Инструментальные средства описания архитектуры информационной системы. Open Library - открытая библиотека учебной информации. Понятие архитектуры информационной системы

Классификация информационных систем управления предприятием

Информационная система - взаимосвязанная совокупность средств, методов и персонала, используемых для хранения, обработки и выдачи информации в интересах достижения поставленной цели»

В Федеральном законе «Об информации, информатизации и защите информации» дается следующее определение:

«Информационная система - организационно упорядоченная совокупность документов (массивов документов) и информационных технологий, в том числе с использованием средств вычислительной техники и связи, реализующих информационные процессы»

Классификация по масштабу

По масштабу информационные системы подразделяются на следующие группы:

· одиночные;

· групповые;

· корпоративные.

Одиночные информационные системы реализуются, как правило, на автономном персональном компьютере (сеть не используется). Такая система может содержать несколько простых приложений, связанных общим информационным фондом, и рассчитана на работу одного пользователя или группы пользователей, разделяющих по времени одно рабочее место. Подобные приложения создайся с помощью так называемых настольных или локальных систем управления базами данных (СУБД). Среди локальных СУБД наиболее известными являются Clarion, Clipper, FoxPro, Paradox, dBase и Microsoft Access.

Групповые информационные системы ориентированы на коллективное использование информации членами рабочей группы и чаще всего строятся на базе локальной вычислительной сети. При разработке таких приложений используются серверы баз данных (Называемые также SQL-серверами) для рабочих групп. Существует довольно большое количество различных SQL-серверов, как коммерческих, так и свободно распространяемых. Среди них наиболее известны такие серверы баз данных, как Oracle, DB2, Microsoft SQL Server, InterBase, Sybase, Informix.

Корпоративные информационные системы являются развитием систем для рабочих групп, они ориентированы на крупные компании и могут поддерживать территориально разнесенные узлы или сети. В основном они имеют иерархическую структуру из нескольких уровней. Для таких систем характерна архитектура клиент-сервер со специализацией серверов или же многоуровневая архитектура. При разработке таких систем могут использоваться те же серверы баз данных, что и при разработке групповых информационных систем. Однако в крупных информационных системах наибольшее распространение получили серверы Oracle, DB2 и Microsoft SQL Server.

Для групповых и корпоративных систем существенно повышаются требования к надежности функционирования и сохранности данных. Эти свойства обеспечиваются поддержкой целостности данных, ссылок и транзакций в серверах баз.



Классификация по сфере применения

По сфере применения информационные системы обычно подразделяются на четыре группы:

· системы обработки транзакций;

· системы принятия решений;

· информационно-справочные системы;

· офисные информационные системы.

Системы обработки транзакций , в свою очередь, по оперативности обработки данных, разделяются на пакетные информационные системы и оперативные информационные системы. В информационных системах организационного управлений преобладает режим оперативной обработки транзакций, для отражения актуального состояния предметной области в любой момент времени, а пакетная обработка занимает весьма ограниченную часть.

Системы поддержки принятия решений - DSS (Decision Support Systeq) - представляют собой другой тип информационных систем, в которых с помощью довольно сложных запросов производится отбор и анализ данных в различных разрезах: временных, географических и по другим показателям.

Обширный класс информационно-справочных систем основан на гипертекстовых документах и мультимедиа. Наибольшее развитие такие информационные системы получили в сети Интернет.

Класс офисных информационных систем нацелен на перевод бумажных документов в электронный вид, автоматизацию делопроизводства и управление документооборотом.

Классификация по способу организации

По способу организации групповые и корпоративные информационные системы подразделяются на следующие классы:

· системы на основе архитектуры файл-сервер;

· системы на основе архитектуры клиент-сервер;

· системы на основе многоуровневой архитектуры;

· системы на основе Интернет/интранет - технологий.

В любой информационной системе можно выделить необходимые функциональные компоненты, которые помогают понять ограничения различных архитектур информационных систем.

Архитектура файл-сервер только извлекает данные из файлов так, что дополнительные пользователи и приложения добавляют лишь незначительную нагрузку на центральный процессор. Каждый новый клиент добавляет вычислительную мощность к сети.

Архитектура клиент-сервер предназначена для разрешения проблем файл-серверных приложений путем разделения компонентов приложения и размещения их там, где они будут функционировать наиболее эффективно. Особенностью архитектуры клиент-сервер является использование выделенных серверов баз данных, понимающих запросы на языке структурированных запросов SQL (Structured Query Language) и выполняющих поиск, сортировку и агрегирование информации.

В настоящее время архитектура клиент-сервер получила признание и широкое распространение как способ организации приложений для рабочих групп и информационных систем корпоративного уровня. Подобная организация работы повышает эффективность выполнения приложений за счет использования возможностей сервера БД, разгрузки сети и обеспечения контроля целостности данных.

Многоуровневая архитектура стала развитием архитектуры клиент-сервер и в своей классической форме состоит из трех уровней:

· нижний уровень представляет собой приложения клиентов, имеющие программный интерфейс для вызова приложения на среднем уровне;

· средний уровень представляет собой сервер приложений;

· верхний уровень представляет собой удаленный специализированный сервер базы данных.

Трехуровневая архитектура позволяет еще больше сбалансировать нагрузку на разные узлы и сеть, а также способствует специализации инструментов для разработки приложений и устраняет недостатки двухуровневой модели клиент-сервер.

В развитии технологии Интернет/интранет основной акцент пока что делается на разработке инструментальных программных средств. В то же время наблюдается отсутствие развитых средств разработки приложений, работающих с базами данных. Компромиссным решением для создания удобных и простых в использовании и сопровождении информационных систем, эффективно работающих с базами данных, стало объединение Интернет/интранет-технологии с многоуровневой архитектурой. При этом структура информационного приложения приобретает следующий вид: браузер - сервер приложений - сервер баз данных - сервер динамических страниц - web-сервер.

По характеру хранимой информации БД делятся на фактографические и документальные . Если проводить аналогию с описанными выше примерами информационных хранилищ, то фактографические БД - это картотеки, а документальные - это архивы. В фактографических БД хранится краткая информация в строго определенном формате. В документальных БД - всевозможные документы. Причем это могут быть не только текстовые документы, но и графика, видео и звук (мультимедиа).

Автоматизированная система управления (АСУ) - это комплекс технических и программных средств, совместно с организационными структурами (отдельными людьми пли коллективом), обеспечивающий управление объектом (комплексом) в производственной, научной или общественной среде.

Выделяют информационные системы управления образования (Например, кадры, абитуриент, студент, библиотечные программы). Автоматизированные системы для научных исследований (АСНИ), представляющие собой программно-аппаратные комплексы, обрабатывающие данные, поступающие от различного рода экспериментальных установок и измерительных приборов, и на основе их анализа облегчающие обнаружение новых эффектов и закономерностей.Системы автоматизированного проектирования и геоинформационные системы.

Систему искусственного интеллекта, построенную на основе высококачественных специальных знании о некоторой предметной области (полученных от экспертов - специалистов этой области), называют экспертной системой. Экспертные системы - один из немногих видов систем искусственного интеллекта - получили широкое распространение, и нашли практическое применение. Существуют экспертные системы по военному делу, геологии, инженерному делу, информатике, космической технике, математике, медицине, метеорологии, промышленности, сельскому хозяйству, управлению, физике, химии, электронике, юриспруденции и т.д. И только то, что экспертные системы остаются весьма сложными, дорогими, а главное, узкоспециализированными программами, сдерживает их еще более широкое распространение.

Экспертные системы (ЭС) - это компьютерные программы, созданные для выполнения тех видов деятельности, которые под силу человеку-эксперту. Они работают таким образом, что имитируют образ действий человека-эксперта, и существенно отличаются от точных, хорошо аргументированных алгоритмов и не похожи на математические процедуры большинства традиционных разработок.

Архитектура информационной системы – концепция, определяющая модель, структуру, выполняемые функции и взаимосвязь компонентов информационной системы.

Конструктивно архитектура обычно определяется как набор ответов на следующие вопросы:

· что делает система;

· как эти части взаимодействуют;

· где эти части размещены.

· на какие части она разделяется;

По степени распределённости отличают:

Настольные (desktop), или локальные ИС, в которых все компоненты (БД, СУБД, клиентские приложения) находятся на одном компьютере;

Распределённые (distributed) ИС, в которых компоненты распределены по нескольким компьютерам.

Распределённые ИС, в свою очередь, разделяют на:

- файл-серверные ИС (ИС с архитектурой «файл-сервер»);

Организация информационных систем на основе использования выделенных файл-серверов все еще является распространенной в связи с наличием большого количества персональных компьютеров разного уровня развитости и сравнительной дешевизны связывания PC в локальные сети.

Конечно, основным достоинством данной архитектуры является простота организации. многопользовательский режим работы с данными;

Недостатки:

  • проблемы многопользовательской работы с данными: последовательный доступ, отсутствие гарантии целостности;
  • низкая производительность (зависит от производительности сети, сервера, клиента);
  • плохая возможность подключения новых клиентов;
  • ненадежность системы.

- клиент-серверные ИС (ИС с архитектурой «клиент-сервер»).

Клиент-сервер – вычислительная или сетевая архитектура, в которой задания или сетевая нагрузка распределены между поставщиками услуг (сервисов), называемых серверами, и заказчиками услуг, называемых клиентами.

Преимуществами данной архитектуры являются:

  • возможность, в большинстве случаев, распределить функции вычислительной системы между несколькими независимыми компьютерами в сети;
  • все данные хранятся на сервере, который, как правило, защищен гораздо лучше большинства клиентов, а также на сервере проще обеспечить контроль полномочий, чтобы разрешать доступ к данным только клиентам с соответствующими правами доступа;
  • поддержка многопользовательской работы;
  • гарантия целостности данных.

Недостатки:

  • неработоспособность сервера может сделать неработоспособной всю вычислительную сеть;
  • администрирование данной системы требует квалифицированного профессионала;
  • высокая стоимость оборудования;
  • бизнес логика приложений осталась в клиентском ПО.

В файл-серверных ИС база данных находится на файловом сервере, а СУБД и клиентские приложения находятся на рабочих станциях.

В клиент-серверных ИС база данных и СУБД находятся на сервере, а на рабочих станциях находятся клиентские приложения.

В свою очередь, клиент-серверные ИС разделяют на двухзвенные и многозвенные.

В двухзвенных ИС всего два типа «звеньев»: сервер баз данных, на котором находятся БД и СУБД, и рабочие станции, на которых находятся клиентские приложения. Клиентские приложения обращаются к СУБД напрямую.

В многозвенных ИС добавляются промежуточные «звенья»: серверы приложений. Пользовательские клиентские приложения не обращаются к СУБД напрямую, они взаимодействуют с промежуточными звеньями. Типичный пример применения многозвенности - современные веб-приложения, использующие базы данных. В таких приложениях помимо звена СУБД и клиентского звена, выполняющегося в веб-браузере, имеется как минимум одно промежуточное звено - веб-сервер с соответствующим серверным программным обеспечением.

По способу организации групповые и корпоративные информационные системы подразделяются на следующие классы :

    системы на основе многоуровневой архитектуры;

    системы на основе технологии интернет/интранет.

В любой информационной системе можно выделить необходимые функциональные компоненты, которые помогают понять ограничения различных архитектур информационных систем (таблица 3.2).

Таблица 3.2 – Типовые функциональные компоненты информационной системы

Обозна-чение

Наименование

Характеристика

Presentation Services

(средства представления)

Обеспечиваются устройствами, принимающими ввод от пользователя и отображающими результаты обработки.

Presentation Logic(логика представления)

Управляет взаимодействием между пользователем и ЭВМ. Обрабатывает действия пользователя при выборе команды в меню, нажатии кнопки или выборе элемента из списка.

Business or Application Logic

(прикладная логика)

Набор правил для принятия решений, вычислений и операций, которые должно выполнить приложение.

(логика управления данными)

Операции с базой данных (SQL-операторы), которые нужно выполнить для реализации прикладной логики управления данными.

(операции с базой данных)

Действия СУБД, вызываемые для выполнения логикиу правления данными, такие как: манипулирование данными, определение данных, фиксация или откат транзакций и т. п. СУБД обычно компилирует SQL-предложения.

(файловые операции)

Дисковые операции чтения и записи данных для СУБД (файловые операции) и других компонентов. Обычно являются функциями операционной системы (ОС)

Рассмотрим более подробно особенности вариантов построения информационных приложений. Разделение информационных систем по классам осуществляется на основе расположения функциональных компонент. Можно выделить необходимые функциональные компоненты, которые помогают понять ограничения различных архитектур информационных систем. Рассмотрим более подробно особенности вариантов построения информационных приложений.

По способу организации информационные системы разделяются следующим образом:

    системы на основе архитектуры файл-сервер;

    системы на основе архитектуры клиент-сервер;

    системы на основе многоуровневой архитектуры.

Архитектура файл-сервер не имеет сетевого разделения компонентов и используетклиентскийкомпьютер для выполнения функций диалога и обработки данных, что облегчает построение графического интерфейса. Файл-сервер только извлекает данные из файлов,так что дополнительные пользователи и приложения добавляют лишь незначительную нагрузку на центральный процессор. Каждый новый клиент добавляет вычислительную мощность к вычислительной сети.

Объектами разработки в файл-серверном приложении являются компоненты приложения, определяющие логику диалога PL, а также логики обработки BL и управления данными DL. Разработанное приложение реализуется либо в виде законченного загрузочного модуля, либо в виде специального кода для интерпретации.

Однако такая архитектура имеет существенный недостаток: при выполнении некоторых запросов к базе данных клиенту могут передаваться большие объемы данных, которые загружают сеть и приводят к непредсказуемому времени реакции. Значительный сетевой трафик особенно сильно сказывается при организации удаленного доступа к базам данных на файл-сервере через низкоскоростные каналы связи. Одним из вариантов устранения данного недостатка является удаленное управление файл-серверным приложением в сети. При этом в локальной сети размещается сервер приложений, совмещенный с телекоммуникационным сервером (обычно называемым сервером доступа), в среде которого выполняются обычные файл-серверные приложения. Особенность такой организации состоит в том, что диалоговый ввод-вывод поступает от удаленных клиентов через телекоммуникации.

Архитектура клиент-сервер предназначена для разрешения проблем файл-серверной архитектуры путем разделения компонентов приложения и размещения их там, где они будут функционировать наиболее эффективно. Особенностью архитектуры клиент-сервер является использование выделенных серверов баз данных, понимающих запросы на языке структурированных запросов SQL (Structured Query Language) и выполняющих поиск, сортировку и агрегирование информации.

Отличительная черта серверов БД – наличие справочника данных, в котором записана структура БД, ограничения целостности данных, форматы и даже серверные процедуры обработки данных по вызову или по событиям в программе. Объектами разработки в таких приложениях помимо диалога и логики обработки являются, прежде всего, реляционная модель данных и связанный с ней наборSQL-операторов для типовых запросов к базе данных.

Большинство конфигураций клиент-сервер использует двухуровневую модель, в которой клиент обращается к услугам сервера. Предполагается, что диалоговые компоненты PS и PL размещаются на клиенте, что позволяет обеспечить графический интерфейс. Компоненты управления данными DS и FS размещаются на сервере, а диалог (PS, PL), логики BL и DL – на клиенте. Двухуровневая архитектураклиент-сервер использует именно этот вариант: приложениеработает на клиенте, СУБД – на сервере.

Поскольку эта архитектура предъявляет наименьшие требования к серверу, она обладает наилучшей масштабируемостью. Однако сложные приложения, вызывающие большое взаимодействие с БД, могут жестко загрузить как клиента, так и сеть. Результаты SQL-запроса должны вернуться клиенту для обработки, потому что там находится логика принятия решения. Такая схема приводит к дополнительному усложнению администрирования приложений, разбросанных по различным клиентским узлам.

Для сокращения нагрузки на сеть и упрощения администрирования приложений компонент BL можно разместить на сервере. При этом вся логика принятия решений оформляется в видехранимых процедур и выполняется на сервере БД.Хранимая процедура – процедура с операторами SQL для доступа к БД, вызываемая по имени с передачей требуемых параметров и выполняемая на сервере БД.Хранимые процедуры могут компилироваться, что повышает скорость их выполнения и сокращает нагрузку на сервер.

Хранимые процедуры улучшают целостность приложений и БД, гарантируют актуальность коллективно используемых операций и вычислений. Улучшается сопровождение таких процедур, а также безопасность данных (нет прямого доступа к данным).

Двухуровневые схемы архитектуры клиент-сервер могут привести к некоторымпроблемам в сложных информационных приложениях с множеством пользователей и запутанной логикой. Решением этих проблем может стать использование многоуровневой архитектуры.

Многоуровневая архитектура стала развитием архитектуры клиент -сервер и в классической форме состоит из трех уровней:

    нижний уровень представляет собой приложения клиентов, выделенные для выполнения функций и логики представленийPS иPL и имеющие программный интерфейс для вызова приложения на среднем уровне;

    средний уровень представляет собой сервер приложений, на котором выполняется прикладная логика BL и с которого логика обработки данных DL вызывает операции с базой данных DS;

    верхний уровень представляет собой удаленный специализированный сервер базы данных, выделенный для услуг обработки данных DS и файловых операций FS (без использования хранимых процедур).

Трехуровневая архитектура позволяет еще больше сбалансировать нагрузку на разные узлы и сеть, а также способствует специализации инструментов для разработки приложений и устраняет недостатки двухуровневой моделиклиент-сервер.

Централизация логики приложения упрощает администрирование и сопровождение. Четко разделяются платформы и инструменты для реализации интерфейса и прикладной логики, что позволяет с наибольшей отдачей реализовывать их специалистами узкого профиля. Наконец, изменения прикладной логики не затрагивают интерфейс, и наоборот. Но поскольку границы между компонентами PL, BL и DL размыты, прикладная логика может появиться на всех трех уровнях. Сервер приложений с помощью монитора транзакций обеспечивает интерфейс с клиентами и другими серверами, может управлять транзакциями и гарантировать целостность распределенной базы данных. Средства удаленного вызова процедур наиболее соответствуют идее распределенных вычислений: они обеспечивают из любого узла сети вызов прикладной процедуры, расположенной на другом узле,передачу параметров, удаленную обработку и возврат результатов. С ростом систем клиент -сервер необходимость трех уровней становится все более очевидной.

Таким образом, многоуровневая архитектура распределенных приложений позволяет повысить эффективность работы корпоративной информационной системы и оптимизировать распределение ее программно-аппаратных ресурсов. Но пока на российском рынке по-прежнему доминирует архитектура клиент -сервер.

Интернет/Интранет-технологии. В развитии технологии интернет- интранет основной акцент пока что делается на разработке инструментальных программных средств. В то же время наблюдается отсутствие развитых средств разработки приложений, работающих с базами данных. Компромиссным решением для создания удобных и простых в использовании и сопровождении информационных систем, эффективно работающих с базами данных, стало объединение Интернет/Интранет-технологии с многоуровневой архитектурой. При этом структура информационного приложения приобретает следующий вид: браузер – сервер приложений – сервер баз данных – сервер динамических страниц – web-сервер.

Благодаря интеграции Интернет/Интранет-технологии и архитектурыклиент-сервер процесс внедрения и сопровождения корпоративной информационной системы существенно упрощается при сохранении достаточно высокой эффективности и простоты совместного использования информации.

Вывод :Для решения задачи проектированияинформационной системы мониторинга доступности ремонтных бригадремонтной службы ОАО «НЭСК-ЭЛЕКТРОСЕТИ» подходиттехнология Интернет/Интранет на базе многоуровневой архитектуры, так как в данной системе обрабатывается малый объем данных и не должно существовать никакого дополнительного ПО для ее использования на стороне клиента.

Архитектура информационной системы мониторинга доступности ремонтных бригад ремонтной службы ОАО «НЭСК-ЭЛЕКТРОСЕТИ» показана на рисунке 3.1.

Рисунок 3.1 – Архитектура системы

Опишемархитектурысистемы. В качестве постоянного хранилища данных используется реляционная база данных. В базу данных помещаются только данные в виде набора реляционных сущностей (связанных таблиц) без элементов программируемой логики (триггеров, хранимых процедур, представлений и т.п.). Система может использовать сервер, который удовлетворяет определенным требованиям к функциональности.

Сервер приложения реализуется в виде WEB-приложения, которое может исполняться в контекстесреды исполнения, работающегонапример, наJava и реализующего стандарты Java-сервлетов. Для снижения нагрузки на сервер приложений за счет кэширования передаваемого контента, а также реализации дополнительных функций, таких как Virtual Hosts, SSL перед сервером приложений может проводиться установка одного из популярных Web-серверов: Apache, nginx, MS IIS.

Приложение имеет модульную архитектуру: функциональность системы сосредоточена в нескольких модулях, работающих независимо друг от друга и взаимодействующих через общую шину сервисов.

Архитектура информационной системы – это концептуальное описание структуры, определяющее модель, выполняемые функции и взаимосвязь компонентов информационной системы.

Архитектура информационной системы предусматривает наличие трех компонентов:

1.Информационные технологии

2.Функциональные подсистемы

3.Управление информационными системами

Различают следующие виды архитектур: файл-сервер; клиент-сервер; многоуровневая; архитектура на базе хранилища данных; Internet/Intranet.

Архитектура файл-сервер. Архитектура файл-сервер не имеет сетевого разделения компонентов диалога PS и PL и использует компьютер для функций отображения, что облегчает построение графического интерфейса. Файл-сервер только извлекает данные из файлов, так что дополнительные пользователи и приложения добавляют лишь незначительную нагрузку на центральный процессор. Каждый новый клиент добавляет вычислительную мощность к сети. Объектами разработки в файл-серверном приложении являются компоненты приложения, определяющие логику диалога PL, а также логику обработки BL и управления данными DL. Разработанное приложение реализуется либо в виде законченного загрузочного модуля, либо в виде специального кода для интерпретации. Однако такая архитектура имеет существенный недостаток: при выполнении некоторых запросов к базе данных клиенту могут передаваться большие объемы данных, загружая сеть и приводя к непредсказуемости времени реакции.

Архитектура клиент-сервер. Архитектура клиент-сервер предназначена для разрешения проблем файл-серверных приложений путем разделения компонентов приложения и размещения их там, где они будут функционировать наиболее эффективно. Особенностью архитектуры клиент-сервер является использование выделенных серверов баз данных, понимающих запросы на языке структурированных запросов SQL (Structured Query Language) и выполняющих поиск, сортировку и агрегирование информации. Отличительная черта серверов БД – наличие справочника данных, в котором записана структура БД, ограничения целостности данных, форматы и даже серверные процедуры обработки данных по вызову или по событиям в программе. Объектами разработки в таких приложениях помимо диалога и логики обработки являются, прежде всего, реляционная модель данных и связанный с ней набор SQL-операторов для типовых запросов к базе данных. Большинство конфигураций клиент-сервер использует двухуровневую модель, в которой клиент обращается к услугам сервера. Предполагается, что диалоговые компоненты PS и PL размещаются на клиенте, что позволяет обеспечить графический интерфейс. Компоненты управления данными DS и FS размещаются на сервере, а диалог (PS, PL), логика BL и DL – на клиенте. Двухуровневое определение архитектуры клиент-сервер использует именно этот вариант: приложение работает у клиента, СУБД – на сервере. Поскольку эта схема предъявляет наименьшие требования к серверу, она обладает наилучшей масштабируемостью. Однако сложные приложения, вызывающие большое взаимодействие с БД, могут жестко загрузить как клиента, так и сеть. Результаты SQL-запроса должны вернуться клиенту для обработки, потому что там находится логика принятия решения. Такая схема приводит к дополнительному усложнению администрирования приложений, разбросанных по различным клиентским узлам. Для сокращения нагрузки на сеть и упрощения администрирования приложений компонент BL можно разместить на сервере. При этом вся логика принятия реше­ний оформляется в виде хранимых процедур и выполняется на сервере БД. Хранимая процедура – процедура с операторами SQL для доступа к БД, вызываемая по имени с передачей требуемых параметров и выполняемая на сервере БД. Хранимые процедуры могут компилироваться, что повышает скорость их выполнения и сокращает нагрузку на сервер. Создание архитектуры клиент-сервер возможно и на основе многотерминальной системы. В этом случае в многозадачной среде сервера приложений выполняются программы пользователей, а клиентские узлы вырождены и представлены терминалами. Подобная схема информационной системы характерна для UNIX.



Многоуровневая архитектура. Многоуровневая архитектура стала развитием архитектуры клиент-сервер и в своей классической форме состоит из трех уровней:

Нижний уровень представляет собой приложения клиентов, выделенные для выполнения функций и логики представлений PS и PL и имеющие программный интерфейс для вызова приложения на среднем уровне;



Средний уровень представляет собой сервер приложений, на котором выполняется прикладная логика BL и с которого логика обработки данных DL вызывает операции с базой данных DS;

Верхний уровень представляет собой удаленный специализированный сервер базы данных, выделенный для услуг обработки данных DS и файловых операций FS (без риска использования хранимых процедур).

Интернет/интранет-технологии. В развитии технологии Интернет/интранет основной акцент пока что делается на разработке инструментальных программных средств. В то же время наблюдается отсутствие развитых средств разработки приложений, работающих с базами данных. Компромиссным решением для создания удобных и простых в использовании и сопровождении информационных систем, эффективно работающих с базами данных, стало объединение Интернет/интранет-технологии с многоуровневой архитектурой. При этом структура информационного приложения приобретает следующий вид: браузер – сервер приложений – сервер баз данных – сервер динамических страниц – web-сервер. Благодаря интеграции Интернет/интранет-технологии и архитектуры клиент-сервер процесс внедрения и сопровождения корпоративной информационной системы существенно упрощается при сохранении достаточно высокой эффективности и простоты совместного использования информации.


4. Этапы развития и базовые стандарты ИС .

Основные этапы развития информационных систем:

1950-1960 гг.- формирование бумажных расчетных документов. Функции: обработка расчетных документов на электромеханических и бухгалтерских машинах. Цель: повышение скорости обработки документов, упрощение процедуры обработки счетов и расчета зарплаты

1960-1970 гг. - формирование отчетов. Функции: управление производственной информацией. Цель: ускорение процесса подготовки отчетности

1970-1980 гг.- управленческий контроль производства и реализации. Функции: поддержка принятия решений. Цель: выработка оптимального решения

1980 гг. - настоящее время управление стратегией развития предприятия. Функции: формирование информации для принятия стратегических решений. Цель: поддержка управления бизнес-стратегией

Исходным стандартом систем управления предприятием стал стандарт MRP (Material Requirements Planning), появившейся в 70-х годах. Он включает в себя планирование материалов для производства.

MRP системы базируются на планировании материалов для удовлетворения потребностей производства и включают непосредственно функциональность MRP , функциональность по описанию и планированию загрузки производственных мощностей CRP (Capacity Resources Planning) и имеют своей целью создание оптимальных условий для реализации производственного плана выпуска продукции. Основная идея MRP систем состоит в том, что любая учетная единица материалов или комплектующих, необходимых для производства изделия, должна быть в наличии в нужное время и в нужном количестве. Основным преимуществом MRP систем является формирование последовательности производственных операций с материалами и комплектующими, обеспечивающей своевременное изготовление узлов (полуфабрикатов) для реализации основного производственного плана по выпуску готовой продукции.

Следующим стандартом был MRP II (Manufacturing Resource Planning), позволяющий планировать все производственные ресурсы предприятия (сырьё, материалы, оборудование и т.д.).

ERP система в свою очередь является дальнейшим развитием системы MRP II и включает в себя планирование ресурсов предприятия для всех основных видов деятельности.

CRM-системы. Новая технология управления взаимоотношениями с клиентами позволяет существенно улучшить сервис и вовремя предложить рынку востребованный продукт. В центре внимания этих находятся именно клиенты компании, а не бизнес-процессы. Использование CRM-системы позволяет компании получать максимум возможной информации о своих клиентах и их потребностях, а также исходя из анализа этих данных строить организационную стратегию, касающуюся всех аспектов деятельности: производства, маркетинга и рекламы, продаж, обслуживания и пр. CRM позволяет отслеживать историю развития взаимоотношений компании с ее заказчиками через различные каналы (телефон, факс, веб-сайт, электронная почта, личный визит и пр.), координировать многосторонние связи с постоянными клиентами и централизованно управлять продажами и клиент-ориентированным маркетингом, в том числе через Интернет. Через такие системы можно организовать обратную связь клиента со всей компанией.

Понятие информационные системы. Классификация информационных систем. Виды обеспечения информационных систем.

ИС- это совокупность технических, программных и организационных обеспечений и персонала, предназначенная для своевременного обеспечения надлежащих людей надлежащей информацией.

1. По степени автоматизации : Ручные ИС (человек),Автоматические ИС (без человека), Автоматизированные ИС (человек+технические ср-ва, главная роль отводится компьютеру)

2. От характера обработки данных ИС: информационно-поисковые и

3. информационно-решающие

4. По характеру использования: управляющие и советующие.

5. От сферы применения : ИС организационного управления, ИС управления технологическими процессами (ТП, ИС автоматизированного проектирования (САПР, интегрированные (корпоративные) ИС

6. От уровня управления использования системы : ИС оперативного уровня, ИС функционального уровня, ИС уровня специалистов, ИС уровня уровня

7. Стратегическая И С –СППР

8. По архитектуре : настольные, распределенные (файл-сервер, клиент-сервер)

9. Распределенные ИС : локальные (файловая, файл-серверная), двухзвенная (клиент-сервер), трехзвенная(клиент-несколько серверов)

10. По сфере применения: экономическая, медицинская, географическая, научно-математическая и др..

11. По охвату задач: персональная, групповая, корпоративная.

ИС в управлении предприятием.

Cтруктуру ИС можно рассматривать как процесс распределения информационных потоков предприятия и как взаимодействие подразделений, учитывая организационную структуру предприятия и его иерархию. Разнообразие задач, возникающих на предприятиях и решаемых с помощью ИС, привело к появлению множества разнотипных систем, отличающихся принципами построения и заложенными в них правилами обработки информации. Ни одна отдельно взятая система не сможет аккумулировать в себе всю информацию, необходимую для функционирования организации в целом. ИС строятся таким образом, чтобы охватить все сферы деятельности организации

КИС. Структура и требования к КИС

· КС с точки зрения ИТ по своему составу – это совокупность различных программно-аппаратных платформ, универсальных и специализированных приложений различных разработчиков, интегрированных в одну систему, которая наилучшим образом решает уникальную задачу каждого конкретного предприятия.

КИС имеют иерархическую структуру, из нескольких уровней, для них характерна архитектура клиент-сервер со специализацией серверов или же многоуровневая архитектура. В крупных ИС наиболее распространены серверы с СУБД Oracle, DB2,Microsoft, SQL-сервер.

· КС с точки зрения управления :

1. КИС-управленческая идеология, обьединяющая бизнес-стратегии и информационную технологию

2. КИС-это масштабируемая система, предназначенная для комплексной автоматизации всех видов хозяйственной деятельности больших и средних предприятий, в т.ч. корпораций, состоящих из групп компаний, требующих единого управления.

КИС – это система управления персоналом, материальными, финансовыми и другими ресурсами, которые используются для поддержки, планирования и управления предприятием, а также для принятия управленческих решений ее руководителями.

Существуют различные виды структур ИС:

    функциональная (элементы - функции, задачи, операции; связи - информационные);

    техническая (элементы-устройства; связи - линии связи);

    организационная (элементы - коллективы людей и отдельные исполнители; связи - информационные, соподчинения и взаимодействия;

    алгоритмическая (элементы -- алгоритмы; связи - информационные); программная (элементы - программные модули; связи - информационные и управляющие);

    информационная (элементы - формы существования и представления информации в системе; связи - операции преобразования информации в системе).

Структура ИС учитывает особенности объекта управления, виды деятельности, технико-экономические и другие параметры и характеристики информационных технологий (ИТ). Типовая структура ИС представлена на рис. 1. Состав и содержание функциональных подсистем полностью определяется функциями системы управления, учитывает принятые стандарты управления и организационную структуру объекта управления.

Рисунок 2

Архитектура - организационная структура любой системы. (IEEE Std. 610.12-1990). Выделяют четыре области архитектур применительно к системе и объекту управления:

    Бизнес-архитектура

    Архитектура программных систем

    Технологическая или инфраструктурная архитектура

    Информационная архитектура

АрхитектураИСсвязанасконцепцией построения, выполняемыми функциями и взаимосвязью компонентов ИС. Можно выделить следующие виды архитектур ИС:

    централизованная архитектура, которая предполагает наличие единого центра для хранения интегрированных данных (базы данных, БД), которая используется множеством приложений (пользователей) в условиях существования компьютерной сети; варианты централизованной архитектуры ИС:

    1. файл-серверная архитектура компьютерной сети, хранение данных на файловом сервере;

      клиент-серверная двух-уровневая архитектура, наличие интегрированной базы данных на сервере, варианты "тонкий" и "толстый" клиент, в зависимости от распределения функций обработки данных между сервером и рабочей станцией;

      клиент-серверная трех-уровневая архитектура, наличие интегрированной базы данных на сервере, наличие сервера приложений, вариант "тонкого" клиента;

    сервис-ориентированная архитектура (СОА), которая предполагает интеграцию и многократное использование разнородных модулей на основе стандартных интерфейсов, взаимную независимость компонентов (операционной системы, платформы, языка программирования, вендора).

    облачная архитектура ИС, использующая виртуализацию информационных и инфраструктурных ресурсов, в том числе веб-сервисов. Разновидности облачной архитектуры ИС:

    1. данные как услуга;

      инфраструктура как услуга;

      программное обеспечение как услуга;

      платформа как услуга;

      рабочее место как услуга;

      всё как услуга.

Классификация информационных систем

    Системы электронной обработки данных (СОД), которые обеспечивают технологический процесс обработки данных.

    Информационные системы управления (ИСУ). Используются для решения различного вида управленческих задач, использующих данные базы данных (БД).

    Системы поддержки принятия решений (СППР) для решения в режиме диалога плохо структурированных задач, для которых характерна неполнота входных данных, неопределенность целей и ограничений, использующих как БД, так и базу моделей алгоритмов принятия решений.

    Экспертные системы (ЭС), основываются на моделировании процесса принятия решения человеком-экспертом с использованием компьютера и разработок в области искусственного интеллекта. ЭС основываются на использовании как БД, так и баз знаний, улучшающих принимаемое человеком решение.

ИС можно разделить также на 2 класса: фактографические (единица хранения и обработки - "факт", информационная совокупность в виде реквизитов, показателей, структурных единиц информации) и документографические (единица хранения и обработки - "документ").

К фактографическим ИС относятся:

    СОД - системы обработки данных, в которых превалируют технологические процессы и процедуры обработки данных.

    АИС - автоматизированные ИС.

    АСУ - автоматизированные система управления объектом, в которых превалируют задачи для реализации функций управления.

К документографическим ИС относятся:

    ИПС - информационно-поисковые системы (АСНТИ - автоматизированная система научно-технической информации).

    ИСС - информационно-семантические системы на основе ИПЯ - информационно-поисковых языков (ЭС - экспертные системы).



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: