Что значит объектно ориентированное программирование. Введение в объектно-ориентированное программирование. Что такое объект

Наверное, в половине вакансий(если не больше), требуется знание и понимание ООП. Да, эта методология, однозначно, покорила многих программистов! Обычно понимание ООП приходит с опытом, поскольку годных и доступно изложенных материалов на данный счет практически нет. А если даже и есть, то далеко не факт, что на них наткнутся читатели. Надеюсь, у меня получится объяснить принципы этой замечательной методологии, как говорится, на пальцах.

Итак, уже в начале статьи я уже упомянул такой термин "методология". Применительно к программированию этот термин подразумевает наличие какого-либо набора способов организации кода, методов его написания, придерживаясь которых, программист сможет писать вполне годные программы.

ООП (или объектно-ориентированное программирование) представляет собой способ организации кода программы, когда основными строительными блоками программы являются объекты и классы, а логика работы программы построена на их взаимодействии.


Об объектах и классах

Класс - это такая структура данных, которую может формировать сам программист. В терминах ООП, класс состоит из полей (по-простому - переменных) и методов (по-простому - функций). И, как выяснилось, сочетание данных и функций работы над ними в одной структуре дает невообразимую мощь. Объект - это конкретный экземпляр класса. Придерживаясь аналогии класса со структурой данных, объект - это конкретная структура данных, у которой полям присвоены какие-то значения. Поясню на примере:

Допустим, нам нужно написать программу, рассчитывающую периметр и площадь треугольника, который задан двумя сторонами и углом между ними. Для написания такой программы используя ООП, нам необходимо будет создать класс (то есть структуру) Треугольник. Класс Треугольник будет хранить три поля (три переменные): сторона А, сторона Б, угол между ними; и два метода (две функции): посчитать периметр, посчитать площадь. Данным классом мы можем описать любой треугольник и вычислить периметр и площадь. Так вот, конкретный треугольник с конкретными сторонами и углом между ними будет называться экземпляром класса Треугольник. Таким образом класс - это шаблон, а экземпляр - конкретная реализация шаблона. А вот уже экземпляры являются объектами, то есть конкретными элементами, хранящими конкретные значения.

Одним из самых распространенных объектно-ориентированных языков программирования является язык java. Там без использования объектов просто не обойтись. Вот как будет выглядеть код класса, описывающего треугольник на этом языке:

/** * Класс Треугольник. */ class Triangle { /** * Специальный метод, называемый конструктор класса. * Принимает на вход три параметра: * длина стороны А, длина стороны Б, * угол между этими сторонами(в градусах) */ Triangle(double sideA, double sideB, double angleAB) { this.sideA = sideA; this.sideB = sideB; this.angleAB = angleAB; } double sideA; //Поле класса, хранит значение стороны А в описываемом треугольнике double sideB; //Поле класса, хранит значение стороны Б в описываемом треугольнике double angleAB; //Поле класса, хранит угла(в градусах) между двумя сторонами в описываемом треугольнике /** * Метод класса, который рассчитывает площадь треугольника */ double getSquare() { double square = this.sideA * this.sideB * Math.sin(this.angleAB * Math.PI / 180); return square; } /** * Метод класса, который рассчитывает периметр треугольника */ double getPerimeter() { double sideC = Math.sqrt(Math.pow(this.sideA, 2) + Math.pow(this.sideB, 2) - 2 * this.sideA * this.sideB * Math.cos(this.angleAB * Math.PI / 180)); double perimeter = this.sideA + this.sideB + sideC; return perimeter; } }

Если мы внутрь класса добавим следующий код:

/** * Именно в этом месте запускается программа */ public static void main(String args) { //Значения 5, 17, 35 попадают в конструктор класса Triangle Triangle triangle1 = new Triangle(5, 17, 35); System.out.println("Площадь треугольника1: "+triangle1.getSquare()); System.out.println("Периметр треугольника1: "+triangle1.getPerimeter()); //Значения 6, 8, 60 попадают в конструктор класса Triangle Triangle triangle2 = new Triangle(6, 8, 60); System.out.println("Площадь треугольника1: "+triangle2.getSquare()); System.out.println("Периметр треугольника1: "+triangle2.getPerimeter()); }

то программу уже можно будет запускать на выполнение. Это особенность языка java. Если в классе есть такой метод

Public static void main(String args)

то этот класс можно выполнять. Разберем код подробнее. Начнем со строки

Triangle triangle1 = new Triangle(5, 17, 35);

Здесь мы создаем экземпляр triangle1 класса Triangle и тут же задаем ему параметры сторон и угла между ними. При этом, вызывается специальный метод, называемый конструктор и заполняет поля объекта переданными значениями в конструктор. Ну, а строки

System.out.println("Площадь треугольника1: "+triangle1.getSquare()); System.out.println("Периметр треугольника1: "+triangle1.getPerimeter());

выводят рассчитанные площадь треугольника и его периметр в консоль.

Аналогично все происходит и для второго экземпляра класса Triangle .

Понимание сути классов и конструирования конкретных объектов - это уверенный первый шаг к пониманию методологии ООП.

Еще раз, самое важное:

ООП - это способ организации кода программы;

Класс - это пользовательская структура данных, которая воедино объединяет данные и функции для работы с ними(поля класса и методы класса);

Объект - это конкретный экземпляр класса, полям которого заданы конкретные значения.


Три волшебных слова

ООП включает три ключевых подхода: наследование, инкапсуляцию и полиморфизм. Для начала, приведу определения из wikipedia :

Инкапсуляция - свойство системы, позволяющее объединить данные и методы, работающие с ними, в классе. Некоторые языки (например, С++) отождествляют инкапсуляцию с сокрытием, но большинство (Smalltalk, Eiffel, OCaml) различают эти понятия.

Наследование - свойство системы, позволяющее описать новый класс на основе уже существующего с частично или полностью заимствующейся функциональностью. Класс, от которого производится наследование, называется базовым, родительским или суперклассом. Новый класс - потомком, наследником, дочерним или производным классом.

Полиморфизм - свойство системы, позволяющее использовать объекты с одинаковым интерфейсом без информации о типе и внутренней структуре объекта.

Понять, что же все эти определения означают на деле достаточно сложно. В специализированных книгах, раскрывающих данную тему на каждое определение, зачастую, отводится целая глава, но, как минимум, абзац. Хотя, сути того, что нужно понять и отпечатать навсегда в своем мозге программиста совсем немного.
А примером для разбора нам будут служить фигуры на плоскости. Из школьной геометрии мы знаем, что у всех фигур, описанных на плоскости, можно рассчитать периметр и площадь. Например, для точки оба параметра равны нулю. Для отрезка мы можем вычислить лишь периметр. А для квадрата, прямоугольника или треугольника - и то, и другое. Сейчас же мы опишем эту задачу в терминах ООП. Также не лишним будет уловить цепь рассуждений, которые выливаются в иерархию классов, которая, в свою очередь, воплощается в работающий код. Поехали:


Итак, точка - это самая малая геометрическая фигура, которая является основой всех прочих построений (фигур). Поэтому именно точка выбрана в качестве базового родительского класса. Напишем класс точки на java:

/** * Класс точки. Базовый класс */ class Point { /** * Пустой конструктор */ Point() {} /** * Метод класса, который рассчитывает площадь фигуры */ double getSquare() { return 0; } /** * Метод класса, который рассчитывает периметр фигуры */ double getPerimeter() { return 0; } /** * Метод класса, возвращающий описание фигуры */ String getDescription() { return "Точка"; } }

У получившегося класса Point пустой конструктор, поскольку в данном примере мы работаем без конкретных координат, а оперируем только параметрами значениями сторон. Так как у точки нет никаких сторон, то и передавать ей никаких параметров не надо. Также заметим, что класс имеет методы Point::getSquare() и Point::getPerimeter() для расчета площади и периметра, оба возвращают 0. Для точки оно и логично.


Поскольку у нас точка является основой всех прочих фигур, то и классы этих прочих фигур мы наследуем от класса Point . Опишем класс отрезка, наследуемого от класса точки:

/** * Класс Отрезок */ class LineSegment extends Point { LineSegment(double segmentLength) { this.segmentLength = segmentLength; } double segmentLength; // Длина отрезка /** * Переопределенный метод класса, который рассчитывает площадь отрезка */ double getSquare() { return 0; } /** * Переопределенный метод класса, который рассчитывает периметр отрезка */ double getPerimeter() { return this.segmentLength; } String getDescription() { return "Отрезок длиной: " + this.segmentLength; } }

Class LineSegment extends Point

означает, что класс LineSegment наследуется от класса Point . Методы LineSegment::getSquare() и LineSegment::getPerimeter() переопределяют соответствующие методы базового класса. Площадь отрезка всегда равняется нулю, а площадь периметра равняется длине этого отрезка.

Теперь, подобно классу отрезка, опишем класс треугольника(который также наследуется от класса точки):

/** * Класс Треугольник. */ class Triangle extends Point { /** * Конструктор класса. Принимает на вход три параметра: * длина стороны А, длина стороны Б, * угол между этими сторонами(в градусах) */ Triangle(double sideA, double sideB, double angleAB) { this.sideA = sideA; this.sideB = sideB; this.angleAB = angleAB; } double sideA; //Поле класса, хранит значение стороны А в описываемом треугольнике double sideB; //Поле класса, хранит значение стороны Б в описываемом треугольнике double angleAB; //Поле класса, хранит угла(в градусах) между двумя сторонами в описываемом треугольнике /** * Метод класса, который рассчитывает площадь треугольника */ double getSquare() { double square = (this.sideA * this.sideB * Math.sin(this.angleAB * Math.PI / 180))/2; return square; } /** * Метод класса, который рассчитывает периметр треугольника */ double getPerimeter() { double sideC = Math.sqrt(Math.pow(this.sideA, 2) + Math.pow(this.sideB, 2) - 2 * this.sideA * this.sideB * Math.cos(this.angleAB * Math.PI / 180)); double perimeter = this.sideA + this.sideB + sideC; return perimeter; } String getDescription() { return "Треугольник со сторонами: " + this.sideA + ", " + this.sideB + " и углом между ними: " + this.angleAB; } }

Тут нет ничего нового. Также, методы Triangle::getSquare() и Triangle::getPerimeter() переопределяют соответствующие методы базового класса.
Ну а теперь, собственно, тот самый код, который показывает волшебство полиморифзма и раскрывает мощь ООП:

Class Main { /** * Именно в этом месте запускается программа */ public static void main(String args) { //ArrayList - Это специальная структура данных в java, // позволяющая хранить объекты определенного типа в массиве. ArrayList figures = new ArrayList(); //добавляем три разных объекта в массив figures figures.add(new Point()); figures.add(new LineSegment(133)); figures.add(new Triangle(10, 17, 55)); for (int i = 0; i

Мы создали массив объектов класса Point , а поскольку классы LineSegment и Triangle наследуются от класса Point , то и их мы можем помещать в этот массив. Получается, каждую фигуру, которая есть в массиве figures мы можем рассматривать как объект класса Point . В этом и заключается полиморфизм: неизвестно, к какому именно классу принадлежат находящиеся в массиве figures объекты, но поскольку все объекты внутри этого массива принадлежат одному базовому классу Point , то все методы, которые применимы к классу Point также и применимы к его классам-наследникам.


Теперь о инкапсуляции. То, что мы поместили в одном классе параметры фигуры и методы расчета площади и периметра - это и есть инкапсуляция, мы инкапсулировали фигуры в отдельные классы. То, что у нас для расчета периметра используется специальный метод в классе - это и есть инкапсуляцию, мы инкапсулировали расчет периметра в метод getPerimiter() . Иначе говоря, инкапсуляция - это сокрытие реализции (пожалуй, самое короткое, и в то же время емкое определением инкапсуляции).


Полный код примера:

Import java.util.ArrayList; class Main { /** * Именно в этом месте запускается программа */ public static void main(String args) { //ArrayList - Это специальная структура данных в java, // позволяющая хранить объекты определенного типа в массиве. ArrayList figures = new ArrayList(); //добавляем три разных объекта в массив figures figures.add(new Point()); figures.add(new LineSegment(133)); figures.add(new Triangle(10, 17, 55)); for (int i = 0; i

Подборка видео по теме объектно-ориентированного программирования. Годится для новичков, изучающих ООП, и для подготовки к .

1. Введение в обучающий видеокурс по основам объектно-ориентированного программирования (ООП)

В этом вступительном ролике задается вектор всего курса. Здесь описывается план занятий, а автор делает акцент на том, что видео выстроены в логической последовательности. Рекомендуется смотреть ролики строго друг за другом, не перескакивая на другие темы, чтобы не запутаться.

2. Основные принципы объектно-ориентированного программирования. Что такое ООП и зачем оно нужно?

Поговорим о том, чем объектно-ориентированные программы отличаются от процедурных; из чего такая программа состоит, и каким образом над одной программой может работать множество программистов; вкратце пройдемся по главным парадигмам ООП: инкапсуляции, абстракции, полиморфизму, наследованию.

3. Понятие класса и объекта в ООП

В этом видео будет затронута самая важная тема курса – классы и объекты. По словам автора курса, полное понимание этих тем обеспечивает понимание объектно-ориентированного программирование на 70 процентов. Подробно рассмотрим процесс проектирования и воспроизводства классов и их объектов.

Развиваем тему классов в объектно-ориентированном программировании. Рассмотрим, каким должен быть хороший класс, а главное, как выглядит класс, который создан не понимающим принципы ООП программистом. Почему класс должен быть максимально простым и как к этому прийти.

5. Методы и данные в ООП

Что находится внутри класса, из чего он состоит? Что такое данные и методы, и без чего можно обойтись в описании класса? Как описывать метод, передавать параметры? Чем отличается метод класса в ООП от функции в процедурном программировании? В данном видео есть ответы на все перечисленные вопросы.

6. Методы в ООП. Типы методов

Продолжаем изучать тему методов в объектно-ориентированном программировании. Какие виды методов существует и зачем они нужны? Чем методы экземпляров отличаются от методов класса? Конструктор, деструктор, getter, setter – что это такое и зачем эти методы нужны?

7. Каким должен быть хороший метод в ООП

Теперь, зная основы создания методов в ООП, можно заняться вопросом создания хорошего метода. Здесь все так же, как с классом: если вы поняли суть методов и их роль в объектно-ориентированном программировании, вы почти наверняка будете описывать методы правильно. Но что бывает, если метод выглядит не так, как нужно, и что с этим делать – выясняем в этом видео.

8. Наследование в ООП

Поговорим об одном из самых мощных инструментов ООП – наследовании, и о том, как использовать этот механизм с умом. На примере рассмотрим процесс построения родительского класса и создание дочерних классов на его основе.

9. Инкапсуляция данных в ООП

Что означает слово «инкапсулирование», и как это относится к методам класса? Как защитить методы от внешнего воздействия, когда и зачем это может понадобиться? На примере рассмотрим методы, которые стоит инкапсулировать.

10. Абстракция в ООП

В отличие от других видео о парадигмах ООП, в этой теме не будет красочных примеров. Только теория, но она крайне важна для освоения и понимания, так как абстракция тесно связана с механизмом наследования. В этом видео разберемся не только с новой парадигмой, но и попробуем глубже понять основы ООП.

11. Полиморфизм в ООП

Что нужно знать, прежде чем понять эту парадигму? Что означает «полиморфизм»? Развиваем идею абстрагирования классов и методов, а также рассмотрим пример применения полиморфизма.

Основывается на представлении программы в виде множества объектов. Каждый объект относится к какому-либо классу, который, в свою очередь, занимает свое место в наследуемой иерархии. Использование ООП минимизирует избыточные данные, это улучшает управляемость, понимание программы.

Что такое ООП

Возникло как результат развития процедурного программирования. Основой объектно-ориентированных языков являются такие принципы, как:

  • инкапсуляция;
  • наследование;
  • полиморфизм.

Некоторые принципы, которые были изначально заложены в первые ООЯ, подверглись существенному изменению.

Примеры объектно-ориентированных языков:

  1. Pascal. С выходом Delphi 7 на официальном уровне стал называться Delphi. Основная область использования Object Pascal - написание прикладного ПО.
  2. C++ широко используется для разработки программного обеспечения, является одним из самых популярных языков. Применяется для создания ОС, прикладных программ, драйверов устройств, приложений, серверов, игр.
  3. Java - транслируется в байт-код, обрабатывается виртуальной машиной Java. Преимуществом такого способа выполнения является независимость от операционной системой и оборудования. Существующие семейства: Standard Edition, Enterprise Edition, Micro Edition, Card.
  4. JavaScript применяется в качестве языка сценариев для web-страниц. Синтаксис во многом напоминает Си и Java. Является реализацией Ecmascript. Сам Ecmascript используется в качестве основы для построения других таких как JScript, ActionScript.
  5. Objective-C построен на основе языка Си, а сам код Си понятен компилятору Objective-C.
  6. Perl - высокоуровневый интерпретируемый динамический язык общего назначения. Имеет богатые возможности для работы с текстом, изначально разработан именно для манипуляций с текстом. Сейчас используется в системном администрировании, разработке, сетевом программировании, биоинформатике и т. д.
  7. PHP. Аббревиатура переводится как препроцессор гипертекста. Применяется для разработки веб-приложений, в частности серверной части. С его помощью можно создавать gui-приложения с помощью пакетов WinBinder.
  8. Python - язык общего назначения, ориентирован на повышение производительности разработчика и читаемость кода. Был разработан проект Cython, с помощью которого осуществляется трансляция программ, написанных на Python в код на языке Си.

Абстракция

Любая книга из рода “Объектно-ориентированное программирование для чайников” выделяет один из главных принципов - абстракцию. Идея состоит в разделении деталей или характеристик реализации программы на важные и неважные. Необходима для крупных проектов, позволяет работать на разных уровнях представления системы, не уточняя детали.

Абстрактный тип данных представляется как интерфейс или структура. Позволяет не задумываться над уровнем детализации реализации. АТД не зависит от других участков кода.

Известный афоризм Дэвида Уилера гласит: Все проблемы в информатике можно решить на другом уровне абстракции.

Наследование

Объектно-ориентированные языки являются наследуемыми - это один из важнейших принципов.

Обозначает, что функциональность некоторого типа может быть повторно использована. Класс, который наследует свойства другого, называется производным, потомком или подклассом. Тот, от которого происходит наследование, называется предком, базовым или суперклассом. Связь потомок-наследник порождает особую иерархию.

Существует несколько типов наследования:

  • простое;
  • множественное.

При множественном наследовании может быть несколько детей от одного предка, когда при простом - только один. Это является основным различием между типами.

Наследование выглядит так:

function draw() {

return "just animal";

function eat() {

return "the animal is eating";

class Cow extends Animal {

function draw() {

Return "something that looks like a cow";

Видим, что class Cow унаследовал все методы от class Animal. Теперь, если выполнить Cow.eat(), получаем "the animal is eating", соответственно, метод draw() изменен. Cow.draw() вернет “something that looks like a cow”, а Animal.draw() вернет “just animal”.

Инкапсуляция

Инкапсуляция ограничивает доступ компонентов к другим, связывает данные с методами для обработки. Для инкапсуляции используется спецификатор доступа private.

Обычно понятия инкапсуляция и сокрытие отождествляются, но некоторые языки различают эти понятия. Другими словами, критичные для работы свойства защищаются, а их изменение становится невозможным.

function __construct($name) {

$this->name = $name;

function getName() {

return $this->name;

Name принимается в качестве аргументов конструктора. Когда конструктор будет использован в других частях кода, ничто не сможет изменить элемент name. Как видим, он указывается внутри, для других частей кода он недоступен.

Полиморфизм

Полиморфизм позволяет использовать одно и то же имя для решения схожих, но технически разных задач.

В примере выше находится таблица. Мы видим class CardDesk и class GraphicalObject. У обоих есть функция под названием draw(). Она выполняет разные действия, хотя имеет одно имя.

Ad hoc полиморфизм или специальный полиморфизм использует:

  • перегрузку функций, методов;
  • приведение типов.

Перегрузка подразумевает использование нескольких функций с одним именем, когда выбор подходящих происходит на этапе компиляции.

Приведение типов означает преобразование значения одного типа в значение другого типа. Существует явное преобразование - применяется функция, которая принимает один тип, а возвращает другой, неявное - выполняется компилятором или интерпретатором.

«Один интерфейс — много реализаций» Бьерн Страуструп.

Класс

Класс - это такой тип данных, который состоит из единого набора полей и методов.

Имеет внутренние и внешние интерфейсы для управления содержимым. При копировании через присваивание копируется интерфейс, но не данные. Разные виды взаимодействуют между собой посредством:

  • наследования;
  • ассоциации;
  • агрегации.

При наследовании дочерний класс наследует все свойства родителя, ассоциация подразумевает взаимодействие объектов. Когда объект одного класса входит в другой, это называется агрегацией. Но когда они еще зависят друг от друга по времени жизни, - это композиция.

Одной из главных характеристик является область видимости. Понятие по-разному определяется разными ЯП.

В Object Pascal описывается следующим образом:

ClassName = class(SuperClass)

{ использование элементов ограничивается только пределами модуля }

{ здесь указываются поля }

{ спецификатор доступа стал доступным с выходом Delphi 2007, обозначает то же, что и private }

{ элементы могут использоваться внутри ClassName или при наследовании }

{ элементы доступны всем, они отображаются в Object Inspector"e }

Здесь SuperClass - предок, от которого происходит наследование.

Для C++ создание выглядит так:

class MyClass: public Parent

MyClass(); // конструктор

~MyClass(); // деструктор

В этом примере Parent является предком, если таковой имеется. Спецификаторы private, public, protected обозначают то же самое, что в предыдущем примере на Паскале. Также мы видим конструктор, деструктор, доступные для любой части программы. У C++ все элементы по умолчанию являются private, соответственно, это можно не указывать.

Особенности реализации

В центре объектно-ориентированных языков - объект, он является частью класса. Он состоит из:

  • поля;
  • метода.

Поле данных описывает параметры объекта. Они представляют собой некое значение, которое принадлежит какому-либо классу, описывают его состояние, свойства. Являются по умолчанию закрытыми, а изменение данных происходит за счет использования различных методов.

Метод - совокупность функций, которые определяют все возможные действия, доступные для выполнения над объектом. Все объекты взаимодействуют за счет вызова методов друг друга. Могут быть внешними или внутренними, что конкретизируется модификаторами доступа.

ООП-методологии

Существуют такие методологии:

  • Компонентно-ориентированное программирование;
  • Прототипное программирование;
  • Классоориентированное программирование.

Компонентно-ориентированное программирование опирается на понятие компонента - такого составляющего программы, которое предназначено для повторного использования. Реализуется как множество конструкций с общим признаком, правилами, ограничениями. Подход используется в объектно-ориентированном языке Java, где компонентная ориентация реализуется посредством “JavaBeans”, написанных по одним правилам.

В прототипном программировании нет понятия класса - наследование производится за счет клонирования существующего прототипа. Это основа объектно-ориентированных языков javascript и других диалектов ecmascript, а также lua или lo. Главные особенности:

  • потомки не должны сохранять структурное подобие прототипа (в отношении класс - экземпляр это происходит именно так);
  • при копировании прототипа все методы наследуются один в один.

Классоориентированное программирование фокусируется на и экземпляр. Класс определяет общую структуру, поведение для экземпляров, которые их перенимают.

Объектно-ориентированные языки

Все ООЯ полностью отвечают принципам ООП - элементы представляют собой объекты, у которых есть свойства. При этом, могут быть дополнительные средства.

ООЯ обязательно содержит набор следующих элементов:

  • объявление классов с полями, методами;
  • расширение за счет наследования функций;
  • полиморфное поведение.

Кроме вышеперечисленного списка, могут быть добавлены дополнительные средства:

  • конструктор, деструктор, финализаторы;
  • свойства;
  • индексаторы;
  • модификаторы доступа.

Некоторые ООЯ отвечают всем основным элементам, другие - частично. Третьи являются гибридными, то есть совмещаются с подсистемами других парадигм. Как правило, принципы ООП могут применяться для необъектно-ориентированного языка тоже. Однако применение ООЯ еще не делает код объектно-ориентированным.

ЯП поддерживают больше, чем одну парадигму. Например, PHP или JavaScript поддерживают функциональное, процедурное, объектно-ориентированное программирование. Java работает с пятью парадигмами: объектно-ориентированной, обобщенной, процедурной, аспектно-ориентированной, конкурентной. C# считается одним из самых успешных примеров мультипарадигмальности. Он поддерживает те же подходы, что Java, к этому списку добавляется еще рефлексивная парадигма. Такой ЯП, как Oz, разработан для того, чтобы объединить все понятия, традиционно связанные с различными программными парадигмами.

1 year ago | 13.4K

Каждый кандидат, который хочет получить должность программиста в крупной компании, должен ответить на вопрос, что из себя представляет данный тип программирования. Если у программиста появляются трудности с ответом - в большинстве случаев интервьюер вежливо сообщит о том, что собеседование окончено. Программистам сложно получить нормальную работу, не ориентируясь в данном сегменте.

Чтобы дать адекватный ответ на данный вопрос, придется ознакомиться не только с основными свойствами ООП, но и разобраться с некоторыми понятиями - к примеру, полиморфизм, а также, инкапсуляция и наследование. Из в модуле вы можете познакомиться с теоретической базой ООП, а применить знания на практике в модуле MVC - весь модуль.

Введение в ООП

ООП является весьма популярной парадигмой программирования, которая заменила устаревший процедурный подход в программировании. Стоит более детально рассмотреть особенности процедурного программирования, для того, чтобы понять чем отличается процедурное программирование от ООП.

Итак, программа, написанная с помощью процедурного подхода к программированию - это монолитная программа, которая содержит определенное количество инструкций, необходимых программисту, а также, подпрограмм.

Чтобы сразу же разобраться с отличиями данных способов программирования, необходимо рассмотреть код в нескольких вариантах:

Процедурное программирование:

$value = "Hi!"; echo $value;

ООП:

class Human { private $words; public function setWords($words) { $this->words = $words; } public function getWords() { return $this->words; } public function sayIt() { return $this->getWords(); } } $human = new Human(); $human->setWords("Hi!"); echo $human->sayIt();

Стоит сразу же выделить видимое отличие - в первом варианте все намного проще, меньше кода. Многие посчитают код ООП слишком сложным и выберут первый вариант, но это лишь изначальное обманчивое впечатление.

В данном случае, при выборе подхода, следует учитывать особенности полученного задания. Процедурный подход идеально подойдет для создания простого кода для краткосрочного использования - выбирайте данный подход, если код будет состоять максимум из 5 строк.

При регулярно повторяющейся задаче, которая является более сложной, лучше всего остановить свой выбор на ООП.

Что из себя представляет КЛАСС

Здесь все достаточно просто - это методы, а также, поля программы. В качестве примера можно рассмотреть Human:

Class Human { private $words; public function setWords($words) { $this->words = $words; } public function getWords() { return $this->words; } public function sayIt() { return $this->getWords(); } }

Здесь все достаточно просто, Human является именем класса, $words представляет собой переменную (поле), ну а setWords, getWords(), sayIt(), являются методами.

Несколько базовых принципов ООП

Есть сразу 3 основных принципа, которые составляют основу ООП. Каждый из этих принципов будет рассмотрен более детально, чтобы у вас была возможность понять все особенности ООП.

Инкапсуляция

Покажем несколько примеров, которые помогут разобраться с каждым из представленных принципов. Инкапсуляция - это своеобразная защита информации от внешних пользователей.

Чтобы сразу же стало понятно что это, приведем реальный пример.

Вы хотите совершить определенный звонок, пользуясь своим телефоном - это не требует от вас дополнительных познаний в сегменте сотовой связи, размещении вышек и прочего. Вам достаточно более простых знаний - номера выбранного абонента и средств, которые позволят совершить запланированный звонок.

Инкапсуляция дает внешним пользователям(программистам) доступ к методам, которые необходимы им для работы с вашей программой, при этом, все важные внутренние методы остаются недоступными, они попросту не нужны внешним пользователям.

Приведем в качестве примера инкапсуляции следующее:

Class Human { private $words; private $sex; public function setSex($sex) { if($sex == "male") { $this->sex = "male"; } else if($sex == "female") { $this->sex = $sex; } else { echo "Error. Set only male or female sex"; } } public function setWords($words) { $this->words = $words; } public function getWords() { return $this->words; } public function sayIt() { return $this->getWords(); } } $human = new Human(); $human->setSex("male"); $human->setWords("Hi!"); echo $human->sayIt();

Здесь показан Human, в данном классе мы добавили “sex” (пол), которое сделали приватным - это не позволит внешним пользователям получить к нему доступ.

Вот как будет выглядеть попытка получения доступа к данному поля вне самого класса:

$human->sex = "11"; Fatal error: Cannot access private property Human::$sex

Инкапсуляция является весьма полезным свойством ООП и применяется достаточно не редко. Инкапсуляция является невероятно полезной, если созданием определенного проекта занимается целая группа специалистов. Каждый программист будет работать с определенным классом и методами, при этом, не создавая помех в работе другим специалистам.

Наследование

Также очень важное свойство ООП, возможность наследовать функционал определенного класса в другой класс.

И снова жизненный пример, который поможет разобраться с особенностями наследования.

Каждый человек обладает определенным набором функций при рождении, это так называемый базовый набор - дыхание, переваривание пищи, крик.

Вы являетесь соединением огромного количества цепочек генов - от самых первых предков и до кровных родителей. Если рассматривать ООП - то в данном случае свойство наследования ничем не отличается от простой жизни.

Как это работает? Существуют родительские классы с базовым функционалом - при создании нового класса, не потребуется создание новых базовых навыков, он изначально унаследует "базу" родительского класса. Это существенно упрощает работу программистам. Есть слово "extends", которое обозначает наследование, сейчас покажем вам определенный пример:

/* Родительский класс Human */ class Human { private $name; /* Конструктор (в нем мы задаем поле $name при создании экземпляра класса) */ public function __construct($name) { $this->name = $name; } /* Метод say(). Предполагаем, что Human изначально может говорить */ public function say() { echo "Меня зовут ".$this->name." и "; } } /* Класс Мужчина. Ключевым словом extends мы наследуем родителя Human */ class Man extends Human { public function beard() { echo "у меня растет борода"; } } /* Класс Женщина. Ключевым словом extends мы наследуем родителя Human */ class Women extends Human { public function bearChildren() { echo "я рожаю детей"; } } /* Создаем экземпляр класса Man и вызываем методы. */ $man = new Man("Sergey"); $man->say(); $man->beard(); /* Создаем экземпляр класса Women и вызываем методы. */ $women = new Women("Maria"); $women->say(); $women->bearChildren();

Что же мы увидим в результате:

Меня зовут Sergey и у меня растет борода Меня зовут Maria и я рожаю детей

Если рассматривать созданные классы - они оба обладают базовым набором навыков, но есть свои отличия - "Мужчина" отращивает бороду, "Женщина" рожает ребенка.

Метод под названием __construct - это конструктор класса.

Полиморфизм

Один и тот же метод программы, может показывать разное поведение. Это достаточно сложно сразу же понять, поэтому традиционно используем более простой пример, чтобы вы смогли разобраться с особенностями полиморфизма:

Представьте, что вы пришли в продуктовый магазин - кассир может продать вам любые продукты, принять оплату картой или наличными средствами.

Ну как? Теперь проще понять разное поведение одного метода в ООП?

Пример полиморфизма:

/* Это интерфейс Say */ interface Say { public function say(); } /* Это абстрактный класс Human имплементирующий интерфейс Say */ abstract class Human implements Say{ private $name; public function __construct($name) { $this->name = $name; } public function getName() { return $this->name; } } /* Класс Man наследуют класс Human и обязан реализовать метод say() */ class Man extends Human { public function __construct($name) { parent::__construct($name); } public function beard() { echo "у меня растет борода"; } public function say() { echo "У меня мужской голос, меня зовут ".$this->getName()." и "; } } /* Класс Women наследуют класс Human и обязан реализовать метод say() */ class Women extends Human { public function __construct($name) { parent::__construct($name); } public function bearChildren() { echo "я рожаю детей"; } public function say() { echo "У меня женский голос, меня зовут ".$this->getName()." и "; } } $man = new Man("Sergey"); $man->say(); $man->beard(); $women = new Women("Maria"); $women->say(); $women->bearChildren(); ?>

Результат:

У меня мужской голос, меня зовут Sergey и у меня растет борода У меня женский голос, меня зовут Maria и я рожаю детей

Произошла модификация наших классов, появились новые понятия - Интерфейс, а также, Абстрактное программирование. Этот аспект мы рассмотрим чуть позже.

Обратите внимание на разную реализацию метода say() в классах Man, а также, Women - Это называется полиморфизм.

Особенности Интерфейса

Интерфейс является шаблонным классом, реализация отсутствует. Интерфейс позволяет задать определенные методы, требующие последующей реализации.

Рассмотрим прошлый пример:

/* Это интерфейс Say */ interface Say { public function say(); }

Данный интерфейс необходимо имплементировать в абстрактный класс Human. Сделать это достаточно просто - находим название класса, и сразу же после него добавляем "implements".

Абстрактный класс

Абстрактный класс в ООП - это класс шаблонный класс, от которого нельзя создать экземпляр класса.

Пример того, чего мы не сможем сделать:

$human = new Human("name");

В любом случае будем получать ошибку.

Есть возможность наследования Абстрактного класса. Еще один пример Абстрактного класса:

/* Это абстрактный класс Human имплементирующий интерфейс Say */ abstract class Human implements Say{ private $name; public function __construct($name) { $this->name = $name; } public function getName() { return $this->name; } }

Выводы

ООП является невероятно удобным современным способом, который позволяет грамотно организовывать структуры достаточно сложных программ. Другие разработчики смогут поддерживать разрастающийся функционально проект, благодаря ООП. Это достаточно важное преимущество ООП.

В большом курсе в модулях вы познакомитесь с теоретической базой ООП, а практическая реализация - в модуле .

Мы привели достаточно простые примеры - это отличная возможность для любого новичка в сегменте программирования! Надеемся, что помогли вам понять особенности ООП, изучить наиболее важные принципы, чтобы в дальнейшем совершенствовать свои умения. Несколько будущих статей будут направлены на то, чтобы разобраться с важными ключевыми словами public, private, protected, static. Увидеть все особенности на весьма простых примерах.

Так объекты сформировались в компоненты - независимые части кода до уровня выполнения программы . Взаимодействие объектов происходит посредством . Результатом дальнейшего развития ООП, по-видимому, будет агентно-ориентированое программирование , где агенты - независимые части кода на уровне выполнения. Взаимодействие агентов происходит посредством изменения среды , в которой они находятся.

Языковые конструкции, конструктивно не относящиеся непосредственно к объектам, но сопутствующие им для их безопасной (исключительные ситуации , проверки) и эффективной работы, инкапсулируются от них в аспекты (в аспектно-ориентированном программировании). Субъектно-ориентированное программирование расширяет понятие объект посредством обеспечения более унифицированного и независимого взаимодействия объектов. Может являться переходной стадией между ООП и агентным программирование в части самостоятельного их взаимодействия.

Первым языком программирования, в котором были предложены принципы объектной ориентированности, была Симула . В момент своего появления (в 1967 году), этот язык программирования предложил поистине революционные идеи: объекты, классы, виртуальные методы и др., однако это всё не было воспринято современниками как нечто грандиозное. Тем не менее, большинство концепций были развиты Аланом Кэйем и Дэном Ингаллсом в языке Smalltalk . Именно он стал первым широко распространённым объектно-ориентированным языком программирования .

В настоящее время количество прикладных языков программирования (список языков), реализующих объектно-ориентированную парадигму, является наибольшим по отношению к другим парадигмам. В области системного программирования до сих пор применяется парадигма процедурного программирования, и общепринятым языком программирования является язык . Хотя при взаимодействии системного и прикладного уровней операционных систем заметное влияние стали оказывать языки объектно-ориентированного программирования. Например, одной из наиболее распространенных библиотек мультиплатформенного программирования является объектно-ориентированная библиотека , написанная на языке C++ .

Основные понятия

Абстракция Абстрагирование - это способ выделить набор значимых характеристик объекта, исключая из рассмотрения незначимые. Соответственно, абстракция - это набор всех таких характеристик. Инкапсуляция Инкапсуляция - это свойство системы, позволяющее объединить данные и методы, работающие с ними в классе, и скрыть детали реализации от пользователя. Наследование Наследование - это свойство системы, позволяющее описать новый класс на основе уже существующего с частично или полностью заимствующейся функциональностью. Класс, от которого производится наследование, называется базовым, родительским или суперклассом. Новый класс - потомком, наследником или производным классом. Полиморфизм Полиморфизм - это свойство системы использовать объекты с одинаковым интерфейсом без информации о типе и внутренней структуре объекта. Класс Класс является описываемой на языке терминологии (пространства имён) исходного кода моделью ещё не существующей сущности (объекта). Фактически он описывает устройство объекта, являясь своего рода чертежом. Говорят, что объект - это экземпляр класса. При этом в некоторых исполняющих системах класс также может представляться некоторым объектом при выполнении программы посредством динамической идентификации типа данных . Обычно классы разрабатывают таким образом, чтобы их объекты соответствовали объектам предметной области. Объект Сущность в адресном пространстве вычислительной системы, появляющаяся при создании экземпляра класса или копирования прототипа (например, после запуска результатов компиляции и связывания исходного кода на выполнение). Прототип Прототип - это объект-образец, по образу и подобию которого создаются другие объекты. Объекты-копии могут сохранять связь с родительским объектом, автоматически наследуя изменения в прототипе; эта особенность определяется в рамках конкретного языка .

Определение ООП и его основные концепции

В центре ООП находится понятие объекта. Объект - это сущность, которой можно посылать сообщения, и которая может на них реагировать, используя свои данные. Объект - это экземпляр класса. Данные объекта скрыты от остальной программы. Сокрытие данных называется инкапсуляцией .

Наличие инкапсуляции достаточно для объектности языка программирования, но ещё не означает его объектной ориентированности - для этого требуется наличие наследования .

Но даже наличие инкапсуляции и наследования не делает язык программирования в полной мере объектным с точки зрения ООП. Основные преимущества ООП проявляются только в том случае, когда в языке программирования реализован полиморфизм ; то есть возможность объектов с одинаковой спецификацией иметь различную реализацию.

Язык Self, соблюдая многие исходные положения объектно-ориентированного программирования, ввёл альтернативное классам понятие прототипа , положив начало прототипному программированию , считающемуся подвидом объектного.

Сложности определения

ООП имеет уже более чем сорокалетнюю историю, но, несмотря на это, до сих пор не существует чёткого общепринятого определения данной технологии . Основные принципы, заложенные в первые объектные языки и системы, подверглись существенному изменению (или искажению) и дополнению при многочисленных реализациях последующего времени. Кроме того, примерно с середины 1980-х годов термин «объектно-ориентированный» стал модным , в результате с ним произошло то же самое, что несколько раньше с термином «структурный» (ставшим модным после распространения технологии структурного программирования) - его стали искусственно «прикреплять» к любым новым разработкам, чтобы обеспечить им привлекательность. Бьёрн Страуструп в 1988 году писал, что обоснование «объектной ориентированности» чего-либо, в большинстве случаев, сводится к ложному силлогизму : «X - это хорошо. Объектная ориентированность - это хорошо. Следовательно , X является объектно-ориентированным».

Роджер Кинг аргументированно настаивал, что его кот является объектно-ориентированным. Кроме прочих своих достоинств, кот демонстрирует характерное поведение, реагирует на сообщения, наделён унаследованными реакциями и управляет своим, вполне независимым, внутренним состоянием.

Концепции

Появление в ООП отдельного понятия класса закономерно вытекает из желания иметь множество объектов со сходным поведением. Класс в ООП - это в чистом виде абстрактный тип данных , создаваемый программистом. С этой точки зрения объекты являются значениями данного абстрактного типа, а определение класса задаёт внутреннюю структуру значений и набор операций, которые над этими значениями могут быть выполнены. Желательность иерархии классов (а значит, наследования) вытекает из требований к повторному использованию кода - если несколько классов имеют сходное поведение, нет смысла дублировать их описание, лучше выделить общую часть в общий родительский класс, а в описании самих этих классов оставить только различающиеся элементы.

Необходимость совместного использования объектов разных классов, способных обрабатывать однотипные сообщения, требует поддержки полиморфизма - возможности записывать разные объекты в переменные одного и того же типа. В таких условиях объект, отправляя сообщение, может не знать в точности, к какому классу относится адресат, и одни и те же сообщения, отправленные переменным одного типа, содержащим объекты разных классов, вызовут различную реакцию.

Отдельного пояснения требует понятие обмена сообщениями . Первоначально (например, в том же Smalltalk) взаимодействие объектов представлялось как «настоящий» обмен сообщениями, то есть пересылка от одного объекта другому специального объекта-сообщения. Такая модель является чрезвычайно общей. Она прекрасно подходит, например, для описания параллельных вычислений с помощью активных объектов , каждый из которых имеет собственный поток исполнения и работает одновременно с прочими. Такие объекты могут вести себя как отдельные, абсолютно автономные вычислительные единицы. Посылка сообщений естественным образом решает вопрос обработки сообщений объектами, присвоенными полиморфным переменным - независимо от того, как объявляется переменная, сообщение обрабатывает код класса, к которому относится присвоенный переменной объект.

Однако общность механизма обмена сообщениями имеет и другую сторону - «полноценная» передача сообщений требует дополнительных накладных расходов, что не всегда приемлемо. Поэтому в большинстве ныне существующих объектно-ориентированных языков программирования используется концепция «отправка сообщения как вызов метода» - объекты имеют доступные извне методы, вызовами которых и обеспечивается взаимодействие объектов. Данный подход реализован в огромном количестве языков программирования, в том числе C++ , Object Pascal , Java , Oberon-2 . В настоящий момент именно он является наиболее распространённым в объектно-ориентированных языках.

Концепция виртуальных методов , поддерживаемая этими и другими современными языками, появилась как средство обеспечить выполнение нужных методов при использовании полиморфных переменных, то есть, по сути, как попытка расширить возможности вызова методов для реализации части функциональности, обеспечиваемой механизмом обработки сообщений.

Особенности реализации

Как уже говорилось выше, в современных объектно-ориентированных языках программирования каждый объект является значением, относящимся к определённому классу . Класс представляет собой объявленный программистом составной тип данных , имеющий в составе:

Поля данных Параметры объекта (конечно, не все, а только необходимые в программе), задающие его состояние (свойства объекта предметной области). Иногда поля данных объекта называют свойствами объекта, из-за чего возможна путаница. Физически поля представляют собой значения (переменные, константы), объявленные как принадлежащие классу. Методы Процедуры и функции, связанные с классом. Они определяют действия, которые можно выполнять над объектом такого типа, и которые сам объект может выполнять.

Классы могут наследоваться друг от друга. Класс-потомок получает все поля и методы класса-родителя, но может дополнять их собственными либо переопределять уже имеющиеся. Большинство языков программирования поддерживает только единичное наследование (класс может иметь только один класс-родитель), лишь в некоторых допускается множественное наследование - порождение класса от двух или более классов-родителей. Множественное наследование создаёт целый ряд проблем, как логических, так и чисто реализационных, поэтому в полном объёме его поддержка не распространена. Вместо этого в 1990-е годы появилось и стало активно вводиться в объектно-ориентированные языки понятие интерфейса . Интерфейс - это класс без полей и без реализации, включающий только заголовки методов. Если некий класс наследует (или, как говорят, реализует) интерфейс, он должен реализовать все входящие в него методы. Использование интерфейсов предоставляет относительно дешёвую альтернативу множественному наследованию.

Взаимодействие объектов в абсолютном большинстве случаев обеспечивается вызовом ими методов друг друга.

Инкапсуляция обеспечивается следующими средствами

Контроль доступа Поскольку методы класса могут быть как чисто внутренними, обеспечивающими логику функционирования объекта, так и внешними, с помощью которых взаимодействуют объекты, необходимо обеспечить скрытость первых при доступности извне вторых. Для этого в языки вводятся специальные синтаксические конструкции, явно задающие область видимости каждого члена класса. Традиционно это модификаторы public, protected и private, обозначающие, соответственно, открытые члены класса, члены класса, доступные только из классов-потомков и скрытые, доступные только внутри класса. Конкретная номенклатура модификаторов и их точный смысл различаются в разных языках. Методы доступа Поля класса, в общем случае, не должны быть доступны извне, поскольку такой доступ позволил бы произвольным образом менять внутреннее состояние объектов. Поэтому поля обычно объявляются скрытыми (либо язык в принципе не позволяет обращаться к полям класса извне), а для доступа к находящимся в полях данным используются специальные методы, называемые методами доступа. Такие методы либо возвращают значение того или иного поля, либо производят запись в это поле нового значения. При записи метод доступа может проконтролировать допустимость записываемого значения и, при необходимости, произвести другие манипуляции с данными объекта, чтобы они остались корректными (внутренне согласованными). Методы доступа называют ещё аксессорами (от англ. access - доступ), а по отдельности - геттерами (англ. get - чтение) и сеттерами (англ. set - запись) . Свойства объекта Псевдополя, доступные для чтения и/или записи. Свойства внешне выглядят как поля и используются аналогично доступным полям (с некоторыми исключениями), однако фактически при обращении к ним происходит вызов методов доступа. Таким образом, свойства можно рассматривать как «умные» поля данных, сопровождающие доступ к внутренним данным объекта какими-либо дополнительными действиями (например, когда изменение координаты объекта сопровождается его перерисовкой на новом месте). Свойства, по сути - не более чем синтаксический сахар , поскольку никаких новых возможностей они не добавляют, а лишь скрывают вызов методов доступа. Конкретная языковая реализация свойств может быть разной. Например, в объявление свойства непосредственно содержит код методов доступа, который вызывается только при работе со свойствами, то есть не требует отдельных методов доступа, доступных для непосредственного вызова. В Delphi объявление свойства содержит лишь имена методов доступа, которые должны вызываться при обращении к полю. Сами методы доступа представляют собой обычные методы с некоторыми дополнительными требованиями к сигнатуре.

Полиморфизм реализуется путём введения в язык правил, согласно которым переменной типа «класс» может быть присвоен объект любого класса-потомка её класса.

Подходы к проектированию программ в целом

ООП ориентировано на разработку крупных программных комплексов, разрабатываемых командой программистов (возможно, достаточно большой). Проектирование системы в целом, создание отдельных компонентов и их объединение в конечный продукт при этом часто выполняется разными людьми, и нет ни одного специалиста, который знал бы о проекте всё.

Объектно-ориентированное проектирование состоит в описании структуры и поведения проектируемой системы, то есть, фактически, в ответе на два основных вопроса:

  • Из каких частей состоит система .
  • В чём состоит ответственность каждой из частей .

Выделение частей производится таким образом, чтобы каждая имела минимальный по объёму и точно определённый набор выполняемых функций (обязанностей), и при этом взаимодействовала с другими частями как можно меньше.

Дальнейшее уточнение приводит к выделению более мелких фрагментов описания. По мере детализации описания и определения ответственности выявляются данные, которые необходимо хранить, наличие близких по поведению агентов, которые становятся кандидатами на реализацию в виде классов с общими предками. После выделения компонентов и определения интерфейсов между ними реализация каждого компонента может проводиться практически независимо от остальных (разумеется, при соблюдении соответствующей технологической дисциплины).

Большое значение имеет правильное построение иерархии классов. Одна из известных проблем больших систем, построенных по ООП-технологии - так называемая проблема хрупкости базового класса . Она состоит в том, что на поздних этапах разработки, когда иерархия классов построена и на её основе разработано большое количество кода, оказывается трудно или даже невозможно внести какие-либо изменения в код базовых классов иерархии (от которых порождены все или многие работающие в системе классы). Даже если вносимые изменения не затронут интерфейс базового класса, изменение его поведения может непредсказуемым образом отразиться на классах-потомках. В случае крупной системы разработчик базового класса просто не в состоянии предугадать последствия изменений, он даже не знает о том, как именно базовый класс используется и от каких особенностей его поведения зависит корректность работы классов-потомков.

Родственные методологии

Компонентное программирование - следующий этап развития ООП; прототип- и класс-ориентированное программирование - разные подходы к созданию программы, которые могут комбинироваться, имеющие свои преимущества и недостатки.

Компонентное программирование

Примечания

См. также

  • ORM - технология связывания ОО-программ c базами данных

Литература

  • Иан Грэхем. Объектно-ориентированные методы. Принципы и практика = Object-Oriented Methods: Principles & Practice. - 3-е изд. - М .: «Вильямс», 2004. - С. 880. - ISBN 0-201-61913-X
  • Антони Синтес. Освой самостоятельно объектно-ориентированное программирование за 21 день = Sams Teach Yourself Object-Oriented Programming in 21 Days. - М .: «Вильямс», 2002. - С. 672. - ISBN 0-672-32109-2


Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: