C работа со структурой данных примеры. Структуры в си и их передача. Коментарии по коду программы

После многих лет занятия чем не попадя, решил вернуться к истокам. К программированию. Опять же, ввиду множества «современных достижений» в этой области было трудно определиться, чего же на самом деле не хватет, за что взяться чтобы было и приятно и полезно. Попробовав много чего понемногу, все же решил вернуться туда, куда тянуло с первых дней знакомства с компьютером (еще с копией творения сэра Синклера) – к программированию на ассемблере. На самом деле, в свое время Ассемблер я знал достаточно неплохо (в данном случае говорю про x86), но почти 15 лет ничего на нем не писал. Таким образом это своеобразное возвращение «блудного сына».
Но тут поджидало первое разочарование. Найденные на просторах Интернета книги, руководства и прочие справочники по ассемблеру, к моему глубокому сожалению, содержат минимум информации о том, как надо программировать на ассемблере, почему именно так, и что это дает.

Пример из другой области

Если брать в качестве примера бокс, то все подобные руководства учат исполнять удар, перемещаться стоя на полу, но абсолютно отсуствует то, что делает бокс - боксом, а не «разрешенным мордобитием». То есть комбинационная работа, особенности использования ринга, защитные действия, тактическое построение боя и, тем более, стратегия боя не рассматриваются вообще. Научили человека бить по «груше» и сразу на ринг. Это в корне неверно. Но именно так построены практически все «учебники» и «руководства» по программированию на ассемблере.


Однако нормальные книги должны быть, скорее всего под горой «шлака» я их просто не нашел. Поэтому прежде чем восполнять знания глобальным описание архитектуры, мнемоники и всяческих фокусов «как слепить фигу из 2х пальцев», подойдем к вопросу программирования на ассемблере с «идеологической» точки зрения.

Идилия?

Маленькое замечание, далее по тексту будет использована классификация, отличающаяся от распространненной в настоящее время. Однако это не является поводом для «споров о цвете истины», просто в данном виде проще объяснить точку зрения автора на программирование.

Итак, на сегодняшний день, казалось бы, для программистов наступила эпоха счастья. Огромный выбор средств на все случаи жизни и пожелания. Тут тебе и миллионы «фреймворков»/«паттернов»/«шаблонов»/«библиотек» и тысячи средств «облегчающих» программирование, сотни языков и диалектов, десятки методологий и различные подходы у программированию. Бери – нехочу. Но не «берется». И дело не в религиозных убеждениях, а в том, что это все выглядит как попытка питаться чем-то невкусным. При желании и усердии можно приноровиться и к этому, конечно. Но, возвращаясь к программированию, в большинстве из предлагаемого не видно технической красоты – видно лишь множество «костылей». Как результат, при использовании этих «достижения», из-под «кисти художников» вместо завораживающих пейзажей выходит сплошная «абстракция», или лубки - если повезет. Неужели большинство программистов такие бездари, неучи и имеют проблемы на уровне генетики? Нет, не думаю. Так в чем же причина?
На сегодняшний день имеется множество идей и способов программирования. Рассмотрим наиболее «модные» из них.

  • Императивное программирование – в данном подходе программист задает последовательность действий, приводящих к решению задачи. В основе лежит разделение программы на части, выполняющие логически независимые операции (модули, функции, процедуры). Но в отличии от типизированного подхода (см. ниже) тут есть важная особенность – отсутствие «типизации» переменных. Иными словами отсутствует понятие «тип переменной», вместо него используется понимание, что значения у одной и той же переменной могут иметь различный тип. Яркими представителем данного подхода являются Basic, REXX, MUMPS.
  • Типизированное программирование – модификация императивного программирования, когда программист и система ограничивают возможные значения переменных. Из наиболее известных языков - это Pascal, C.
  • Функциональное программирование – это более математический способ решения задачи, когда решение состоит в «конструировании» иерархии функций (и соответственно создание отсутствующих из них), приводящей к решению задачи. Как примеры: Lisp, Forth.
  • Автоматное программирование – подход, где программист строит модель/сеть, состоящую из обменивающихся сообщениями объектов/исполнительных элементов, как изменяющих/хранящих свое внутреннее «состояние» так и могущих взаимодействовать с внешним миром. Иными словами это то, что обычно называют «объектное программирование» (не объектно-ориентированное). Этот способ программирования представлен в Smalltalk.
А как-же множество других языков? Как правило, это уже «мутанты». Например, смешение типизированного и автоматного подхода дало «объектно-ориентированное программирование».

Как видим, каждый из подходов (даже без учета ограничений конкретных реализаций) накладывает собственные ограничения на саму технику программирования. Но иначе и быть не может. К сожалению, эти ограничения зачастую созданы искуственно для «поддержания чистоты идеи». В итоге, программисту приходится «извращать» изначально найденное решение в вид, хоть как-то соответствующий идеологии используемого языка или используемому «шаблону». Это даже без учета новомодных методик и способов проектирования и разработки.

Казалось бы, программируя на ассемблере, мы вольны делать все и так, что и как пожелаем и позволяет нам «железо». Но как только нам захочется использовать «универсальный драйвер» для какого-либо типа оборудования, мы вынуждены менять свободу «творчества» на предписанные (стандартизированные) подходы и способы использования драйвера. Как только нам понадобилась возможность использовать наработки других коллег или дать им возможность делать тоже самое с плодами нашего труда - мы вынуждены менять свободу выбора взаимодействия между частями программы на некие обговоренные/стандартизированные способы.

Таким образом та «свобода», за которой часто рвутся в ассемблер зачастую оказывается «мифом». И этому (пониманию ограничений, и способам их организации), на мой взгляд, должно уделяться повышенное внимание. Программист должен понимать причину вносимых ограничений, и, что отличает ассемблер от многих языков высокого уровня, иметь возможность менять их, при возникновении такой необходимость. Однако сейчас программист на ассемблере вынужден мириться с ограничениями, вводимыми языками высокого уровня, не имея «пряников» доступных программирующими на них. С одной стороны, операционные системы предоставляют множество уже реализованных функций, есть готовые библиотеки и много многое другое. Но способы их использования, как специально, реализованы без учета вызова их из программ, написанных на ассемблере, а то и вообще наперекор логике программирования для x86 архитектуры. В результате, сейчас программирование на ассемблере с вызовом функций ОС или внешних библиотек языков высокого уровня – это «страх» и «ужас».

Чем дальше в лес, тем толще

Итак, мы осознали, что хотя ассемблер очень прост, но пользоваться им надо уметь. И основная слажность - это необходимость взаимодействия со средой исполнения, где запускается наша программа. Если программисты на языках высокого уровня уже имеют доступ к необходимым библиотекам, функциям, подпрограммам на многие случаи жизни и им доступны способы взаимодействия с внешним миром, в виде, согласованном с идеей языка, то программисту на ассемблере приходится продираться сквозь чащу всевозможных препонов, водруженных на пустом месте. Когда смотришь на то, что генерируют языки высокого уровня при компиляции, то складывает ощущение, что, те, кто писал компиляторы, либо понятия не имеют, как работает процессор с архитектурой x86, «или одно из двух» (ц).

Итак, давайте по-порядку. Программирование - это в первую очередь инженерия, то есть научное творчество, направленное на эффективное (по показателям надежности, использования доступных ресурсов, сроков реализации и удобства применения) решение практических задач. И, в основе любой инженерии лежит системный подход. То есть нельзя рассматривать любое решение как некий «неразборный» черный ящик, функционирующий в полном и идеальном вакууме.

Еще один пример из другой области

Как яркий пример системного подхода можно привести производство грузовиков в США. В данном случае, производитель грузовика – это просто изготовитель рамы и кабины + сборщик конструктора. Все остальное (двигатель, трансмиссия, подвеска, электрооборудование и т.д.) берется исходя из пожеланий заказчика. Захотел один заказчик получиться себе некий Kenworth с двигателем от Detroit Diesel, ручной коробкой Fuller, рессорной подвеской от какой-нибудь Dana – пожалуйста. Понадобилась другу этого заказчика та же модель Kenworth, но с «родным» двигателем Paccar, коробкой-автоматом Allison и пневмоподвеской от другого производителя – легко! И так делают все сборщики грузовиков в США. То есть грузовик – это система, в котором каждый модуль может быть заменен на другой, того же назначения и безпроблемно состыкован с уже имеющимися. Причем способ стыковки модулей сделан с максимально доступной универсальностью и удобством дальнейшего расширения функционала. Вот к чему должен стремиться инженер.

К сожалению, нам придется жить с тем, что есть, но в дальнейшем подобного следует избегать. Итак, программа – это, по сути, набор модулей (невожно как они называются, и как себя «ведут»), компонуя которые мы добиваемся решения стоящей задачи. Для эффективности крайне желательно, чтобы можно было эти модули использовать повторно. Причем не просто использовать любой ценой, а использовать удобным способом. И вот тут нас ждет очередной неприятный «сюрприз». Большинство языков высокого уровня оперируют такими структурными единицами как «фунция» и «процедура». И, как способ взяимодействия с ними, применяется «передача параметров». Это вполне логично, и тут никаких вопросов не возникает. Но как всегда, «важно не то, что делается – важно как делается» (ц). И вот тут начинается самое непонятное. На сегодня распространены 3 способа организации передачи параметров: cdecl , stdcall , fastcall . Так вот, ни один из этих способов не является «родным» для x86. Более того, все они ущербны с точки зрения расширения функционала вызываемых подпрограмм. То есть, увеличив количество передаваемых параметров, мы вынуждены менять все точки вызова этой функции/подпрограммы, или же плодить новую подпрограмму с похожим функционалом, которая будет вызываться немного иным способом.

Указанные выше методы передачи параметров относительно неплохо работают на процессорах с 2мя раздельными стеками (стеком данных, и стеком адресов/управления) и развитыми командами манипулирования стеком (хотя бы индексное обращение к элементам стека). Но при программировании на x86 приходится сначала извращаться при передаче/получении параметров, а потом не забыть «структурное» их удаление из стека. Попутно стараясь угадать/рассчитать максимальную глубину стека. Напомним, что x86 (16/32 битный режим), это процессор, у которого:

  • специализированные регистры (РОНы – регистры общего назначения – как таковые отсутствуют: то есть, мы не можем одной командой умножить содержимое регистра GS на значение из EDI и результат получить в паре EDX:ECX, или же разделить значение из пары регистров EDI:ESI на содержимое регистра EAX);
  • регистров мало;
  • один стек;
  • ячейка памяти не дает никакой информации от типа хранящегося там значения.
Иначе говоря, методы программирования, используемые для процессоров с большим регистровым файлом, с поддержкой нескольких независимых стеков и т.д. в большинстве своем не применимы при программировании на x86.

Следующая особенность взамиодействия с готовыми модулями, написанными на «языках высокого уровня»- это «борьба» с «типами переменных». С одной стороны, причина появления типов переменных ясна – программист знает какие значения используются внутри его подпрограммы / модуля. Исходя из этого, видится вполне логичным, что, задав тип значений переменной, мы можем «упростить» написание программы, возложив контроль типов/пределов значений на транслятор языка. Но и тут с водой выплеснули младенца. Потому как любая программа пишется не для генерации сферических коней в вакууме, а для практической работы с пользовательскими данными. То есть очевидное нарушение системного подхода – как будто разработчики языков высокого уровня рассматривали свои системы без учета взаимодействия с внешним миром. В итоге, программируя на типизированном языке разработчик должен предсматривать все возможные виды «неправильных» входных данных, и искать способы обхода неопределенностей. И вот тут на сцену выходят монструозные системы поддержки регулярных выражений, обработки исключительных ситуаций, сигнатуры методов/процедур для разных типов значений и прочая прочая генерация костылей.

Как было уже указано выше, для архитектуры x86 само значение, хранимое в ячейке памяти, не обладает никаким типом. Программист на ассемблере получает привилегию и ответственность за определение способа обработки этого самого значение. А уж каким образом определять тип значения и как его обрабатывать – тут на выбор множество вариантов. Но, подчеркнем еще раз, все они касаются только значений, получаемых от пользователя. Как верно заметили разработчики типизированных языков: типы значений внутренних и служебных переменных практически всегда известны заранее.

Эта причина (извращенная передача параметров в модули, написанные на языках высого уровня и необходимость строго следить за типами передаваемых параметров в теже самые модули) видится основной, из-за которой программирование на ассемблере неоправданно затруднено. И большинство предпочитает разбираться в дебрях «языков высокого уровня», чтобы воспользоваться тем, что уже наработано другими, чем мучиться, вставляю одни и те же «типовые» костыли, для исправления того, чего они не делали. И редкий транслятор ассемблера хоть как-то «разгружает» программиста от этой рутины.

Что делать?

Предварительные выводы с учетом 15ти летного перерыва в программировании на ассемблере.
Во-первых, по поводу модулей или частей программы. В общем случае стоит выделить два вида исполнительных модулей программы на языке ассемблера – «операция» и «подпрограмма».
  • «Операцией» будем называть модуль, выполняющий «атомарное» действие и не требующий для своего выполнения множества параметров (например, операция очистки всего экрана, или операция расчета медианы числового ряда и т.п.).
  • «Подпрограммой» же стоит назвать фунциональный модуль, требующий, для корректного функционирования, множество входных параметров (больше 2х-3х).
И тут стоит оценить опыт императивных и функциональных языков. Они нам подарили 2 ценных инструмента, которыми стоит воспользоваться: «структура данных» (или, на примере REXX – составные/дополняемые переменные) и «немутабельность данных».

Полезно также следовать правилу немутабельности – то есть неизменности передаваемых параметров. Подпрограмма не может (не должна) менять значения в передаваемой ей структуре и результат возврашает либо в регистрах (не более 2х-3х параметров), либо также в новой, создаваемой структуре. Таким образом мы избавлены от необходимости делать копии структур, на случай «забытого» изменения данных подпрограммами, и можем использовать уже созданную структуру целиком или основную ее часть для вызова нескольких подпрограмм, оперирующих одним/схожим набором параметров. Более того, практически «автоматом» приходим к очередному «функциональному» правилу – внутренней контексто-независимости подпрограмм и операций. Иными словами - к разделению состояния/данных от метода/подпрограммы их обработки (в отличие от автоматной модели). В случаях параллельного программирования, а также совместного использования одной подпрограммы мы избавляемся как от необходимости плодить множество контекстов исполнения и следить за их «непересечением», так и от создания множества экземляров одной подпрограмм с разными «состояниями», в случае нескольких ее вызовов.

Что касается «типов» данных, то тут можно как оставить «все как есть», а можно тоже не изобретать велосипеда и воспользоваться тем, что давно используют разработчики трансляторов императивных языков – «идентификатор типа значения». То есть все данные, поступающие из внешнего мира анализируются и каждому полученному значению присваивается идентификатор обрабатываемого типа (целое, с плавающей точкой, упакованное BCD, код символа и т.д.) и размер поля/значения. Имея эту информацию, программист, с одной стороны, не загоняет пользователя в излишне узкие рамки «правил» ввода значений, а с другой - имеет возможность в процессе работы выбрать наиболее эффективный способ обработки данных пользователя. Но, повторюсь еще раз, это касается только работы с пользовательскими данными.

Это были общие соображения о программировании на ассемблере, не касающиеся вопросов проектирования, отладки и обработки ошибок. Надеюсь что разработчикам ОС, которые пишут их с 0-ля (а тем более на ассемблере), будет о чем подумать и они выберут (пусть не описанные выше, а любые иные) способы сделать программирование на ассемблере более систематизированным, удобным и приятным, а не будут слепо копировать чужие, зачастую безнадежно «кривые» варианты.

Assembly Language for x86 Processors, 7e is suitable for undergraduate courses in assembly language programming and introductory courses in computer systems and computer architecture. Proficiency in one other programming language, preferably Java, C, or C++, is recommended.

Written specifically for 32- and 64-bit Intel/Windows platform, this complete and fully updated study of assembly language teaches students to write and debug programs at the machine level. This text simplifies and demystifies concepts that students need to grasp before they can go on to more advanced computer architecture and operating systems courses. Students put theory into practice through writing software at the machine level, creating a memorable experience that gives them the confidence to work in any OS/machine-oriented environment.

Изложены принципы функционирования, особенности архитектуры и приемы программирования микроконтроллеров Atmel AVR. Приведены готовые рецепты для программирования основных функций современной микроэлектронной аппаратуры: от реакции на нажатие кнопки или построения динамической индикации до сложных протоколов записи данных во внешнюю память или особенностей подключения часов реального времени. Особое внимание уделяется обмену данными микроэлектронных устройств с персональным компьютером, приводятся примеры программ. В книге учтены особенности современных моделей AVR и сопутствующих микросхем последних лет выпуска. Приложение содержит основные параметры микроконтроллеров AVR, перечень команд и тексты программ для них, а также список используемых терминов и аббревиатур. Для учащихся, инженерно-технических работников и радиолюбителей. 3-е издание, ипсравленное.

В данной книге речь идет о работе процессора в двух его основных режимах: защищенном режиме и 64-битном, который также называют long mode («длинный режим»). Также помимо изложения принципов и механизмов работы процессора в защищенном и 64-битном режимах, речь пойдет о программировании на ассемблере в операционных системах семейства Windows, как в 32-битных, так и 64-битных версиях. Рассматривается не только разработка обычных приложений для операционных систем Windows, но и разработка драйверов на ассемблере. При написании книги уделялось большое внимание именно практической составляющей, т.е. изложение материала идет только по делу и только то, что необходимо знать любому системному и низко-уровневому программисту. Последний раздел книги посвящен принципам работы многопроцессорных систем, а также работе с расширенным программируемым контроллером прерываний (APIC).
На диске, прилагаемом к книге, находятся полные исходные коды примеров к книге, а также дополнительные программы и материалы.

Издание предназначено для системных и низкоуровневых программистов, а также для студентов и преподавателей технических специальностей высших и средне-специальных учебных заведений.

Подробно и доходчиво объясняются все основные вопросы программирования на ассемблере. Рассмотрены команды процессоров Intel, 16- и 32-разрядные регистры, основы работы с сопроцессором, сегментация памяти в реальном масштабе времени, управление клавиатурой и последовательным портом, работа с дисками и многое другое. Описано, как разработать безобидный нерезидентный вирус и антивирус против этого вируса, как написать файловую оболочку (типа Norton Commander или FAR Manager) и как писать резидентные программы.
Каждая глава состоит из объяснения новой темы, описания алгоритмов программ, многочисленных примеров и ответов на часто задаваемые вопросы. Во второе издание внесены исправления и добавлены новые примеры.
Компакт-диск содержит исходные коды всех примеров, приведенных в книге, с подробными описаниями.

Описание книги Практическое программирование микроконтроллеров Atmel AVR на языке ассемблера :
Изложены принципы функционирования, особенности архитектуры и приемы программирования микроконтроллеров Atmel AVR. Приведены готовые рецепты для программирования основных функций современной микроэлектронной аппаратуры: от реакции на нажатие кнопки или построения динамической индикации до сложных протоколов записи данных во внешнюю память или особенностей подключения часов реального времени. Особое внимание уделяется обмену данными микроэлектронных устройств с персональным компьютером, приводятся примеры программ.

В книге учтены особенности современных моделей AVR и сопутствующих микросхем последних лет выпуска. Приложения содержат основные параметры микроконтроллеров AVR, перечень команд и тексты программ для них, а также список используемых терминов и аббревиатур. Для учащихся, инженерно-технических работников и радиолюбителей.

Описание книги Assembler. Программирование на языке ассемблера IBM PC :
Один из лучших учебников по ассемблеру. Книга имеет малый объем. Очень хорошо изложены многие важнейшие темы — сегментация, прерывания, двоичная арифметика. Подробно рассмотрены команды ЭВМ, конструкции языка и методы программирования на нем. Изложение сопровождается многочисленными примерами. Как "краткий курс" пожалуй не имеет себе равных.

Книга представляет собой учебное пособие по языку ассемблер для персональных компьютеров типа IBM PC. Подробно рассмотрены команды этих ЭВМ, конструкция языка и методы программирования на нем. Изложение сопровождается многочисленными примерами. Для студентов и преподавателей ВУЗов, для всех желающих детально изучить язык ассемблер и приемы программирования на нем.

Описание книги Программирование на языке Ассемблера для микроконтроллеров семейства i8051 :
Изложены основы программирования на языке Ассемблера для популярного семейства микроконтроллеров i8051. Описаны особенности архитектуры микроконтроллеров семейства i8051. Приведены сведения о технологии разработки программ, системе и форматах команд. Книга содержит информацию о программировании некоторых типов задач, в том числе задач цифровой фильтрации сигналов, а также несколько рекомендаций о стиле программирования для начинающих программистов.

Для широкого круга специалистов, занимающихся разработкой промышленной и бытовой аппаратуры, радиолюбителей, может быть полезна студентам и аспирантам.

Описание книги Ассемблер для процессоров Intel Pentium :
Издание посвящено вопросам программирования на языке ассемблера для процессоров Intel Pentium. Рассмотрен широкий круг вопросов, начиная с основ программирования на ассемблере и заканчивая применением самых современных технологий обработки данных, таких как MMS, SSE и SSE2. Материал книги раскрывает методику оптимизации программного кода для всех поколений процессоров Intel Pentium, включая Intel Pentium 4. Теоретический материал подкреплен многочисленными примерами программного кода. Для широкого круга читателей, от студентов до опытных разработчиков программного обеспечения.

Вовсе необязательно быть хакером, чтобы писать программы на языке ассемблера. Бесспорно лишь одно – добиться полного контроля над различными компонентами компьютера без знания языка ассемблера вряд ли возможно. В настоящей книге автор в доступной форме знакомит читателей со всеми основными конструкциями языка ассемблера, демонстрируя на конкретных примерах варианты решения различных практических задач. Можно предположить, что именно подбор задач отличает различные издания по данной тематике. Ведь набор операций по сути неизменен. Особенность настоящей книги заключается в удачном сочетании формального стиля изложения с доступными для понимания примерами. С другой стороны, значительная часть материала представляет интерес для читателей, уже имеющих опыт работы с этим языком. Это касается особенностей новых архитектур процессоров, обеспечения интерфейса с языками высокого уровня и командам расширений современных процессоров. Эти темы практически не освещены в литературе, что значительно увеличивает интерес к данной книге. Содержание книги и доступный характер изложения материала позволяют рекомендовать ее для самой широкой аудитории читателей, не только решивших самостоятельно изучить язык ассемблера, но и почерпнуть дополнительную информацию по более тонким вопросам системного программирования.

Описание книги Изучаем Ассемблер :
Книга посвящена основам программирования на Ассемблере в системах Windows и DOS. Знание Ассемблера необходимо профессиональному программисту для понимания работы операционной системы и компилятора. Ассемблер позволяет написать программу (или ее часть) так, что она будет быстро выполняться и при этом занимать мало места. Это любимый язык хакеров; его знание позволяет менять по своему усмотрению программы, имея только исполнимый файл без исходных текстов. В основу изложения положены короткие примеры на ассемблере MASM фирмы Microsoft, вводящие читателя в круг основных идей языка, знание которых позволяет не только писать простые программы, но и самостоятельно двигаться дальше.

Книга рассчитана на школьников средних и старших классов, а также на всех, интересующихся программированием вообще и ассемблером в частности.

Описание книги Использование ассемблера для оптимизации программ на C++ :
Рассматривается использование языка ассемблера для оптимизации программ, написанных на языке C++. Подробно изложены вопросы применения современных технологий обработки данных ММХ и SSE, а также использования особенностей архитектур современных процессоров для оптимизации программ. Приведены практические рекомендации по оптимизации логических структур высокого уровня, использованию эффективных алгоритмов вычислений, работе со строками и массивами данных.

В книгу включены примеры программного кода приложений, иллюстрирующие различные аспекты применения ассемблера. В качестве средств разработки примеров используются макроассемблер MASM 6.14 и Microsoft Visual C++ .NET 2003. Исходные тексты программ содержатся на прилагаемом к книге компакт-диске.

Структура — это агрегатный тип данных, так как может содержать в себе разнотипные элементы. Синтаксис объявления структуры в С++ отличается от C. Хотя версия C остается правильной для C++. Получается, что в С++ можно двумя стилями объявления структур пользоваться, а в языке C — только одной. Смотрим синтаксис объявления структуры в языке С++:

Struct Name { type atrib; // остальные элементы структуры } structVar1, structVar2, ...;

  • struct — ключевое слово, которое начинает определение структуры
  • Name — имя структуры
  • type — тип данных элемента структуры
  • atrib — элемент структуры
  • structVar1-2 — структурные переменные

Объявление структуры всегда должно начинаться с ключевого слова struct . Необязательно, чтобы структура имела имя, но тогда такая структура обязательно должна иметь структурные переменные, объявленные между закрывающей фигурной скобкой и точкой с запятой, строка 5. Обязательно в объявлении структуры должны присутствовать фигурные скобочки, они обрамляют тело структуры, в котором объявляются её атрибуты (элементы), строка 3. Структурные переменные, при объявлении структуры, указывать необязательно, строка 5.

Так как структура это тип данных, то, для того, чтобы использовать этот тип данных, необходимо объявить структурную переменную, а вместо типа данных указать имя структуры.

struct_name structVariable;

Синтаксис объявления структуры в языке Си:

Typedef struct name { type atrib1; type atrib2; // остальные элементы структуры... } newStructName structVar;

Синтаксис объявления структуры в языке Си предполагает два варианта. Первый, опустить ключевое слово typedef , при этом имя newStructName тоже не используется, и имя структуры, тогда обязательно необходимо при объявлении структуры использовать структурные переменные — structVar , строка 6. Смотрим пример:

Struct name structVar;

Или вы можете воспользоваться typedef , для объявления псевдонима структуры newStructName , псевдоним:

NewStructName structVar;

В любом случае, если вы хотите, объявить указатель на структуру внутри структуры, вы должны использовать первый синтаксис:

Struct name *struct_instance; // указатель на структуру

Объявление указателя на структуру

Синтаксис объявления указателя на структуру в Си неоднозначен. В Си, если вы не используете typedef при определении структуры, то, в обязательном порядке необходимо использовать структурные переменные, между закрывающейся фигурной скобочкой и точкой с запятой.
В C++, этого не требуется. Чтобы объявить указатель на структуру, в С++ вы просто перед именем структурной переменной ставите символ указателя — * .

StructName *structVar; // указатель на структуру structName

NewStructName *structVar; // newStructName должно быть объявлено с typedef

или так, тоже для СИ:

Struct name *structVar;

Доступ к элементам структуры

Доступ к элементам структуры так же прост, как использование символа «точка». Предположим. что у нас есть структурная переменная с именем car и у нее есть элемент с именем speed , к которому, мы сейчас получим доступ:

Car.speed;

Примечание: такой способ доступа к элементам структуры работает только в том случае, когда структура не является указателем на структуру.

Доступ к элементам указателя на структуру

Чтобы получить доступ к элементам структуры, через указатель на структуру, вместо оператора «точка», используйте оператор стрелка -> :

CarPtr->speed;

P.S.: Всем владельцам Android-смартфонов представляю хорошую подборку программ GPS навигаторов для android . В списке представлено около 20 программных продуктов, вы можете любой скачать и установить на свой девайс. Все программы абсолютно бесплатные.

А теперь только представьте — вы сами можете создавать, своего рода, типы данных, которые вам необходимы и с которыми вам будет удобно работать! И это несложно!

Структура — это, некое объединение различных переменных (даже с разными типами данных), которому можно присвоить имя. Например можно объединить данные об объекте Дом: город (в котором дом находится), улица, количество квартир, интернет(проведен или нет) и т.д. в одной структуре. В общем, можно собрать в одну совокупность данные обо всем, что угодно, точнее обо всем, что необходимо конкретному программисту. Всем сразу стало понятно:)

Если вы только приступаете к знакомству со структурами в С++, сначала, вам необходимо ознакомиться с синтаксисом структур в языке С++ . Рассмотрим простой пример, который поможет познакомиться со структурами и покажет, как с ними работать. В этой программе мы создадим структуру, создадим объект структуры, заполним значениями элементы структуры (данные об объекте) и выведем эти значения на экран. Ну что же, приступим!

#include using namespace std; struct building //Создаем структуру! { char *owner; //здесь будет храниться имя владельца char *city; //название города int amountRooms; //количество комнат float price; //цена }; int main() { setlocale (LC_ALL, "rus"); building apartment1; //это объект структуры с типом данных, именем структуры, building apartment1.owner = "Денис"; //заполняем данные о владельце и т.д. apartment1.city = "Симферополь"; apartment1.amountRooms = 5; apartment1.price = 150000; cout << "Владелец квартиры: " << apartment1.owner << endl; cout << "Квартира находится в городе: " << apartment1.city << endl; cout << "Количество комнат: " << apartment1.amountRooms << endl; cout << "Стоимость: " << apartment1.price << " $" << endl; return 0; }

В строках 4 — 10 мы создаем структуру. Чтобы ее объявить используем зарезервированное слово struct и даем ей любое, желательно логичное, имя. В нашем случае — building . С правилами именования переменных, вы можете ознакомиться в этой статье . Далее открываем фигурную скобку { , перечисляем 4 элемента структуры через точку с запятой; , закрываем фигурную скобку } и в завершении ставим точку с запятой; . Это будет нашим шаблоном (формой) структуры.

В строке 16 объявляем объект структуры. Как и для обычных переменных, необходимо объявить тип данных. В этом качестве выступит имя нашей созданной структуры — building .

Как же заполнить данными (инициализировать) элементы структуры? Синтаксис таков: Имя объекта далее оператор точка. и имя элемента структуры. Например: apartment1.owner . Таким образом, в строках 18-21 присваиваем данные элементам структуры.

И так, данные мы внесли. Следующий вопрос: «Как к ним обратиться, как работать и использовать их в программе?» Ответ — «Очень просто — так же, как и при инициализации, используя точку. и имя элемента структуры». В строках 23 — 26 выводим заполненные элементы структуры на экран.

И вот что мы увидим в результате, когда скомпилируем нашу программу:

Владелец квартиры: Денис Квартира находится в городе: Симферополь Количество комнат: 5 Стоимость: 150000 $

Что ещё важно знать:

  • Объект структуры можно объявить до функции main() . Это выглядело бы так:
struct building { char *owner char *city; int amountRooms; float price; }apartment1; //объявление объекта типа building
  • Инициализировать структуру можно и таким способом:
building apartment1 = {"Денис", "Симферополь", 5, 150000};

но так делают крайне редко;

  • Структуру можно вкладывать в другие структуры (это мы рассмотрим в следующем примере).

Дополним предыдущий пример, чтобы увидеть дополнительные возможности работы со структурами.

Пример:

#include using namespace std; struct date //создаем еще одну структуру, чтобы вложить ее в структуру building // дата постройки { char *month; // Месяц постройки дома int year; // Год }; struct building { char *owner; char *city; int amountRooms; float price; date built; //вкладываем одну структуру в определение второй }; void show(building object) //создаем функцию, которая принимает структуру, как параметр { cout << "Владелец квартиры: " << object.owner << endl; cout << "Квартира находится в городе: " << object.city << endl; cout << "Количество комнат: " << object.amountRooms << endl; cout << "Стоимость: " << object.price << " $" << endl; cout << "Дата постройки: " << object.built.month << " " << object.built.year << endl; } int main() { setlocale (LC_ALL, "rus"); building apartment1; apartment1.owner = "Денис"; apartment1.city = "Симферополь"; apartment1.amountRooms = 5; apartment1.price = 150000; apartment1.built.month = "январь"; apartment1.built.year = 2013; struct building *pApartment; //это указатель на структуру pApartment = &apartment1; //Обратите внимание, как нужно обращаться к элементу структуры через указатель //используем оператор -> cout << "Владелец квартиры: " << pApartment->owner << endl; cout << "Квартира находится в городе: " << pApartment->city << endl; cout << "Количество комнат: " << pApartment->amountRooms << endl; cout << "Стоимость: " << pApartment->price << " $" << endl; cout << "Дата постройки: " << pApartment->built.month << " " << pApartment->built.year << "\n\n\n"; building apartment2; //создаем и заполняем второй объект структуры apartment2.owner = "Игорь"; apartment2.city = "Киев"; apartment2.amountRooms = 4; apartment2.price = 300000; apartment2.built.month = "январь"; apartment2.built.year = 2012; building apartment3 = apartment2; //создаем третий объект структуры и присваиваем ему данные объекта apartment2 show(apartment3); cout << endl << endl; return 0; }

Коментарии по коду программы:

Строка 17 — создание объекта built типа date в определении структуры building . Строки 42 — 43 : создаем указатель на структуру struct building *pApartment; и далее присваиваем ему адрес уже созданного и заполненного данными объекта pApartment = &apartment1; . Обращаясь к элементам структуры через указатель мы используем оператор -> (тире и знак >) . Это видно в строках 47 — 51.

В строке 62 показано, как можно инициализировать структуру. А именно, можно создать новый объект структуры и присвоить ему одним целым, уже созданный и заполненный данными, объект. В функцию show() передаем объект структуры, как параметр — строка 64. Результат:

Владелец квартиры: Денис
Квартира находится в городе: Симферополь
Количество комнат: 5
Стоимость: 150000 $
Дата постройки: январь 2013
Владелец квартиры: Игорь
Квартира находится в городе: Киев
Количество комнат: 4
Стоимость: 300000 $
Дата постройки: январь 2012
Для продолжения нажмите любую клавишу. . .

Разобрав этот пример, мы увидели на практике следующее:

  • структуру можно вкладывать в другую структуру;
  • увидели, как создаётся указатель на структуру;
  • как нужно обращаться к элементу структуры через указатель. А именно, используя оператор -> ; В примере это было так: apartment0->owner , но можно и так (*apartment0).owner . Круглые скобки, во втором случае, обязательны.
  • данные одной структуры можно присвоить другой структуре;
  • можно структуру передать в функцию, как параметр (кстати, элементы структуры так же можно передавать в функцию, как параметры).

В дополнение ко всему, следует отметить, что функции могут так же возвращать структуры в результате своей работы. Например:

Building Set() { building object; // формирование объекта //... код функции return object; }

Вот так, вкратце, мы познакомились со структурами в языке С++, попрактиковались на примерах и узнали основы. Это только начало!

Структуры в си (c) - это объединенные данные, у которых есть некоторая логическая взаимосвязь. В отличие от массивов, структуры могут содержать данные разных типов. Вот пару примеров структур в си (c): структура класс (имя учащегося, буква класса, средний балл); структура футбольная команда (тренер, название команды, место в турнирной таблице). Т.е. структуру вы будете использовать довольно часто. Теперь давайте рассмотрим, как описываются структуры в си:

struct klass {
char name;
char klass_name;
float bal;
};

struct

Любая структура в языке си (c) должна начинаться с ключевого слова - struct , которое сообщает компилятору, что тут у нас будет структура. Все данные в структуре (struct) пишутся в фигурных скобках, и в конце ставится запятая с точкой (;). Советую сразу ставить запятую с точкой, что бы не было ошибок.

Как вы видите, в структуре (struct) у нас находятся данные различных типов, но они объединены в логическую связь, так как в моем примере они являются определенным школьным классом. Данные в структуре должны иметь уникальные имена, но в различных структурах можно использовать одинаковые названия.

Структура, которая создана выше не занимает в памяти компьютера места, так как мы, на самом деле, просто создали свой тип данных. Объявление структуры ни чем не отличается от объявления любого типа данных в языке си (c). Вот пример:

struct klass a, b, *c;

Мы объявили переменную а типа struct klass, массив b, состоящий из 5 элементов типа struct klass и указатель на переменную struct klass.

Так же можно объявлять переменные сразу после объявления структуры:

struct klass {
char name;
char klass_name;
float bal;
} a, b, *c;

А какие же операции можно проделывать со структурами? Ответ на этот вопрос лучше перечислить по пунктам:

  1. присваивание полю структуры значение того же типа
  2. можно получить адрес структуры. Не забываем операцию взятия адреса (&)
  3. можно обращаться к любому полю структуры
  4. для того, что бы определить размер структуры можно использовать операцию sizeof()

Инициализация структуры

Инициализация структуры в языке си (c) происходит так же, как и при инициализации массива. Вот пример инициализации структуры:

struct klass a = {"Sergey", "B", 4.5 };

Т.е. мы создаем переменную типа struct klass и присваиваем всем трем полям, которые у нас определенны в структуре, значения. Порядок очень важен при инициализации структуры , так как компьютер сам не может отсортировывать данные. Если какое-либо поле у вас будет не заполненным, то оно автоматом заполнится 0 - для целочисленных типов; NULL - для указателей; \0 (ноль-терминатор) - для строковых типов.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: