Элементы архитектуры информационных систем. Различные аспекты понятие архитектуры ис

Архитектура информационной системы – это концептуальное описание структуры, определяющее модель, выполняемые функции и взаимосвязь компонентов информационной системы.

Архитектура информационной системы предусматривает наличие трех компонентов:

1.Информационные технологии

2.Функциональные подсистемы

3.Управление информационными системами

Различают следующие виды архитектур: файл-сервер; клиент-сервер; многоуровневая; архитектура на базе хранилища данных; Internet/Intranet.

Архитектура файл-сервер. Архитектура файл-сервер не имеет сетевого разделения компонентов диалога PS и PL и использует компьютер для функций отображения, что облегчает построение графического интерфейса. Файл-сервер только извлекает данные из файлов, так что дополнительные пользователи и приложения добавляют лишь незначительную нагрузку на центральный процессор. Каждый новый клиент добавляет вычислительную мощность к сети. Объектами разработки в файл-серверном приложении являются компоненты приложения, определяющие логику диалога PL, а также логику обработки BL и управления данными DL. Разработанное приложение реализуется либо в виде законченного загрузочного модуля, либо в виде специального кода для интерпретации. Однако такая архитектура имеет существенный недостаток: при выполнении некоторых запросов к базе данных клиенту могут передаваться большие объемы данных, загружая сеть и приводя к непредсказуемости времени реакции.

Архитектура клиент-сервер. Архитектура клиент-сервер предназначена для разрешения проблем файл-серверных приложений путем разделения компонентов приложения и размещения их там, где они будут функционировать наиболее эффективно. Особенностью архитектуры клиент-сервер является использование выделенных серверов баз данных, понимающих запросы на языке структурированных запросов SQL (Structured Query Language) и выполняющих поиск, сортировку и агрегирование информации. Отличительная черта серверов БД – наличие справочника данных, в котором записана структура БД, ограничения целостности данных, форматы и даже серверные процедуры обработки данных по вызову или по событиям в программе. Объектами разработки в таких приложениях помимо диалога и логики обработки являются, прежде всего, реляционная модель данных и связанный с ней набор SQL-операторов для типовых запросов к базе данных. Большинство конфигураций клиент-сервер использует двухуровневую модель, в которой клиент обращается к услугам сервера. Предполагается, что диалоговые компоненты PS и PL размещаются на клиенте, что позволяет обеспечить графический интерфейс. Компоненты управления данными DS и FS размещаются на сервере, а диалог (PS, PL), логика BL и DL – на клиенте. Двухуровневое определение архитектуры клиент-сервер использует именно этот вариант: приложение работает у клиента, СУБД – на сервере. Поскольку эта схема предъявляет наименьшие требования к серверу, она обладает наилучшей масштабируемостью. Однако сложные приложения, вызывающие большое взаимодействие с БД, могут жестко загрузить как клиента, так и сеть. Результаты SQL-запроса должны вернуться клиенту для обработки, потому что там находится логика принятия решения. Такая схема приводит к дополнительному усложнению администрирования приложений, разбросанных по различным клиентским узлам. Для сокращения нагрузки на сеть и упрощения администрирования приложений компонент BL можно разместить на сервере. При этом вся логика принятия реше­ний оформляется в виде хранимых процедур и выполняется на сервере БД. Хранимая процедура – процедура с операторами SQL для доступа к БД, вызываемая по имени с передачей требуемых параметров и выполняемая на сервере БД. Хранимые процедуры могут компилироваться, что повышает скорость их выполнения и сокращает нагрузку на сервер. Создание архитектуры клиент-сервер возможно и на основе многотерминальной системы. В этом случае в многозадачной среде сервера приложений выполняются программы пользователей, а клиентские узлы вырождены и представлены терминалами. Подобная схема информационной системы характерна для UNIX.



Многоуровневая архитектура. Многоуровневая архитектура стала развитием архитектуры клиент-сервер и в своей классической форме состоит из трех уровней:

Нижний уровень представляет собой приложения клиентов, выделенные для выполнения функций и логики представлений PS и PL и имеющие программный интерфейс для вызова приложения на среднем уровне;



Средний уровень представляет собой сервер приложений, на котором выполняется прикладная логика BL и с которого логика обработки данных DL вызывает операции с базой данных DS;

Верхний уровень представляет собой удаленный специализированный сервер базы данных, выделенный для услуг обработки данных DS и файловых операций FS (без риска использования хранимых процедур).

Интернет/интранет-технологии. В развитии технологии Интернет/интранет основной акцент пока что делается на разработке инструментальных программных средств. В то же время наблюдается отсутствие развитых средств разработки приложений, работающих с базами данных. Компромиссным решением для создания удобных и простых в использовании и сопровождении информационных систем, эффективно работающих с базами данных, стало объединение Интернет/интранет-технологии с многоуровневой архитектурой. При этом структура информационного приложения приобретает следующий вид: браузер – сервер приложений – сервер баз данных – сервер динамических страниц – web-сервер. Благодаря интеграции Интернет/интранет-технологии и архитектуры клиент-сервер процесс внедрения и сопровождения корпоративной информационной системы существенно упрощается при сохранении достаточно высокой эффективности и простоты совместного использования информации.


4. Этапы развития и базовые стандарты ИС .

Основные этапы развития информационных систем:

1950-1960 гг.- формирование бумажных расчетных документов. Функции: обработка расчетных документов на электромеханических и бухгалтерских машинах. Цель: повышение скорости обработки документов, упрощение процедуры обработки счетов и расчета зарплаты

1960-1970 гг. - формирование отчетов. Функции: управление производственной информацией. Цель: ускорение процесса подготовки отчетности

1970-1980 гг.- управленческий контроль производства и реализации. Функции: поддержка принятия решений. Цель: выработка оптимального решения

1980 гг. - настоящее время управление стратегией развития предприятия. Функции: формирование информации для принятия стратегических решений. Цель: поддержка управления бизнес-стратегией

Исходным стандартом систем управления предприятием стал стандарт MRP (Material Requirements Planning), появившейся в 70-х годах. Он включает в себя планирование материалов для производства.

MRP системы базируются на планировании материалов для удовлетворения потребностей производства и включают непосредственно функциональность MRP , функциональность по описанию и планированию загрузки производственных мощностей CRP (Capacity Resources Planning) и имеют своей целью создание оптимальных условий для реализации производственного плана выпуска продукции. Основная идея MRP систем состоит в том, что любая учетная единица материалов или комплектующих, необходимых для производства изделия, должна быть в наличии в нужное время и в нужном количестве. Основным преимуществом MRP систем является формирование последовательности производственных операций с материалами и комплектующими, обеспечивающей своевременное изготовление узлов (полуфабрикатов) для реализации основного производственного плана по выпуску готовой продукции.

Следующим стандартом был MRP II (Manufacturing Resource Planning), позволяющий планировать все производственные ресурсы предприятия (сырьё, материалы, оборудование и т.д.).

ERP система в свою очередь является дальнейшим развитием системы MRP II и включает в себя планирование ресурсов предприятия для всех основных видов деятельности.

CRM-системы. Новая технология управления взаимоотношениями с клиентами позволяет существенно улучшить сервис и вовремя предложить рынку востребованный продукт. В центре внимания этих находятся именно клиенты компании, а не бизнес-процессы. Использование CRM-системы позволяет компании получать максимум возможной информации о своих клиентах и их потребностях, а также исходя из анализа этих данных строить организационную стратегию, касающуюся всех аспектов деятельности: производства, маркетинга и рекламы, продаж, обслуживания и пр. CRM позволяет отслеживать историю развития взаимоотношений компании с ее заказчиками через различные каналы (телефон, факс, веб-сайт, электронная почта, личный визит и пр.), координировать многосторонние связи с постоянными клиентами и централизованно управлять продажами и клиент-ориентированным маркетингом, в том числе через Интернет. Через такие системы можно организовать обратную связь клиента со всей компанией.

СОДЕРЖАНИЕ КУРСА Основы информационных систем. Классификация архитектур информационных систем. Специализированные подсистемы (СУБД и т.д.). Распределенные информационные системы. Архитектуры веб-приложений. Сервис-ориентированная архитектура (SOA). Эволюция распределенных систем в сервис-ориентированные системы, облачные информационные системы и сервисы. Функциональные уровни информационной системы Декомпозиция информационных систем на слои и уровни. Выделение подсистем в архитектуре. Интеграция различных информационных систем, параллельные архитектуры. Архитектуры существующих проектов информационных систем.


РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА Б. Я. Советов, А. И. Водяхо, В. А. Дубенецкий, В. В. Цехановский. Архитектура информационных систем: учебник для студ. учреждений высш. проф. образования. - М. : Издательский центр «Академия», Пирогов В.Ю. Информационные системы и базы данных. Организация и проектирование. – СПб.: БХВ-Петербург, – 528 с. Петров В.Н. Информационные системы. – СПб.: Питер, – 688 с.


КЛАССИЧЕСКОЕ ОПРЕДЕЛЕНИЕ АРХИТЕКТУРЫ Архитектура (лат. architectural искусство проектировать и строить здания и другие сооружения (комплексы), создающие материально организованную среду, необходимую людям для их жизни и деятельности, в соответствии с современными техническими возможностями и эстетическими воззрениями общества.


ОПРЕДЕЛЕНИЯ АРХИТЕКТУРЫ ИНФОРМАЦИОННЫХ СИСТЕМ архитектура организационная структура системы; архитектура информационной системы концепция, опреде­ляющая модель, структуру, выполняемые функции и взаимосвязь компонентов информационной системы; архитектура базовая организация системы, воплощенная в ее компонентах, их отношениях между собой и окружением, а также принципы, определяющие проектирование и развитие системы;


ОПРЕДЕЛЕНИЯ АРХИТЕКТУРЫ ИНФОРМАЦИОННЫХ СИСТЕМ архитектура набор значимых решений по поводу организации системы программного обеспечения, набор структурных элементов и их интерфейсов, при помощи которых компонуется система вместе с их поведением, определяемым во взаимодействии между этими элементами, компоновка элементов в постепенно укрупняющиеся подсистемы, а также стиль архитектуры, который направляет эту органи­зацию (элементы и их интерфейсы, взаимодействия и компоновку); архитектура программы или компьютерной системы структу­ра или структуры системы, которые включают элементы программы, видимые извне свойства этих элементов и связи между ними; и т.д. На сайте SEI (Software Engineering Institute) имеется специальный раздел, посвященный определениям архитектуры программного обеспечения


ПОНЯТИЕ АРХИТЕКТУРЫ ИНФОРМАЦИОННОЙ СИСТЕМЫ На сайте ISO/IEC (architecture.org/ieee-1471/defining- architecture.html) дается следующие определение архитектуры информационной системы: architecture.org/ieee-1471/defining- architecture.html Architecture system fundamental concepts or properties of a system in its environment embodied in its elements, relationships, and in the principles of its design and evolution. Архитектура системы – это основные понятия и свойства системы в окружающей среде, воплощенные в его элементы, отношения и в принципах своей конструкции и эволюции




ПОНЯТИЕ ИНФОРМАЦИОННОЙ СИСТЕМЫ В качестве официального определения информационной системы (ИС) можно рассматривать определение, которое дает Федеральный закон Российской Федерации от 27 июля 2006 г. 149-ФЗ «Об информации, информационных технологиях и о защите информации»: «Информационная система совокупность содержащейся в базах данных информации и обеспечивающих ее обработку информационных технологий и технических средств».




БИЗНЕС-АРХИТЕКТУРА Бизнес-архитектура, или архитектура уровня бизнес-процессов определяет бизнес-стратегии, управление, организацию, ключевые бизнес-процессы в масштабе предприятия, причем не все бизнес- процессы реализуются средствами ИТ-технологий. Бизнес-архитектура отображается на ИТ-архитектуру.


ИТ-АРХИТЕКТУРА ИТ-архитектура рассматривается в трех аспектах: обеспечивает достижение бизнес-целей посредством использования программной инфраструктуры, ориентированной на реализацию наиболее важных бизнес-приложений; среда, обеспечивающая реализацию бизнес- приложений; совокупность программных и аппаратных средств, составляющая информационную систему организации и включающая, в частности, базы данных и промежуточное программное обеспечение.


АРХИТЕКТУРА ДАННЫХ Архитектура данных информационной системы включает логические и физические хранилища данных и средства управления данными. Архитектура данных должна быть поддержана ИТ- архитектурой. В современных ИТ-системах, ориентированных на работу со знаниями, иногда выделяют отдельный тип архитектуры архитектуру знаний (Knowledge Architecture).


ПРОГРАММНАЯ АРХИТЕКТУРА Программная архитектура отображает совокупность программных приложений: Программное приложение это компьютерная программа, ориентированная на решение задач конечного пользователя. Архитектура приложения это описание отдельного приложения, работающего в составе ИТ- системы, включая его программные интерфейсы. Архитектура приложения базируется на ИТ- архитектуре и использует сервисы, предоставляемые ИТ-архитектурой.


ТЕХНОЛОГИЧЕСКАЯ АРХИТЕКТУРА Технологическая архитектура характеризует программно-аппаратные средства информационных систем и включает такие элементы, как процессор, память, жесткие диски, периферийные устройства, элементы для их соединения, операционные системы, а также сетевые средства.


КЛАССИФИКАЦИЯ ИНФОРМАЦИОННЫХ СИСТЕМ Используется доменный подход к описанию ИТ-архитектур. Под доменной архитектурой понимают эталонную модель, описывающую множество систем, которые реализуют похожую структуру, функциональность и поведение. Можно выделить следующие основные характеристики домена задач: характер решаемых задач; тип домена; предметная область; степень автоматизации; масштаб применения.




ПРИМЕР ДЕЛЕНИЯ ИС ПО ХАРАКТЕРУ ОБРАБОТКИ ДАННЫХ: системы, ориентированные на решение крупномасштабных задач преимущественно вычислительного характера; информационно-справочные (информационно-поисковые) ИС, в которых нет сложных алгоритмов обработки данных, а целью си­стемы является поиск и выдача информации в удобном для пользо­вателя виде; системы поддержки принятия решении; коммуникационные системы; ИС, ориентированные на предоставление услуг (сервисов), таких как доступ в Интернет, сервисы хранения данных, доступа к вычис­лительным ресурсам, доступа к данным и т. п.


ПРИМЕР ДЕЛЕНИЯ ИС ПО ПРИНАДЛЕЖНОСТИ К БАЗОВОМУ ДОМЕНУ: информационно-управляющие системы ИУС (Management Information Systems), управляющие системы УС (Process Control Systems), системы мониторинга и управления ресурсами СМУР (Resource Allocation and Tracking Systems), системы управления производством СУП (Manufacturing Systems), системы управления доступом СУД (Access Control Systems).


ПРИМЕР ДЕЛЕНИЯ ИС ПО ПРИНАДЛЕЖНОСТИ К ПРЕДМЕТНОЙ ОБЛАСТИ системы управления организацией ИС, предназначенные для выполнения функций управления организацией (предприятием); телекоммуникационные системы ИС, предназначенные для реализации функций, связанных передачей данных; геоинформационные системы ИС, обеспечивающие сбор, хранение, обработку, доступ, отображение и распространение про­странственно- координированных данных (пространственных дан­ных); торговые ИС; встроенные системы управления сложными объектами, такими как самолеты и корабли; медицинская информационная система ИС, предназначенные для использования в лечебных учреждениях.




ПРИМЕР КЛАССИФИКАЦИИ ПО МАСШТАБНОСТИ ПРИМЕНЕНИЯ ИС персональные ИС, предназначенные для использования одним человеком; групповые ИС, предназначенные для совместного использования группой людей, например сотрудниками одного подразделения; корпоративные ИС, охватывающие информационные про­цессы отдельной организации; глобальные ИС, охватывающие информационные процессы многих организаций.




Клиент (client) – пользователь и (или) компьютер, использующий какие- либо программные сервисы Сервер (server) – компьютер или центр обработки данных, предоставляющий программные сервисы Тонкий клиент (thin client) – клиент с минимальным пользовательским интерфейсом – не имеющий состояния, сеанса, полнофункционального GUI Rich client (полнофункциональный клиент) – клиент, имеющий полнофункциональный GUI и общающийся с сервером через слой промежуточного программного интерфейса (middleware), обеспечивающий его функциональность; Слой (layer) – крупная независимая компонента архитектуры ПО Уровень абстракции (abstraction layer) – горизонтальный слой (номер N); совокупность модулей, реализация которых использует только модули уровня N-1 (N > 0). Вертикальный срез (аспект) – совокупность рассредоточенных фрагментов кода, реализующих (сквозную) функциональность, например, проверку безопасности НЕКОТОРЫЕ СОВРЕМЕННЫЕ ОСНОВНЫЕ ПОНЯТИЯ ПРИ ОПИСАНИИ АРХИТЕКТУРЫ ИС 0). Вертикальный срез (аспект) – совокупность рассредоточенных фрагментов кода, реализующих (сквозную) функциональность, например, проверку безопасности НЕКОТОРЫЕ СОВРЕМЕННЫЕ ОСНОВНЫЕ ПОНЯТИЯ ПРИ ОПИСАНИИ АРХИТЕКТУРЫ ИС">


Промежуточное программное обеспечение (middleware) – совокупность слоев ПО, лежащих между клиентом и сервером и обеспечивающих их взаимодействие, например, поддержку сетевых коммуникационных протоколов Ярус (tier) – слой программного обеспечения, реализующий какую-либо независимую часть его архитектуры; например: business tier – реализация бизнес-логики; Web tier – реализация взаимодействия с Web Многоярусная архитектура (multi-tier architecture) – архитектура ПО, при которой презентация результатов, обработка и управление данными реализованы как отдельные процессы. Пример: Использование middleware для взаимодействия с сервером и СУБД для взаимодействия с данными НЕКОТОРЫЕ СОВРЕМЕННЫЕ ОСНОВНЫЕ ПОНЯТИЯ ПРИ ОПИСАНИИ АРХИТЕКТУРЫ ИС


Многоклиентская архитектура (multi-tenant architecture) – архитектура клиент-серверного ПО, при которой один экземпляр серверного ПО, исполняемый на сервере, обслуживает несколько клиентов (tenants – букв. клиенты, арендаторы). Пример: Web-сервис Например, с точки зрения рассмотренных концепций, облачные вычисления соответствуют принципам multi- tiered and multi-tenant architecture. НЕКОТОРЫЕ СОВРЕМЕННЫЕ ОСНОВНЫЕ ПОНЯТИЯ ПРИ ОПИСАНИИ АРХИТЕКТУРЫ ИС


МОДЕЛИ ФУНКЦИОНИРОВАНИЯ РАСПРЕДЕЛЕННЫХ ПРИЛОЖЕНИЙ Выделяют три основных параметра организации работы приложений в сети: Способ разделения приложения на части, выполняющиеся на разных компьютерах сети; Выделение специализированных серверов в сети, на которых выполняются некоторые общие для всех приложений функции; Способ взаимодействия между частями приложений, работающих на разных компьютерах.


СПОСОБЫ РАЗДЕЛЕНИЯ РАСПРЕДЕЛЕННЫХ ПРИЛОЖЕНИЙ НА ЧАСТИ Приложения условно можно разделить на следующие функциональные части: Средства представления данных на экране; Логика представления данных на экране (описывает правила и сценарии взаимодействия пользователя с приложениями); Прикладная логика (правила для принятия решений, вычислительные процедуры и т.п.); Логика данных – операции с данными, хранящимися в некоторой базе; Внутренние операции БД – действия СУБД, вызываемые в ответ на выполнение запросов логики данных; Файловые операции – стандартные операции над файлами и файловой системой.










34


Достоинства: пользователи совместно используют дорогие ресурсы ЭВМ и дорогие периферийные устройства централизация ресурсов и оборудования облегчает обслуживание и эксплуатацию вычислительной системы отсутствует необходимость администрирования рабочих мест пользователей Главный недостаток: пользователи полностью зависят от администратора хост-ЭВМ АРХИТЕКТУРА «ФАЙЛ-СЕРВЕР» Достоинства: многопользовательский режим работы с данными удобство централизованного управления доступом низкая стоимость разработки высокая скорость разработки невысокая стоимость обновления и изменения ПО Недостатки: проблемы многопользовательской работы с данными низкая производительность плохая возможность подключения новых клиентов ненадежность системы 38
41 ДВУХУРОВНЕВАЯ АРХИТЕКТУРА «КЛИЕНТ-СЕРВЕР» Достоинства: возможность распределить функции вычислительной системы между несколькими независимыми компьютерами все данные хранятся на защищенном сервере поддержка многопользовательской работы гарантия целостности данных Недостатки: неработоспособность сервера может сделать неработоспособной всю вычислительную сеть сложное администрирование высокая стоимость оборудования бизнес логика приложений осталась в клиентском ПО


МНОГОУРОВНЕВАЯ АРХИТЕКТУРА «КЛИЕНТ-СЕРВЕР» Достоинства: клиентское ПО не нуждается в администрировании масштабируемость конфигурируемость высокая безопасность и надежность низкие требования к скорости канала между терминалами и сервером приложений низкие требования к производительности и техническим характеристикам терминалов Недостатки: сложность администрирования и обслуживания более высокая сложность создания приложений высокие требования к производительности серверов приложений и сервера базы данных высокие требования к скорости канала (сети) между сервером базы данных и серверами приложений ОСОБЕННОСТИ АРХИТЕКТУРЫ ВЕБ- ПРИЛОЖЕНИЙ Отсутствие необходимости использовать дополнительное ПО на стороне клиента Возможность подключения практически неограниченного количества клиентов Централизованное место хранения данных Недоступность при отсутствии работоспособности сервера или каналов связи Достаточно низкая скорость веб-сервера и каналов передачи данных

Понятие информационные системы. Классификация информационных систем. Виды обеспечения информационных систем.

ИС- это совокупность технических, программных и организационных обеспечений и персонала, предназначенная для своевременного обеспечения надлежащих людей надлежащей информацией.

1. По степени автоматизации : Ручные ИС (человек),Автоматические ИС (без человека), Автоматизированные ИС (человек+технические ср-ва, главная роль отводится компьютеру)

2. От характера обработки данных ИС: информационно-поисковые и

3. информационно-решающие

4. По характеру использования: управляющие и советующие.

5. От сферы применения : ИС организационного управления, ИС управления технологическими процессами (ТП, ИС автоматизированного проектирования (САПР, интегрированные (корпоративные) ИС

6. От уровня управления использования системы : ИС оперативного уровня, ИС функционального уровня, ИС уровня специалистов, ИС уровня уровня

7. Стратегическая И С –СППР

8. По архитектуре : настольные, распределенные (файл-сервер, клиент-сервер)

9. Распределенные ИС : локальные (файловая, файл-серверная), двухзвенная (клиент-сервер), трехзвенная(клиент-несколько серверов)

10. По сфере применения: экономическая, медицинская, географическая, научно-математическая и др..

11. По охвату задач: персональная, групповая, корпоративная.

ИС в управлении предприятием.

Cтруктуру ИС можно рассматривать как процесс распределения информационных потоков предприятия и как взаимодействие подразделений, учитывая организационную структуру предприятия и его иерархию. Разнообразие задач, возникающих на предприятиях и решаемых с помощью ИС, привело к появлению множества разнотипных систем, отличающихся принципами построения и заложенными в них правилами обработки информации. Ни одна отдельно взятая система не сможет аккумулировать в себе всю информацию, необходимую для функционирования организации в целом. ИС строятся таким образом, чтобы охватить все сферы деятельности организации

КИС. Структура и требования к КИС

· КС с точки зрения ИТ по своему составу – это совокупность различных программно-аппаратных платформ, универсальных и специализированных приложений различных разработчиков, интегрированных в одну систему, которая наилучшим образом решает уникальную задачу каждого конкретного предприятия.

КИС имеют иерархическую структуру, из нескольких уровней, для них характерна архитектура клиент-сервер со специализацией серверов или же многоуровневая архитектура. В крупных ИС наиболее распространены серверы с СУБД Oracle, DB2,Microsoft, SQL-сервер.

· КС с точки зрения управления :

1. КИС-управленческая идеология, обьединяющая бизнес-стратегии и информационную технологию

2. КИС-это масштабируемая система, предназначенная для комплексной автоматизации всех видов хозяйственной деятельности больших и средних предприятий, в т.ч. корпораций, состоящих из групп компаний, требующих единого управления.

КИС – это система управления персоналом, материальными, финансовыми и другими ресурсами, которые используются для поддержки, планирования и управления предприятием, а также для принятия управленческих решений ее руководителями.

Понятие архитектуры информационной системы

Архитектура – это совокупность существенных решений об организации ИС. Обычно в понятие архитектуры входят решения об основных аппаратных и программных составляющих системы, их функциональном назначении и организации связей между ними.

Выбор архитектуры ИС влияет на следующие характеристики:

1. Производительность ИС – количество работ, выполняемых в ИС за единицу времени.

2. Время реакции системы на запросы пользователя (время отклика системы)

3. Надёжность – способность к безотказному функционированию в течение определенного периода времени.

Локальные ИС, которые располагаются целиком на одном компьютере и предназначены для работы только одного пользователя, сейчас встречаются крайне редко. В дальнейшем речь пойдет о распределенных ИС, которые функционируют в сети и предназначены для многопользовательской (коллективной) работы.

Обычно база данных целиком хранится в одном узле сети, поддерживается одним сервером и доступна для всех пользователей локальной сети, называемых клиентами. Такая база данных называется централизованной. Распределенные базы данных, в которых БД распределена по нескольким узлам сети, обычно используются в организациях, содержащих территориально удаленные подразделения.

Сервер, как правило, - самый мощный и самый надежный компьютер. Он обязательно подключается через источник бесперебойного питания, в нем предусматриваются системы двойного или даже тройного дублирования. В зависимости от распределения функций обработки данных между сервером и клиентами различают две основных архитектуры – «файл-сервер» и «клиент-сервер» . Возможны разновидности этих двух вариантов.

1.2.2 Архитектура «файл-сервер»

Для предприятий малого бизнеса возможна организация информационной системы на базе архитектуры "файл-сервер" с использованием СУБД Access, FoxPro (Visual FoxPro), Paradox и ряда других. Если количество пользователей системы не велико, подобное решение оптимально.

В архитектуре файл-сервер вся обработка данных выполняется на клиентских компьютерах , сервер служит в качестве хранилища данных (рис.1.5).

Рис.1.5 - Архитектура файл-сервер

Копии базы данных передаются для обработки на клиентские компьютеры, при этом постоянно выполняется синхронизация основной базы данных с ее копиями в случае их обновления.

Недостаток архитектуры файл-сервер – большая нагрузка на сеть и клиентские компьютеры, поскольку на всех клиентских компьютерах должна быть установлена копия СУБД, которая выполняет все необходимые функции по обработке данных, при этом все изменения в копиях обязательно передаются по сети в основную базу данных, существенно повышая сетевой трафик.

Преимущество состоит в том, что не требуется мощный сервер. Такую архитектуру можно реализовать даже в одноранговой сети без выделенного сервера, необходимо только выделить один из компьютеров в качестве хранилища общей базы данных.

Количество пользователей системы в архитектуре файл-сервер обычно не должно превышать 10-15, в противном случае пользователи будут ощущать замедление работы. Данное обстоятельство служит нарушением принципа масштабируемости (раздел 1.1), поэтому по мере роста количества пользователей ИС (допустим, произошло существенное расширение бизнеса) приходится выполнять переход от файл-серверной к клиент-серверной архитектуре. При разработке файл-серверной системы всегда нужно учитывать возможность такого перехода в будущем.

1.2.3. Архитектура «клиент-сервер»

Применительно к информационным системам архитектура «клиент-сервер» интересна и актуальна главным образом потому, что обеспечивает простое и относительно дешевое решение проблемы коллективного (многопользовательского) доступа к базам данных в локальной или глобальной сети.

Информационная система архитектуры «клиент-сервер» разбивается на две части, которые могут выполняться в разных узлах сети, - клиентскую и серверную части. На серверную часть возлагаются функции хранения и значительной части обработки данных, на клиентскую – функции взаимодействия с пользователем и, частично, обработки данных, полученных с сервера (рис. 1.6).

Рис. 1.6 - Архитектура «клиент-сервер»

Следует заметить, что обе части системы (серверная и клиентская) могут располагаться и на одном компьютере, такой вариант можно применять в процессе отладки клиент-серверной системы.

Для того, чтобы прикладная программа, выполняющаяся на клиентском компьютере, могла запросить услугу у сервера, требуется некоторый интерфейсный программный слой, поддерживающий взаимодействие сервера с клиентами. Прикладное ПО или конечный пользователь взаимодействуют с клиентской частью системы. Клиентская часть системы при потребности обращается по сети к серверной части. Интерфейс серверной части определен и фиксирован.

В современных информационных системах таким интерфейсом, как правило, является язык SQL, т.е. сервер принимает от клиентской части SQL-запрос и выполняет необходимые операции в базе данных, после чего возвращает ответ клиенту. По сути дела, язык SQL представляет собой стандарт интерфейса СУБД в открытых системах (концепция открытых систем затрагивалась в предыдущем разделе).

В системе «клиент-сервер» возможно создание новых клиентских частей уже существующей системы, причем максимальное количество одновременно работающих с общей БД клиентов несравнимо больше, чем в файл-серверной архитектуре, т.е. система клиент-сервер является более масштабируемой. Это объясняется тем, что сетевой трафик в клиент-серверной системе невысок (от клиента передаются только тексты запросов, от сервера – уже отобранные данные, а не вся база данных, как в архитектуре файл-сервер).

Термин «сервер баз данных» обычно используют для обозначения всей СУБД, основанной на архитектуре "клиент-сервер", включая серверную и клиентскую части. Собирательное название SQL-сервер относится ко всем серверам баз данных, основанных на использовании языка SQL.

В настоящее время имеется несколько широко распространенных коммерческих SQL-серверов – Oracle, DB-2, MS SQL Server, Sybase, Informix, Interbase и свободно распространяемые серверы с открытым исходным кодом PostGres (PostgreeSQL), MySQL, FireBird (свободно распространяемый вариант сервера Interbase). Приведенный список далеко не полон.

SQL-cерверы обладают преимуществами и недостатками. Очевидное преимущество - стандартность интерфейса. В пределе, хотя на практике это пока не совсем так, клиентские части могли бы работать с любым SQL-сервером вне зависимости от того, кто его произвел. Иными словами, прикладное программное обеспечение на стороне клиента легко настраивается на взаимодействие с любым новым SQL-сервером.



Недостаток – большая нагрузка на сервер, который должен отрабатывать запросы всех клиентов, и малая нагрузка на клиентскую часть. По мере роста количества одновременно работающих пользователей сервер часто становится узким местом всей системы и возникает необходимость его разгрузки. Для этого существуют два пути.

· Если клиентские компьютеры обладают достаточной мощностью, то можно возложить на них больше функций обработки данных, разгрузив сервер.

· В случае применения маломощных клиентских компьютеров (а это более типичная ситуация), применяют многозвенную (многоуровневую) архитектуру «клиент-сервер», выделив промежуточные дополнительные слои программного обеспечения между клиентом и сервером.

Классификация информационных систем управления предприятием

Информационная система - взаимосвязанная совокупность средств, методов и персонала, используемых для хранения, обработки и выдачи информации в интересах достижения поставленной цели»

В Федеральном законе «Об информации, информатизации и защите информации» дается следующее определение:

«Информационная система - организационно упорядоченная совокупность документов (массивов документов) и информационных технологий, в том числе с использованием средств вычислительной техники и связи, реализующих информационные процессы»

Классификация по масштабу

По масштабу информационные системы подразделяются на следующие группы:

· одиночные;

· групповые;

· корпоративные.

Одиночные информационные системы реализуются, как правило, на автономном персональном компьютере (сеть не используется). Такая система может содержать несколько простых приложений, связанных общим информационным фондом, и рассчитана на работу одного пользователя или группы пользователей, разделяющих по времени одно рабочее место. Подобные приложения создайся с помощью так называемых настольных или локальных систем управления базами данных (СУБД). Среди локальных СУБД наиболее известными являются Clarion, Clipper, FoxPro, Paradox, dBase и Microsoft Access.

Групповые информационные системы ориентированы на коллективное использование информации членами рабочей группы и чаще всего строятся на базе локальной вычислительной сети. При разработке таких приложений используются серверы баз данных (Называемые также SQL-серверами) для рабочих групп. Существует довольно большое количество различных SQL-серверов, как коммерческих, так и свободно распространяемых. Среди них наиболее известны такие серверы баз данных, как Oracle, DB2, Microsoft SQL Server, InterBase, Sybase, Informix.

Корпоративные информационные системы являются развитием систем для рабочих групп, они ориентированы на крупные компании и могут поддерживать территориально разнесенные узлы или сети. В основном они имеют иерархическую структуру из нескольких уровней. Для таких систем характерна архитектура клиент-сервер со специализацией серверов или же многоуровневая архитектура. При разработке таких систем могут использоваться те же серверы баз данных, что и при разработке групповых информационных систем. Однако в крупных информационных системах наибольшее распространение получили серверы Oracle, DB2 и Microsoft SQL Server.

Для групповых и корпоративных систем существенно повышаются требования к надежности функционирования и сохранности данных. Эти свойства обеспечиваются поддержкой целостности данных, ссылок и транзакций в серверах баз.



Классификация по сфере применения

По сфере применения информационные системы обычно подразделяются на четыре группы:

· системы обработки транзакций;

· системы принятия решений;

· информационно-справочные системы;

· офисные информационные системы.

Системы обработки транзакций , в свою очередь, по оперативности обработки данных, разделяются на пакетные информационные системы и оперативные информационные системы. В информационных системах организационного управлений преобладает режим оперативной обработки транзакций, для отражения актуального состояния предметной области в любой момент времени, а пакетная обработка занимает весьма ограниченную часть.

Системы поддержки принятия решений - DSS (Decision Support Systeq) - представляют собой другой тип информационных систем, в которых с помощью довольно сложных запросов производится отбор и анализ данных в различных разрезах: временных, географических и по другим показателям.

Обширный класс информационно-справочных систем основан на гипертекстовых документах и мультимедиа. Наибольшее развитие такие информационные системы получили в сети Интернет.

Класс офисных информационных систем нацелен на перевод бумажных документов в электронный вид, автоматизацию делопроизводства и управление документооборотом.

Классификация по способу организации

По способу организации групповые и корпоративные информационные системы подразделяются на следующие классы:

· системы на основе архитектуры файл-сервер;

· системы на основе архитектуры клиент-сервер;

· системы на основе многоуровневой архитектуры;

· системы на основе Интернет/интранет - технологий.

В любой информационной системе можно выделить необходимые функциональные компоненты, которые помогают понять ограничения различных архитектур информационных систем.

Архитектура файл-сервер только извлекает данные из файлов так, что дополнительные пользователи и приложения добавляют лишь незначительную нагрузку на центральный процессор. Каждый новый клиент добавляет вычислительную мощность к сети.

Архитектура клиент-сервер предназначена для разрешения проблем файл-серверных приложений путем разделения компонентов приложения и размещения их там, где они будут функционировать наиболее эффективно. Особенностью архитектуры клиент-сервер является использование выделенных серверов баз данных, понимающих запросы на языке структурированных запросов SQL (Structured Query Language) и выполняющих поиск, сортировку и агрегирование информации.

В настоящее время архитектура клиент-сервер получила признание и широкое распространение как способ организации приложений для рабочих групп и информационных систем корпоративного уровня. Подобная организация работы повышает эффективность выполнения приложений за счет использования возможностей сервера БД, разгрузки сети и обеспечения контроля целостности данных.

Многоуровневая архитектура стала развитием архитектуры клиент-сервер и в своей классической форме состоит из трех уровней:

· нижний уровень представляет собой приложения клиентов, имеющие программный интерфейс для вызова приложения на среднем уровне;

· средний уровень представляет собой сервер приложений;

· верхний уровень представляет собой удаленный специализированный сервер базы данных.

Трехуровневая архитектура позволяет еще больше сбалансировать нагрузку на разные узлы и сеть, а также способствует специализации инструментов для разработки приложений и устраняет недостатки двухуровневой модели клиент-сервер.

В развитии технологии Интернет/интранет основной акцент пока что делается на разработке инструментальных программных средств. В то же время наблюдается отсутствие развитых средств разработки приложений, работающих с базами данных. Компромиссным решением для создания удобных и простых в использовании и сопровождении информационных систем, эффективно работающих с базами данных, стало объединение Интернет/интранет-технологии с многоуровневой архитектурой. При этом структура информационного приложения приобретает следующий вид: браузер - сервер приложений - сервер баз данных - сервер динамических страниц - web-сервер.

По характеру хранимой информации БД делятся на фактографические и документальные . Если проводить аналогию с описанными выше примерами информационных хранилищ, то фактографические БД - это картотеки, а документальные - это архивы. В фактографических БД хранится краткая информация в строго определенном формате. В документальных БД - всевозможные документы. Причем это могут быть не только текстовые документы, но и графика, видео и звук (мультимедиа).

Автоматизированная система управления (АСУ) - это комплекс технических и программных средств, совместно с организационными структурами (отдельными людьми пли коллективом), обеспечивающий управление объектом (комплексом) в производственной, научной или общественной среде.

Выделяют информационные системы управления образования (Например, кадры, абитуриент, студент, библиотечные программы). Автоматизированные системы для научных исследований (АСНИ), представляющие собой программно-аппаратные комплексы, обрабатывающие данные, поступающие от различного рода экспериментальных установок и измерительных приборов, и на основе их анализа облегчающие обнаружение новых эффектов и закономерностей.Системы автоматизированного проектирования и геоинформационные системы.

Систему искусственного интеллекта, построенную на основе высококачественных специальных знании о некоторой предметной области (полученных от экспертов - специалистов этой области), называют экспертной системой. Экспертные системы - один из немногих видов систем искусственного интеллекта - получили широкое распространение, и нашли практическое применение. Существуют экспертные системы по военному делу, геологии, инженерному делу, информатике, космической технике, математике, медицине, метеорологии, промышленности, сельскому хозяйству, управлению, физике, химии, электронике, юриспруденции и т.д. И только то, что экспертные системы остаются весьма сложными, дорогими, а главное, узкоспециализированными программами, сдерживает их еще более широкое распространение.

Экспертные системы (ЭС) - это компьютерные программы, созданные для выполнения тех видов деятельности, которые под силу человеку-эксперту. Они работают таким образом, что имитируют образ действий человека-эксперта, и существенно отличаются от точных, хорошо аргументированных алгоритмов и не похожи на математические процедуры большинства традиционных разработок.

Архитектура информационной системы – концепция, определяющая модель, структуру, выполняемые функции и взаимосвязь компонентов информационной системы.

Конструктивно архитектура обычно определяется как набор ответов на следующие вопросы:

· что делает система;

· как эти части взаимодействуют;

· где эти части размещены.

· на какие части она разделяется;

По степени распределённости отличают:

Настольные (desktop), или локальные ИС, в которых все компоненты (БД, СУБД, клиентские приложения) находятся на одном компьютере;

Распределённые (distributed) ИС, в которых компоненты распределены по нескольким компьютерам.

Распределённые ИС, в свою очередь, разделяют на:

- файл-серверные ИС (ИС с архитектурой «файл-сервер»);

Организация информационных систем на основе использования выделенных файл-серверов все еще является распространенной в связи с наличием большого количества персональных компьютеров разного уровня развитости и сравнительной дешевизны связывания PC в локальные сети.

Конечно, основным достоинством данной архитектуры является простота организации. многопользовательский режим работы с данными;

  • удобство централизованного управления доступом;
  • низкая стоимость разработки;
  • высокая скорость разработки;
  • невысокая стоимость обновления и изменения ПО.

Недостатки:

  • проблемы многопользовательской работы с данными: последовательный доступ, отсутствие гарантии целостности;
  • низкая производительность (зависит от производительности сети, сервера, клиента);
  • плохая возможность подключения новых клиентов;
  • ненадежность системы.

- клиент-серверные ИС (ИС с архитектурой «клиент-сервер»).

Клиент-сервер – вычислительная или сетевая архитектура, в которой задания или сетевая нагрузка распределены между поставщиками услуг (сервисов), называемых серверами, и заказчиками услуг, называемых клиентами.

Преимуществами данной архитектуры являются:

  • возможность, в большинстве случаев, распределить функции вычислительной системы между несколькими независимыми компьютерами в сети;
  • все данные хранятся на сервере, который, как правило, защищен гораздо лучше большинства клиентов, а также на сервере проще обеспечить контроль полномочий, чтобы разрешать доступ к данным только клиентам с соответствующими правами доступа;
  • поддержка многопользовательской работы;
  • гарантия целостности данных.

Недостатки:

  • неработоспособность сервера может сделать неработоспособной всю вычислительную сеть;
  • администрирование данной системы требует квалифицированного профессионала;
  • высокая стоимость оборудования;
  • бизнес логика приложений осталась в клиентском ПО.

В файл-серверных ИС база данных находится на файловом сервере, а СУБД и клиентские приложения находятся на рабочих станциях.

В клиент-серверных ИС база данных и СУБД находятся на сервере, а на рабочих станциях находятся клиентские приложения.

В свою очередь, клиент-серверные ИС разделяют на двухзвенные и многозвенные.

В двухзвенных ИС всего два типа «звеньев»: сервер баз данных, на котором находятся БД и СУБД, и рабочие станции, на которых находятся клиентские приложения. Клиентские приложения обращаются к СУБД напрямую.

В многозвенных ИС добавляются промежуточные «звенья»: серверы приложений. Пользовательские клиентские приложения не обращаются к СУБД напрямую, они взаимодействуют с промежуточными звеньями. Типичный пример применения многозвенности - современные веб-приложения, использующие базы данных. В таких приложениях помимо звена СУБД и клиентского звена, выполняющегося в веб-браузере, имеется как минимум одно промежуточное звено - веб-сервер с соответствующим серверным программным обеспечением.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: