D;

l шестнадцатеричные числа; заканчиваются буквой Н.

Для обозначения цифр 10, 11, 12, 13, 14, 15 в шестнадцатеричной системе счисления используются, соответственно, буквы A, B, C, D, E, F; но начинаться шестнадцатеричные числа должны обязательно с цифры, например: выражение F19Н - не число, а идентификатор, правильно число надо записать так: 0F19Н.

Запись отрицательных чисел:

l десятичные числа записываются обычным образом, просто со знаком: –32, –32D;

l двоичные числа записываются только в дополнительном модифицированном коде: –32D ® 11.100000B, –19D ® 11.01101B;

l шестнадцатеричные числа записываются только в дополнительном коде:

l –32D выглядит как 1.E0H, –119D - как 1.89H.

Строки (литералы)

Строки символов: включают в себя любые буквы, цифры и символы, но заключаются в кавычки: "ПК IBM PC с микропроцессором Pentium D ".

Команды (операторы)

Формат команды:

[Метка [:]] КОП [Операнд] [,Операнд] [;Комментарий].

Между элементами команды вставлены пробелы. Здесь и далее элементы, заключенные в квадратные скобки, необязательны.

КОП (Код ОПератора) - мнемокод команды (состоит из 2–6 букв). Может быть до 256 различных кодов (в ассемблере IBM PC их число изменяется в зависимости от типа МП).

Операнд - явно заданный адрес (прямой или косвенный); имя метки, переменной; само значение переменной; ассоциативный признак. Количество необходимых в команде операндов ассемблер узнает по КОП. В большинстве двухадресных команд присутствуют операнды приемника (dst - destination) и источника (src - source); источник не изменяет своего содержания, в приемнике 1-е число, участвующее в операции, заменяется результатом.

Поясним разницу между ячейками памяти, портами и регистрами.
Ячейки памяти служат лишь для хранения информации – сначала ее записывают в ячейку, а потом могут прочитать, а также записать иную информацию.
Порты ввода-вывода , как правило, служат для преобразования двоичной информации в какие-либо физические сигналы и обратно. Например, порт данных параллельного интерфейса формирует электрические сигналы на разъеме, к которому обычно подключают принтер. Порт состояния того же интерфейса электрические сигналы, поступающие от принтера, отображает в виде набора бит, который может быть считан процессором.
Регистр –довольно широкое понятие, которое зачастую используется как синоним порта.
Каждый байт (ячейка памяти, порт) имеет собственный уникальный физический адрес . Этот адрес устанавливается на системной шине процессором, когда он инициирует обращение к данной ячейке или порту. В семействе х86 и PC-совместимых компьютерах пространства адресов ячеек памяти и портов ввода-вывода разделены. Это предусмотрено с обеих сторон: процессоры позволяют, а компьютеры используют данное разделение. Нынешние процессоры имеют разрядность физического адреса памяти 32 и даже 36 бит, что позволяет адресовать до 4 и 64 Гбайт соответственно. Пространство ввода-вывода использует только младшие 16 бит адреса, что позволяет адресовать до 65 384 однобайтных регистров. Адреса «исторических» системных устройств PC не изменились с самого рождения – это дань совместимости, которая без разделения пространств вряд ли бы просуществовала столько лет. Пространства памяти и портов ввода-вывода неравнозначны не только по объему, но и по способам обращения. Способов адресации к ячейке памяти в х86 великое множество, в то время как для адресации ввода-вывода их существует только два. К памяти возможна (и широко используется) виртуальная адресация, при которой для программиста, программы и даже пользователя создается иллюзия гигантского размера оперативной памяти. К портам ввода-вывода обращаются только по реальным адресам, правда, и здесь возможна виртуализация, но уже чисто программными средствами операционной системы. И, наконец, самое существенное различие пространств памяти и портов ввода-вывода: процессор может считывать инструкции для исполнения только из пространства памяти. Конечно, через порт ввода можно считать фрагмент программного кода (что и происходит, например, при считывании данных с диска), но для того чтобы этот код исполнить, его необходимо записать в память.
Регистры различных устройств могут быть приписаны как к пространству портов ввода-вывода, так и к пространству памяти. Под портом устройства, как правило, подразумевают регистр, связанный с этим устройством и приписанный к пространству портов ввода-вывода. Точность вышеприведенной терминологии, конечно же, относительна. Так, к примеру, ячейки видеопамяти (тоже память!) служат в основном не для хранения информации, а для управления свечением элементов экрана.

Устройство и принцип работы оперативной памяти

Оперативная память - это неотъемлемый компонент любой компьютерной системы, эта память хранит в себе данные, необходимые для работы всей системы в определённый момент времени. При создании чипов оперативной памяти используют динамическую память, которая медленнее, но дешевле чем статическая, которая используется при создании кеш памяти процессоров.

Из чего состоит ядро оперативной памяти

Ядро микросхемы оперативной памяти состоит из огромного количества ячеек памяти, которые объединены в прямоугольные таблицы - матрицы. Горизонтальные линейки матрицы называют строками , а вертикальные столбцами . Весь прямоугольник матрицы называться страницей , а совокупность страниц называется банком .

Горизонтальные и вертикальные линии являются проводником, на пересечении горизонтальных и вертикальных линий и находятся ячейки памяти .

Из чего состоит ячейка памяти

Ячейка памяти состоит из одного полевого транзистора и одного конденсатора . Конденсатор выполняет роль хранителя информации, он может хранить один бит данных, то есть либо логическую единицу (когда он заряжен), либо логический ноль (когда он разряжен). Транзистор выполняет роль электрического ключа, который либо удерживает заряд на конденсаторе, либо открывает для считывания.

Регенерация памяти

Конденсатор, который служит хранителем данных, имеет микроскопические размеры и как следствие маленькую ёмкость, и ввиду этого не может долго хранить заряд заданный ему, по причине саморазряда. Для борьбы с этой проблемой, используется регенерация памяти , которая, с определённой периодичностью считывает ячейки и записывает заново. Благодаря подобному явлению, эта память и получила название динамической.

Чтение памяти

Если нам нужно прочитать память, то на определённую строку страницы памяти, подаётся сигнал, который открывает транзистор и пропускает электрический заряд, который содержится (или не содержится) в конденсаторе на соответствующий столбец. К каждому столбцу подключен чувствительный усилитель, который реагирует на незначительный поток электронов выпущенных с конденсатора. Но тут есть нюанс - сигнал, поданный на строку матрицы, открывает все транзисторы данной строки, так как они все подключены на данную строку, и таким образом происходит чтение всей строки. Исходя из вышесказанного, становится ясно, что строка в памяти, является минимальной величиной для чтения - прочитать одну ячейку, не затронув другие невозможно.

Процесс чтения памяти является деструктивным, так как прочитанный конденсатор отдал все свои электроны, что бы его услышал чувствительный усилитель. И по этому, после каждого чтения строки, её нужно записать заново.

Интерфейс памяти

У интерфейсной части памяти следует выделить линии адреса и линии данных. Линии адреса указывают на адрес ячейки, а линии данных производят чтение и запись памяти.

Не забываем оставлять

микросхемы ОП

Память (memory) – функциональная часть ЭВМ, предназначенная для записи, хранения и выдачи информации.

Скачать презентацию «Характеристики памяти ПК»

Всю память ЭВМ можно разделить на:

  1. ОЗУ (оперативное запоминающее устройство)
  2. ПЗУ (постоянное запоминающее устройство)
  3. РОН (регистры общего назначения) внутренняя память процессора – его регистры.
  4. CMOS (Complement Metal Oxide Semiconductor – комплементарные пары метал-оксид-полупроводник указывает на технологию изготовления данной памяти) – память системных установок(конфигурации).
  5. ВЗУ (внешнее запоминающее устройство)
  6. Видеопамять – электронная память, размещенная на видеокарте, используется в качестве буфера для хранения кадров динамического изображения.

1,2,3,6 – электронная память, 5 – электромеханическая память.

Характеристики оперативной памяти

Внутренняя память ПК обладает двумя основными свойствами: дискретностью и адресуемостью.

Дискретность – память состоит из битов (бит — элемент памяти, частица информации, хранит двоичный код 0 или 1. Слово бит произошло от англ. «binary digit» — двоичная цифра).

Бит – наименьшая частица памяти компьютера.

Следовательно, у слова «бит» есть два смысла: это единица измерения количества информации и частица памяти компьютера. Оба эти понятия связаны между собой следующим образом:
В одном бите памяти хранится один бит информации.

Память – это упорядоченная последовательность двоичных разрядов(бит). Эта последовательность делится на группы по 8 разрядов. Каждая такая группа образует байт памяти.

Следовательно «бит» и «байт» обозначают не только названия единиц измерения количества информации, но и структурные единицы памяти ЭВМ.
1Кб = 210 байт =1024б
1Мб = 210 Кбайт =1024Кб
1Гб = 1024Мб

Ячейка памяти – группа последовательных байтов внутренней памяти, вмещающая в себе информацию, доступную для обработки отдельной командой процессора.
Содержимое ячейки памяти называется машинным словом. Байты внутренней памяти пронумерованы. Нумерация начинается с 0.
Порядковый № байта называется адресом байта. Принцип адресуемости памяти заключается в том, что любая информация заносится в память и извлекается из нее по адресам, т.е. чтобы взять информацию из ячейки памяти или поместить ее туда, необходимо указать адрес этой ячейки. Адрес ячейки память равен адресу младшего байта, входящим в ячейку.
Адресация памяти начинается с 0. Адреса ячеек кратны количеству байтов в машинном слове.

Структура оперативной памяти


Оперативная память(ОП) (ОЗУ)

Из ОП ЦП берет исходные данные для обработки, в нее записываются полученные результаты. Название «оперативная» память получила потому что работает быстро.
Является энергозависимой, данные и программы сохраняются в ней только до тех пор, пока ПК включен, при выключении ПК содержимое ОП стирается.
ОЗУ предназначена для хранения текущей, быстроменяющейся информации и допускает изменение своего содержимого в ходе выполнения процессором вычислений.
Используется два основных типа оперативной памяти: статическая память (SRAM-Static RAM — КЭШ) и динамическая память (DRAM-Dynamic RAM — ОЗУ).
Эти две разновидности памяти различаются быстродействием и удельной плотностью (емкостью) хранимой информации.

Быстродействие памяти характеризуется двумя параметрами: временем доступа(access time) и длительностью цикла памяти (cycle time).
Эти величины, как правило, измеряются в наносекундах. Чем больше эти величины, тем больше быстродействие памяти.
Время доступа представляет собой промежуток времени между формированием запроса на чтение информации из памяти и моментом поступления из памяти запрошенного машинного слова (операнда).
Длительность цикла определяется минимальным допустимым временим между двумя последовательными обращениями к памяти.

В статической памяти элементы построены на триггерах — схемах с двумя устойчивыми состояниями. Для построения одного триггера требуется 4-6 транзисторов. После
записи информации в статический элемент памяти он может хранить информацию сколь угодно долго (пока подается электрическое питание).
Статическая память имеет высокое быстродействие и низкую плотность размещения хранящихся данных. Этот вид памяти дорог и энергоемок, следовательно, может происходить перегрев,
что снижает надежность система, поэтому вся ОП не может быть построена по статическому принципу.

В динамической памяти элементы памяти построены на основе полупроводниковых конденсаторов, занимающих гораздо более меньшую площадь, чем триггеры в статической памяти.
Для построения динамического элемента памяти требуется 1-2 транзистора. Каждый бит ОП представляется в виде наличия или отсутствия заряда на конденсаторе, образованном в структуре
полупроводникового кристалла. Ячейки динамической памяти очень компактны, но со временем конденсатор испытывает утечку заряда, поэтому периодически (приблизительно 1000 раз в сек.)
выполняется автоматическое восстановление информации в каждой ячейке. Это снижает скорость работы динамической памяти и является основным ее недостатком.

ОП часто обозначают RAM (Random Access memory) – память с произвольным доступом (тип доступа к памяти при котором ячейки памяти пронумерованы, т.е. адресуемы и, следовательно, обращение к ним может производиться в произвольном порядке).

Термин «произвольный доступ» означает, что можно считать (записать) информацию в любой момент времени из любой ячейки.

Заметим, что существует и другая организация памяти, при которой прежде чем считать нужную информацию нужно «вытолкнуть» ранее поступившие операнды.

От объема ОП, установленным на ПК напрямую зависит с каким ПО Вы сможете на нем работать. При недостатке ОП программы не запускаются, выдается сообщение: “Out of memory”, либо работают крайне медленно.

Чем больше ОП в ПК, тем лучше. При необходимости объем ОП можно нарастить (ограничивается параметрами ОП, поддерживаемой конкретной материнской платы, внимательно см.спецификацию к системной плате).


Распределение памяти в ПК (Разделы ОЗУ)

RAM устроена довольно сложно, она иерархична (многоэтажна). ОП разделяют на несколько типов. Деление это обусловлено историческими причинами.
Первые компьютеры были выполнены так, что они могли работать максимально с 640Кб памяти. Выделяют 4 вида памяти:

  • Стандартная (conventional memory area)
  • Верхняя (upper memory blocks(area))
  • Дополнительная (expanded memory specification)
  • Расширенная (extended memory specification)

Стандартная (conventional memory area) – базовая, первые 640 Кб, также его часто называют lower.
В мл. адреса этой памяти загружается ОС и драйверы устройств. Оставшуюся свободную часть памяти занимают пользовательские программы.
Резидентные программы так же остаются в этой памяти.

Верхняя (upper memory аrea) – 640Кб — 1Мб используется для хранения служебной информации: памяти видеоадаптера,BIOS.
Спец. драйвер Himem.sys позволяют загружать в свободные участки этой области резидентные программы и драйвера устройств.

High memory – первые 64 Кб после 1Мб. ОС MS DOS позволяет загрузить часть резидентной DOS в эту область, освобождая при этом существенную часть
базовой памяти для работы прикладных программ. Особенно это полезно для программ, использующих всю ОП. Используя спец. утилиты (для DOS emm386.exe)
в верхние разделы памяти можно загружать также и резидентные программы (команды LH для autoexec.bat и DEVICEHIGT для config.sys).

Вся память свыше 1 Мб может быть рассмотрена как дополнительная(expanded) или как расширенная (extended ). В ОС менеджер памяти позволяет использовать память и как расширенную и как дополнительную, автоматически обеспечивая тот тип взаимодействия с данными, который нужен прикладным программам. Т.е. пользователю новых современных ПК (от Pentium) нет необходимости распределять память «в ручную», менеджер выделить память таким образом, как это требует прикладная программа.

Дополнительная(expanded) память – постраничная, т.е. ОП разбивается на страницы, каждой странице ставится в соответствие определенный адрес в основной памяти. При обращении к такому адресу EMM(expanded memory manager) драйвер расширенной памяти(менеджер памяти) позволяет компьютеру считать информацию с соответствующей страницы памяти.

Расширенная (extended) память построчной организации (Smartdrv — драйвер расширенной памяти) используется для создания временного логического диска (виртуального диска), как буфер обмена с жестким диском.


Распределение ОП в ПК с ОС MS-DOS

1Mб+ 64Кб High High Расширенная или дополнительная память
Резидентные программы и драйверы устройств
Часть ОС
1Mб Upper Верхняя память ПЗУ BIOS
Видеопамять (текстовый буфер)
Видеопамять (графический буфер)
640Кб Convertional Memory Area (base)Стандартная (базовая память) Свободная часть (command.com) транзитная часть
Свободная часть для программ пользователя
Command.com (резидентная часть)
Программы DOS, драйверы
Файлы io.sys msdos.sys
Данные для DOS и BIOS и другая служебная информация

Микросхемы ОП (модули ОП)

Производительность ПК зависит от типа и размера ОП, а это в свою очередь зависит от набора интегральных схем на материнской плате.

Внешний вид микросхем ОП: пластиковая полоска, на ней расположены кремневые «черепашки» – чипы-микросхемы (то есть используется полупроводниковая технология) и имеются «ножевые» контактные разъемы.

Устройства памяти характеризуются следующими основными показателями:

  1. временем доступа (быстродействием). Время доступа – промежуток времени, за который может быть записано (прочитано) содержимое ячейки памяти.
  2. емкостью (определяет количество ячеек (битов) в устройстве памяти).
  3. стоимостью.
  4. потребляемой мощностью (электропотреблением).

Существует 2 модуля памяти, отличающиеся формой, внутренней архитектурой, скоростью работы: SIMM и DIMM.
I. SIMM (SINGLE IN-LINE MEMORY MODULES) (SRAM)
бывают двух типов (отличающихся количеством контактов).

1. 30-контактные модули SIMM. Бывают 1 и 4 Мб. Практически сегодня исчезли из продажи для компьютеров 386, 286-процессором. Сегодня им нашлось интересное применение – в качестве ОП, устанавливаемой в некоторые звуковые платы, например, Greafive Sound Blaster 32 (AWE-32) Gravis UltraSound PnP. Однако новая карта AWE-64 уже содержит свои модули ОП, эта память не нужна.

2. 72-контактные SIMM (на 1, 4, 8, 16, 32, 64 Мб, редко 128 Мб). Внешний вид неизменный, а вот тип устанавливаемой на них памяти меняется (тип памяти указывается на микросхеме).

a) самый старый (редко сейчас встречающийся) – FPM DRAM (или просто DRAM – Dynamic Random Access Memory – динамическая ОП). Работала на 486 и первых Pentium.

b) модифицированный тип EDO DRAM (или EDO – Extended data output).

Микросхемы SIMM выпускаются одинарной и двойной плотности, с контролем четности и без (использование контроля четности позволяет парировать одиночную ошибку памяти). Модули отличаются и по скорости доступа 60 и 70 наносекунд, чем скорость меньше, тем быстрее доступ. 60 наносекунд быстрее 70 наносекунд. Модули SIMM в материнской плате Pentium и Pentium MMX устанавливаются только попарно, образуя так называемый банк.

Пример необходимо 32 Мб => 2 модуля SIMM по 16 Мб.
необходимо 64 Мб => 4 модуля SIMM по 16 Мб или 2 модуля SIMM по 32Мб.

В рамках одного банка можно использовать только одинаковые по емкости и скорости доступа модули SIMM. Если на вашей материнской плате 4 слота для модулей памяти SIMM, то можно сформировать два банка различной емкости.


II. DIMM (SDRAM DUAL IN-LINE MEMORY MODULES).

Появился впервые у MMX- компьютеров, стал основой для PII., поэтому у PII редко бывают SIMM-разъемы. DIMM не обязательно должно быть четное число. Модули DIMM бывают емкостью 16, 32, 64, 128, 256, 512 Мб

  1. EDO SD RAM (Synchronous DRAM) – синхронизируемая динамическая ОП)
    SD RAM (SINGLE DATA RATE RANDOM ACCESS MEMORY).ЗУПВ с одинарной скоростью передачи данных, которая в зависимости от тактовой частоты называется памятью PC100 и PC133. Микросхема на 168 контактов, является сегодня самой «медленной» из семейства DIMM-модулей памяти, Время доступа = 10-20 наносекунд. Верхний предел ее тактовой частоты 133 МГц. И все же этот тип ОП вполне подходит для большинства офисных и
    домашних ПК. Пропускная способность 1Гб/с.
    SPD – это небольшая микросхема, установленная в модуле памяти SD RAM DIMM и содержащая подробную информацию о типе установленной памяти и некоторые другие устройства. РС133 SDRAM(Synchronous Dynamic Random Access Memory) самая быстрая из класса классической ОП. (были и РС66, РС100). Теперь это самый медленный тип ОЗУ. Физически представляет собой массив микроскопических конденсаторов, «упакованных» в микросхемы памяти. Логически каждый конденсатор есть не что иное, как элементарная однобитовая информационная ячейка с 2-мя состояниями: 0 – если конденсатор не заряжен, 1 – если заряжен. Эти ячейки объединяются в двумерную матрицу, где каждая ячейка адресуется номерами строки и столбца, на пересечении которых она находится. К микросхеме подводятся шины командная (передает команды, управляющие работой микросхем ОП), адресная (адреса строк и столбцов), и данных. Все три синхронизируются импульсами одной и той же частоты. (133). SDRAM – синхронная память и логика работы микросхем памяти этого типа жестко синхронизируется с тактовым сигналом. Например, контроллер памяти точно знает, в течение скольких тактов микросхемы памяти будут готовить запрошенные данные для передачи и на каком такте начнется собственно их передача. Сегодня данная микросхема встречается редко.
  2. Rambus (RD RAM) Двухканальная ОП (микросхема фирмы Intel). Direct Rambus – это новая шина памяти, в которой управление адресацией отделено от работы с данными. Система состоит из контроллера Direct Rambus, подсоединенного к одному или нескольким модулям Direct Rambus DRAM, которые называются RIMM, в отличии от обычных микросхем памяти, соединяемых параллельно, RIMM соединяются последовательно. Канал Direct Rambus включает двунаправленную шину данных и шину адреса, т.е. адреса памяти передаются одновременно с данными. Каждая микросхема RDRAM может содержать до 32 независимых банков, SD RAM – от 2 до 8. Свободно работает на высоких тактовых частотах.
    Микросхема на 184 контакта Микросхемы ОП с тактовой частотой от 600 до 800 МГц. Когда используется микросхема PC800 (частота синхронизации 400 МГц), пропускная способность шины «память-процессор» достигает 3,2 Гб/с. При использовании PC600 (300 МГц) этот параметр = 2,6 Гб/с.
    В свободные гнезда памяти Rambus необходимо устанавливать заглушки Continuity Rimm (CRIMM). Без них система не станет работать, поскольку модули в обоих каналах Rambus включаются каскадно, то есть тактовые и управляющие сигналы проходят через разъемы Rimm последовательно. Емкость ОЗУ может быть до 3 Гб.
    Обеспечивают значительное быстродействие при выполнении сложных приложений на ПК и рабочих станциях. Вопрос о быстродействии ОП сегодня очень спорный.
  3. DDR SDRAM (Double Data Rate) двойная скорость передачи данных – это по сути модификации обычной SDRAM и отличается от нее тем, что в ней запись и чтение данных происходят и по переднему и по заднему фронту тактового импульса. Поэтому за один такт по шине передается вдвое больше данных, и ее эффективная частота оказывается вдвое больше физической.
    2х канальная память DDR266 DDR333 и DDR400 и системы с ней не уступают памяти RDRAM. ОП с удвоенной скоростью передачи данных, а иначе называется PC200 и PC266 в зависимости от тактовой частоты системной шины. Не столь дорогая, чем (3) и явно способствует повышению быстродействия ПК в отличие от (2). В основном благодаря использованию этой памяти ПК на базе Athlon 1,2 Ггц обошел на многих тестах 1,5 Ггц Р-IV с памятью RD RAM.
    Сегодня, пока, покупатель не может просто выбрать желательный для него тип ОП, так как она связана с интегральной схемой на системной плате, а та с ЦП. Так, пока, Р-IV работает с набором ИС- 850 компании Intel и дорогостоящей памятью RD RAM. (В середине 2001 года планируется появление микросхем, совместимых с устройствами SD RAM и DDR). Если вы хотите приобрести Р-IV, то автоматически будете вынуждены приобрести и дорогую ОП. Наборы интегральных схем семейства Athlon используют ОП SD RAM и DDR, но не могут RD RAM.

Модуль памяти Kingston DDR PC3200

В ПЗУ информация остаётся неизменной.
Запись в ПЗУ обычно осуществляется электрическим или механическим способом, в процессе изготовления материнской карты. Эти данные, как правило, не могут быть изменены, выполняемые не ПК
программы могут их только считывать В ПЗУ хранится информация, присутствие которой постоянно необходимо в компьютере.

Часто ее называют ROM (Read Only Memory) – память только для чтения. В постоянной памяти хранятся программы для проверки оборудования компьютера, инициирования загрузки ОС и выполнение базовых
функций по обслуживанию устройств ПК. Часто содержимое постоянной памяти называют BIOS(Basic Input Output System) – базовая система ввода/вывода.
BIOS – это система контроля и управления устройствами, подключёнными к ПК (жёсткий диск, ОП, часы, календарь). Это часть программного обеспечения ПК, поддерживающая управление адаптерами
внешних устройств, экранные операции, тестирование, начальную загрузку и установку OS. BIOS находится на материнской плате (отдельная микросхема с автономным питанием от батарейки в ПК).

На сегодняшних ПК BIOS можно перезаписывать.BIOS сегодня может сам определять новые устройства, подключённые к ПК (стандарт PnP — Plug-And-Play) включи и работай.
Управление устройствами осуществляется через механизм прерываний.


Прерывания могут быть:

  • аппаратные (инициируются аппаратными средствами),
  • логические (инициируются микропроцессором – нестандартные ситуации в работе микропроцессора),
  • программные (инициируются каким-либо программным обеспечением).

При включении ПК автоматически загружается и выполняется спец.программа POST(Power-On Self-Test) из состава BIOS.

Эта программа производит самопроверку и тестирование при загрузке:

  • проверка переключателей и CMOS-памяти на системной (материнской) плате (определение оборудования, которое подключено к ПК),
  • тестирование ОЗУ,
  • выполнение действий по загрузке OС (загрузка в ОЗУ и запуск Блока Начальной Загрузки OС),
  • выполняет другие специфические действия по подготовке ПК и дополнительно-го оборудования к работе.


BIOS

Является своеобразной программной оболочкой вокруг аппаратных средств ПК (самого нижнего уровня), реализуя доступ к аппаратным средствам ПК через механизм прерываний.
CMOS-память – ПЗУ (с возможностью модификации), где содержится некоторая настроченная информация по конфигурации ДАННОГО ПК и некоторого дополнительного оборудования. Обладает низким электропотреблением. Питается от аккуммуляторной батарейки.
«Вход» в редактирование CMOS-памяти, как правило, по нажатию клавиши DELETE (DEL) (на клавиатуре) сразу после включения ПК в процессе работы POST-программы (загрузка программы Setup).

  • системные часы,
  • информация по результатам диагностики POST-программы,
  • информация по наличию и типу FDD,
  • информация по наличию и типу HDD,
  • размер ОЗУ,
  • наличие дополнительного оборудования.


Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: