Протоколы компьютерной сети необходимы. Локальные протоколы. Вопросы для обсуждения

Терминология компьютерной сети Протоколы

Сетевой протокол - это набор программно реализованных правил общения компьютеров, подключенных к сети. Практически это "язык", на котором компьютеры разговаривают друг с другом. В настоящее время стандартом стало использование только протокола TCP/IP. В предыдущих версиях Windows по умолчанию устанавливалось несколько протоколов, обычно это NetBEUI, NWLink IPX/SPX, TCP/IP.

  • NetBEUI.
    Компактный и эффективный протокол для взаимодействия в малых сетях (до 200 компьютеров). Используется в самых разнообразных системах: Microsoft LAN Manager, Windows 3.1/3.11 for Workgroups/95/98/NT 4.0, IBM PCLAN, LAN Server и т. п. В Windows 2000 и старше применяется новая спецификация этого протокола, которая получила название NetBIOS Frame Protocol (NBFP). NetBEUI (NBFP) не требует никаких дополнительных настроек. Если нужно быстро создать сеть и вы не чувствуете себя уверенными в понимании дополнительных настроек, которых, например, требует протокол TCP/IP, то включите протокол NBFP. Вы получите простую и весьма быстро функционирующую локальную сеть.
  • NWLink IPX/SPX.
    Если в сети есть серверы Novell NetWare, то этот протокол необходим для организации с ними связи. В противном случае данный протокол следует исключить из числа используемых в системе.
  • TCP/IP .
    Основной рекомендуемый протокол как для больших сетей предприятий и малых офисов, так и для соединения домашних компьютеров в частную сеть. В отличие от других протоколов требует ряда предварительных настроек.

Примечание
He следует использовать в сети больше служб и протоколов, чем требуется для нормальной работы в конкретной ситуации. Во-первых, при этом будут непро-изводительно использоваться ресурсы компьютера. Во-вторых, любая допол-нительная служба и неиспользуемый протокол - это еще один "вход" в систему, который надо защищать. Поэтому проще не предоставлять дополнительных возможностей хакерам, чем постоянно следить за обнаруживаемыми в этих службах уязвимостями, устанавливать необходимые обновления и т. п.

Модель OSI

С целью систематизации часто используется модель OSI, условно разбивающая сетевое взаимодействие на семь уровней.
Знание уровней OSI обычно требуется при сдаче тех или иных сертификационных экзаменов, но на практике такое деление потеряло свое значение. Если первые три уровня еще можно достаточно хорошо вычленить при анализе того или иного сетевого проекта, то классифицировать функциональность оборудования по остальным уровням достаточно сложно. В маркетинговых целях часто указывают в описаниях коммутаторов, что они работают, например, на уровне 4 или 7. На практике это означает только, что при реализации определенного функционала в коммутаторах производится анализ пакета данных по характеристикам, относящимся к соответствующим уровням. Например, это происходит при операциях маршрутизации группового трафика (коммутатор анализирует пакет на принадлежность той или иной программе), приоритезации пакетов и т. п.

Стек протоколов TCP/IP

Когда говорят о TCP/IP , то обычно подразумевают под этим именем множество различных протоколов, использующих в своей основе TCP/IP . Существует большое количество различных стандартов, которые определяют те или иные варианты взаимодействия в сети Интернет.
Так, есть правила, по которым осуществляется обмен сообщениями между почтовыми серверами, и есть правила, по которым конечные пользователи могут получать в свой ящик письма. Имеются правила для проведения широковещательных видео- и аудиотрансляций, правила для организации телефонных переговоров по Интернету. Существуют правила, которые определяют поведение участников передачи данных в случае возникновения ошибки и т. п.
Логично, что при разработке правил пересылки файла никто не создает новых механизмов пересылки единичного пакета данных и что протокол пересылки файлов основан на более простом протоколе передачи пакетов.

Поэтому принято говорить, что существуют уровни протокола IP, а на каждом уровне - различные варианты специальных протоколов. Весь этот набор протоколов называют стеком протоколов TCP/IP.

Протоколы UPD, TCP, ICMP

Для передачи данных используются протоколы TCP (Transmission Control Protocol, протокол управления передачей данных) и UDP (User Datagram Protocol, протокол пользовательских дейтаграмм). UDP применяется в тех случаях, когда не требуется подтверждения приема (например, DNS-запросы, IP-телефония). Передача данных по протоколу TCP предусматривает наличие подтверждений получения информации. Если передающая сторона не получит в установленные сроки необходимого подтверждения, то данные будут переданы повторно. Поэтому протокол TCP относят к протоколам, предусматривающим соединение (connection oriented), a UDP - нет (connection less).
Протокол Internet Control Message Protocol (ICMP , протокол управляющих сообщений Интернета) используется для передачи данных о параметрах сети. Он включает такие типы пакетов, как ping, destination unreachable, TTL exceeded и т. д.

Бурное развитие Интернета привело к тому, что параметры, заложенные при создании протоколов IP, стали сдерживать дальнейшее развитие глобальной сети. Поэтому многочисленные группы постоянно разрабатывают возможные модификации данного протокола. Наиболее "признанной" на данный момент разработкой считается проект группы IETF (Internet Engineering Task Force, проблемная группа проектирования Интернета), который называют IPv6 (другие проекты объединяют общим названием IP Next Generation или IPng).
К основным особенностям данного проекта относятся:

  • сохранение неизменными основных действующих принципов построения протокола IP;
  • использование более длинных адресов (128-битные);
  • применение встроенного 64-битного алгоритма шифрования;
  • учет механизма резервирования пропускной способности протокола (ранее проблема решалась введением классов обслуживания);
  • наличие больших возможностей дальнейшего расширения функций: строго описана только часть характеристик, остальные допускают дальнейшее развитие.

Хотя большинство участников Интернета поддерживает разработку этого протокола, однако реальное внедрение данной разработки потребует длительного времени и существенных инвестиций, поскольку влечет за собой модернизацию большого количества уже установленного оборудования.
Поддержка протокола IPv6 заложена в операционные системы Windows, начиная с Windows ХР. Чтобы ее включить в Windows XP, необходимо выполнить команду ipv6 install. Но использование ipv6 пока еще не имеет практического значения. По разным оценкам нехватка адресного пространства протокола IPv4 может возникнуть не ранее чем через 5-10 лет. Это достаточный срок для разработки уже следующей спецификации протокола IP.

Параметры TCP/IP протокола
IP-адрес

Каждый компьютер, работающий по протоколу TCP/IP, обязательно имеет IP-адрес- 32-битное число, используемое для идентификации узла (компьютера) в сети. Адрес принято записывать десятичными значениями каждого октета этого числа с разделением полученных значений точками. Например: 192.168.101.36.
IP-адреса уникальны. Это значит, что каждый компьютер имеет свое сочетание цифр, и в сети не может быть двух компьютеров с одинаковыми адресами. IP-адреса распределяются централизованно. Интернет-провайдеры дела ют заявки в национальные центры в соответствии со своими потребностями Полученные провайдерами диапазоны адресов распределяются далее между клиентами. Клиенты сами могут выступать в роли интернет-провайдера и распределять полученные IP-адреса между субклиентами и т.д. При таком способе распределения IP-адресов компьютерная система точно знает "pacположение" компьютера, имеющего уникальный IP-адрес; ей достаточно переслать данные в сеть "владельца". Провайдер в свою очередь проанализирует пункт назначения и, зная, кому отдана эта часть адресов, отправит инфор мацию следующему владельцу поддиапазона IP-адресов, пока данные не поступят на компьютер назначения.
Выделение диапазона адресов осуществляется бесплатно, но организация получившая адреса, должна реально подтвердить их использование через oп ределенный промежуток времени.
Для построения локальных сетей организаций выделены специальные диапа зоны адресов. Это адреса Ю.х.х.х, 192.168.х.х, Ю.х.х.х, с 172.16.х.х по 172.31.х.х, 169.254.Х.Х. Пакеты, передаваемые с указанных адресов, не маршрутизируются (иными словами, не пересылаются) через Интернет, поэтому в различных локальных сетях компьютеры могут иметь совпадающие адреса из указанных диапазонов. Для пересылки информации с таких компьютеров в Интернет и обратно используются специальные программы, "на лету" заменяющие локальные адреса реальными при работе с Интернетом. Иными словами, данные в Сеть пересылаются от реального IP-адреса. Этот процесс происходит "незаметно" для пользователя. Такая технология называется трансляцией адресов.

Групповые адреса

Если данные должны быть переданы на несколько устройств (например, просмотр видео с одной Web-камеры на различных компьютерах или одновременное разворачивание образа операционной системы на несколько систем), то уменьшить нагрузку на сеть может использование групповыхрассылок.
Для этого компьютеру присваивается еще один IP-адрес из специального диапазона: с 224.0.0.0 по 239.255.255.255, причем диапазоны 224.0.0.0- 224.0.0.255 и 239.0.0.0-239.255.255.255 не могут быть использованы в приложениях и предназначены для протоколов маршрутизации3 и т. п. Назначение адресов групповой рассылки производится соответствующим программным обеспечением.
Если коммутатор имеет функции работы с групповыми рассылками (поддержка IGMP snoophing, P1M DM/PIM SM), то передаваемые на адреса групповой рассылки данные будут поступать только на те порты, к которым подключены устройства, подписавшиеся на соответствующие рассылки. В результате сетевой трафик может быть существенно снижен по сравнению с вариантом передачи таких данных каждому устройству сети независимо.

Распределение IP-адресов сети малого офиса

В сетях предприятий обычно задействованы диапазоны IP-адресов, выделенные для локального использования. Часть адресов закрепляется статически, часть- раздается динамически с помощью DHCP (Dynamic Host Configuration Protocol, динамический протокол конфигурации сервера).

Статические адреса закрепляются:

  • за шлюзом, для которого обычно используют адрес ххх.ххх.ххх.1, но это традиция, а не правило;
  • за серверами DNS, DHCP, WINS;
  • за контроллерами домена;
  • за серверами сети (например, централизованные файловые ресурсы, почтовый сервер и т. п.);
  • за станциями печати, имеющими непосредственное подключение к сети;
  • за управляемыми сетевыми устройствами (например, сетевыми переключателями, SNMP-управляемыми источниками аварийного питания и т. п.).

Рабочие станции традиционно используют динамические адреса. При этом часть динамических адресов выдается для локального использования, а часть предназначается для внешних клиентов, "гостей" сети.

Примечание
Обычно для компьютеров, получающих гостевые адреса, устанавливаются определенные ограничения прав доступа к внутренним ресурсам.

Маска адреса

Понятие подсети введено, чтобы можно было выделить часть IP-адресов одной организации, часть другой и т. д. Подсеть представляет собой диапазон IP-адресов, которые считаются принадлежащими одной локальной сети. При работе в локальной сети информация пересылается непосредственно получателю. Если данные предназначены компьютеру с IP-адресом, не принадлежащим локальной сети, то к ним применяются специальные правила для вычисления маршрута пересылки из одной сети в другую. Поэтому при использовании протокола TCP/IP важно знать, к какой сети принадлежит получатель информации: к локальной или удаленной.
Маска- это параметр, который "сообщает" программному обеспечению о том, сколько компьютеров объединено в данную группу ("подсеть"). Маска адреса имеет такую же структуру, как и сам IP-адрес: это набор из четырех групп чисел, каждое из которых может быть в диапазоне от 0 до 255. При этом чем меньше значение маски, тем больше компьютеров объединено в данную подсеть. Для сетей небольших предприятий маска обычно имеет вид 255.255.255.x (например, 255.255.255.224). Маска сети присваивается компьютеру одновременно с IP-адресом.

Так, сеть 192.168.0.0 с маской 255.255.255.0 (иначе можно записать 192.168.0.0/24) может содержать хосты с адресами от 192.168.0.1 до 192.168.0.254. Адрес 192.168.0.255 - это адрес широковещательной рассылки для данной сети. А сеть 192.168.0.0 с маской 255.255.255.128 (192.168.0.0/25) допускает адреса от 192.168.0.1 до 192.168.0.127 (адрес 192.168.0.128 используется при этом в качестве широковещательного).
На практике сети с небольшим возможным числом хостов используются интернет-провайдерами (с целью экономии IP-адресов). Например, клиенту может быть назначен адрес с маской 255.255.255.252. Такая подсеть содержит только два хоста. При разбиении сети организации используют диапазоны локальных адресов сетей класса С. Сеть класса С имеет маску адреса 255.255.255.0 и может содеражать до 254 хостов. Применение сетей класса С при разбиении на VLAN в условиях предприятия связано с тем, что протоколы автоматической маршрутизации используют именно такие подсети.
При создании подсетей в организации рекомендуется придерживаться следующего правила: подсети, относящиеся к определенному узлу распределения, должны входить в одну сеть. Это упрощает таблицы маршрутизации и экономит ресурсы коммутаторов. Например, если к данному коммутатору подключены подсети 192.168.0.0/255.255.255.0, 192.168.1.0/255.255.255.0, 192.168.3.0/255.255.255.0, то другому коммутатору достаточно знать, что в этом направлении следует пересылать пакеты для сети 192.168.0.0/255.255.252.0.
Эта рекомендация несущественна для сетей малых и средних организаций, поскольку ресурсов современных коммутаторов достаточно для хранения настроек такого объема.

После того как компьютер получил IP-адрес и ему стало "известно" значение маски подсети, программа может начать работу в данной локальной подсети. Чтобы обмениваться информацией с другими компьютерами в глобальной сети, необходимо знать правила, куда пересылать информацию для внешней сети. Для этого служит такая характеристика IP-протокола, как адрес шлюза.

Шлюз (Gateway, default gateway)

Шлюз (gateway)- это устройство (компьютер), которое обеспечивает пересылку информации между различными IP-подсетями. Если программа определяет (по IP-адресу и маске), что адрес назначения не входит в состав локальной подсети, то она отправляет эти данные на устройство, выполняющее функции шлюза. В настройках протокола указывают IP-адрес такого устройства.
Для работы только в локальной сети шлюз может не назначаться.
Для индивидуальных пользователей, подключающихся к Интернету, или для небольших предприятий, имеющих единственный канал подключения, в системе должен быть только один адрес шлюза - это адрес того устройства, которое имеет подключение к Сети. При наличии нескольких маршрутов (путей пересылки данных в другие сети) будет существовать несколько шлюзов. В этом случае для определения пути передачи данных используется таблица маршрутизации.

Таблицы маршрутизации

Организация может иметь несколько точек подключения к Интернету (например, в целях резервирования каналов передачи данных или использования более дешевых каналов и т. п.) или содержать в своей структуре несколько IP-сетей. В этом случае, чтобы система "знала", каким путем (через какой шлюз) посылать ту или иную информацию, используются таблицы маршрутизации (routing). В таблицах маршрутизации для каждого шлюза указывают те подсети Интернета, для которых через них должна передаваться информация. При этом для нескольких шлюзов можно задать одинаковые диапазоны назначения, но с разной стоимостью передачи данных: информация будет отсылаться по каналу, имеющему самую низкую стоимость, а в случае его выхода из строя по тем или иным причинам автоматически будет использоваться следующее наиболее "дешевое" подсоединение.
Таблицы маршрутизации имеются на каждом устройстве, использующем протокол IP. Администраторы в основном работают с таблицами маршрутизации коммутирующего оборудования. Настройка таблиц маршрутизации компьютеров имеет смысл только в случае наличия нескольких сетевых адаптеров, подключенных к различным сегментам сети. Если у компьютера есть только одна сетевая карта (одно подключение к Интернету), таблица маршрутизации имеет наиболее простой вид: в ней записано, что все сигналы должны отправляться на шлюз, назначенный по умолчанию (default gateway).

Просмотреть таблицу маршрутизации протокола TCP/IP можно при помощи команды route print. С помощью команды route можно также добавить новый статический маршрут (route add) или постоянный маршрут- route add -p (маршрут сохраняется в настройках после перезагрузки системы).
Покажем на примере, как можно использовать модификации таблицы маршрутизации. Предположим, что на компьютере имеются две сетевых карты, одна из которых непосредственно подключена к Интернету (имеет реальный адрес), а вторая используется для работы во внутренней сети (локальный адрес). Доступ в Интернет производится по умолчанию через шлюз в локальной сети. В этом случае таблица маршрутизации, отображаемая по команде route print, выглядит примерно так:

Проверим путь прохождения пакетов на адрес Интернета, например 109.84.231.210, с помощью команды tracert:
tracert 109.84.231.210 -d В итоге получаем примерно такую картину (листинг ограничен первыми четырьмя узлами):

Предположим, что мы хотим изменить путь прохождения пакетов к выбранному нами хосту, направив информацию через вторую сетевую карту (а не через шлюз по умолчанию). Для этого с помощью команды route add нужно добавить желаемый нами маршрут:
route add 109.84.231.210 mask 255.255.255.255 195.161.192.2
В команде мы указали, что хотим назначить новый маршрут не для диапазона адресов, а только для конкретного значения (поэтому маска - 255.255.255.255). Кроме того, явно указали адрес сетевого интерфейса, через который нужно пересылать пакеты.
После исполнения данной команды (на экран система не выводит никаких итогов операции) изменения можно просмотреть через таблицу маршрутизации.

По сравнению с исходным вариантом таблица маршрутизации дополнилась одной строкой, которая приведена в данном примере (остальные строки не изменились).

Проверяем новый путь прохождения сигналов:
Трассировка маршрута к 109.84.231.210 с максимальным числом прыжков 30

1 1ms 1ms 1ms 195.161.192.1
2 23 ms 22 ms 23 ms 195.161.94.137
3 23 ms 23 ms 23 ms 195.161.94.5


...
Видно, что пакеты пересылаются уже через другой интерфейс.
Эти изменения маршрутизации действуют до перезагрузки системы или до подачи обратной команды: удаления записей маршрутизации. Для восстановления параметров маршрутизации достаточно подать команду, указав тот маршрут, который требуется удалить:

route delete 109.84.231.210

При этом обычно можно не указывать параметры маски и интерфейса (если они однозначно определяются по вводимому в команде адресу).

Примечание
На практике встречаются ситуации, когда изменение параметров маршрутизации в операционной системе Windows не сразу "отрабатывалось" корректно. Иногда после операций над таблицей маршрутизации для достижения успеха нужно было программно отключить и вновь включить тот сетевой интерфейс, для которого выполнялась настройка.

Понимание правил маршрутизации важно не только при построении маршрутов в Интернете, - задаче, которую вряд ли придется решать администраторам сетей некрупных предприятий. На практике для выделения обособленных участков локальной сети (например, по соображениям безопасности) достаточно широко используются виртуальные сети. А для того чтобы обеспечить избранный доступ в такие сети, администраторы должны уметь написать правильную таблицу маршрутизации для соответствующей VLAN.

3.1.1. Общая характеристика протоколов локальных сетей

При организации взаимодействия узлов в локальных сетях основная роль отводит­ся протоколу канального уровня. Однако для того, чтобы канальный уровень мог справиться с этой задачей, структура локальных сетей должна быть вполне опреде­ленной, так, например, наиболее популярный протокол канального уровня - Ether­net - рассчитан на параллельное подключение всех узлов сети к общей для них шине - отрезку коаксиального кабеля или иерархической древовидной структуре сегментов, образованных повторителями. Протокол Token Ring также рассчитан на вполне определенную конфигурацию - соединение компьютеров в виде логическо­го кольца.

Подобный подход, заключающийся в использовании простых структур кабель­ных соединений между компьютерами локальной сети, соответствовал основной цели, которую ставили перед собой разработчики первых локальных сетей во вто­рой половине 70-х годов. Эта цель заключалась в нахождении простого и дешевого решения для объединения в вычислительную сеть нескольких десятков компьюте­ров, находящихся в пределах одного здания. Решение должно было быть недоро­гим, поскольку в сеть объединялись недорогие компьютеры - появившиеся и быстро распространившиеся тогда мини-компьютеры стоимостью в 10 000-20 000 долла­ров. Количество их в одной организации было небольшим, поэтому предел в не­сколько десятков (максимум - до сотни) компьютеров представлялся вполне достаточным для роста практически любой локальной сети.

Для упрощения и, соответственно, удешевления аппаратных и программных решений разработчики первых локальных сетей остановились на совместном ис-

182 Глава 3 Базовые технологии локальных сетей

пользовании кабелей всеми компьютерами сети в режиме разделения времени, то есть режиме TDM. Наиболее явным образом режим совместного использования кабеля проявляется в классических сетях Ethernet, где коаксиальный кабель физи­чески представляет собой неделимый отрезок кабеля, общий для всех узлов сети. Но и в сетях Token Ring и FDDI, где каждая соседняя пара компьютеров соедине­на, казалось бы, своими индивидуальными отрезками кабеля с концентратором, эти отрезки не могут использоваться компьютерами, которые непосредственно к ним подключены, в произвольный момент времени. Эти отрезки образуют логи­ческое кольцо, доступ к которому как к единому целому может быть получен толь­ко по вполне определенному алгоритму, в котором участвуют все компьютеры сети. Использование кольца как общего разделяемого ресурса упрощает алгоритмы пе­редачи по нему кадров, так как в каждый конкретный момент времени кольцо занято только одним компьютером.

Использование разделяемых сред (shared media) позволяет упростить логику работы сети. Например, отпадает необходимость контроля переполнения узлов сети кадрами от многих станций, решивших одновременно обменяться информацией. В глобальных сетях, где отрезки кабелей, соединяющих отдельные узлы, не рас­сматриваются как общий ресурс, такая необходимость возникает, и для решения этой проблемы в протоколы обмена информацией вводятся весьма сложные про­цедуры управления потоком кадров, предотвращающие переполнение каналов свя­зи и узлов сети.

Использование в локальных сетях очень простых конфигураций (общая шина и кольцо) наряду с положительными имело и отрицательные последствия, из кото­рых наиболее неприятными были ограничения по производительности и надежно­сти. Наличие только одного пути передачи информации, разделяемого всеми узлами сети, в принципе ограничивало пропускную способность сети пропускной способ­ностью этого пути (которая делилась в среднем на число компьютеров сети), а надежность сети - надежностью этого пути. Поэтому по мере повышения попу­лярности локальных сетей и расширения их сфер применения все больше стали применяться специальные коммуникационные устройства - мосты и маршрутиза­торы, - которые в значительной мере снимали ограничения единственной разделя­емой среды передачи данных. Базовые конфигурации в форме общей шины и кольца превратились в элементарные структуры локальных сетей, которые можно теперь соединять друг с другом более сложным образом, образуя параллельные основные или резервные пути между узлами.

Тем не менее внутри базовых структур по-прежнему работают все те же прото­колы разделяемых единственных сред передачи данных, которые были разработа­ны более 15 лет назад. Это связано с тем, что хорошие скоростные и надежностные характеристики кабелей локальных сетей удовлетворяли в течение всех этих лет пользователей небольших компьютерных сетей, которые могли построить сеть без больших затрат только с помощью сетевых адаптеров и кабеля. К тому же колос­сальная инсталляционная база оборудования и программного обеспечения для тех­нологий Ethernet и Token Ring способствовала тому, что сложился следующий подход: в пределах небольших сегментов используются старые протоколы в их неизменном виде, а объединение таких сегментов в общую сеть происходит с помо­щью дополнительного и достаточно сложного оборудования.

В последние несколько лет наметилось движение к отказу от разделяемых сред передачи данных в локальных сетях и переходу к применению активных коммута-

3.1. Протоколы и стандарты локальных сетей 183

торов, к которым конечные узлы присоединяются индивидуальными линиями связи. В чистом виде такой подход предлагается в технологии ATM (Asynchronous Transfer Mode), а в технологиях, носящих традиционные названия с приставкой switched (коммутируемый): switched Ethernet, switched Token Ring, switched FDDI, обычно используется смешанный подход, сочетающий разделяемые и индивидуальные среды передачи данных. Чаще всего конечные узлы соединяются в небольшие разделяе­мые сегменты с помощью повторителей, а сегменты соединяются друг с другом с помощью индивидуальных коммутируемых связей.

Существует и достаточно заметная тенденция к использованию в традицион­ных технологиях так называемой микросегментации, когда даже конечные узлы сразу соединяются с коммутатором индивидуальными каналами. Такие сети полу­чаются дороже разделяемых или смешанных, но производительность их выше.

При использовании коммутаторов у традиционных технологий появился но­вый режим работы - полнодуплексный (full-duplex). В разделяемом сегменте стан­ции всегда работают в полудуплексном режиме (half-duplex), так как в каждый момент времени сетевой адаптер станции либо передает свои данные, либо принимает чу­жие, но никогда не делает это одновременно. Это справедливо для всех технологий локальных сетей, так как разделяемые среды поддерживаются не только класси­ческими технологиями локальных сетей Ethernet, Token Ring, FDDI, но и всеми новыми - Fast Ethernet, lOOVG-AnyLAN, Gigabit Ethernet.

В полнодуплексном режиме сетевой адаптер может одновременно передавать свои данные в сеть и принимать из сети чужие данные. Такой режим несложно обеспечивается при прямом соединение с мостом/коммутатором или маршрутиза­тором, так как вход и выход каждого порта такого устройства работают независи­мо друг от друга, каждый со своим буфером кадров.

Сегодня каждая технология локальных сетей приспособлена для работы как в полудуплексном, так и полнодуплексном режимах. В этих режимах ограничения, накладываемые на общую длину сети, существенно отличаются, так что одна и та же технология может позволять строить весьма различные сети в зависимости от выбранного режима работы (который зависит от того, какие устройства использу­ются для соединения узлов - повторители или коммутаторы). Например, техноло­гия Fast Ethernet позволяет для полудуплексного режима строить сети диаметром не более 200 метров, а для полнодуплексного режима ограничений на диаметр сети не существует. Поэтому при сравнении различных технологий необходимо обяза­тельно принимать во внимание возможность их работы в двух режимах. В данной главе изучается в основном полудуплексный режим работы протоколов, а полно­дуплексный режим рассматривается в следующей главе, совместно с изучением коммутаторов.

Несмотря на появление новых технологий, классические протоколы локальных сетей Ethernet и Token Ring по прогнозам специалистов будут повсеместно исполь­зоваться еще по крайней мере лет 5-10, в связи с чем знание их деталей необходимо для успешного применения современной коммуникационной аппаратуры. Кроме того, некоторые современные высокопроизводительные технологии, такие как Fast Ethernet, Gigabit Ethernet, в значительной степени сохраняют преемственность со своими предшественниками. Это еще раз подтверждает важность изучения класси­ческих протоколов локальных сетей, естественно, наряду с изучением новых тех­нологий.

184 Глава 3 Базовые технологии локальных сетей

3.1.2. Структура стандартов IEEE 802.x

В 1980 году в институте IEEE был организован комитет 802 по стандартизации локальных сетей, в результате работы которого было принято семейство стандар­тов IEEE 802.x, которые содержат рекомендации по проектированию нижних уров­ней локальных сетей. Позже результаты работы этого комитета легли в основу комплекса международных стандартов ISO 8802-1.„5. Эти стандарты были созда­ны на основе очень распространенных фирменных стандартов сетей Ethernet, ArcNet и Token Ring.

Помимо IEEE в работе по стандартизации протоколов локальных сетей прини­мали участие и другие организации. Так, для сетей, работающих на оптоволокне, американским институтом по стандартизации ANSI был разработан стандарт FDDI, обеспечивающий скорость передачи данных 100 Мб/с. Работы по стандартизации протоколов ведутся также ассоциацией ЕСМА, которой приняты стандарты ЕСМА-80, 81, 82 для локальной сети типа Ethernet и впоследствии стандарты ЕСМА-89, 90 по методу передачи маркера.

Стандарты семейства IEEE 802.x охватывают только два нижних уровня семи­уровневой модели OSI - физический и канальный. Это связано с тем, что именно эти уровни в наибольшей степени отражают специфику локальных сетей. Старшие же уровни, начиная с сетевого, в значительной степени имеют общие черты как для локальных, так и для глобальных сетей.

Специфика локальных сетей также нашла свое отражение в разделении каналь­ного уровня на два подуровня, которые часто называют также уровнями. Каналь­ный уровень (Data Link Layer) делится в локальных сетях на два подуровня:

Логической передачи данных (Logical Link Control, LLC);

Управления доступом к среде (Media Access Control, MAC).

Уровень MAC появился из-за существования в локальных сетях разделяемой среды передачи данных. Именно этот уровень обеспечивает корректное совместное использование общей среды, предоставляя ее в соответствии с определенным алго­ритмом в распоряжение той или иной станции сети. После того как доступ к среде получен, ею может пользоваться более высокий уровень - уровень LLC, организу­ющий передачу логических единиц данных, кадров информации, с различным уров­нем качества транспортных услуг. В современных локальных сетях получили распространение несколько протоколов уровня MAC, реализующих различные ал­горитмы доступа к разделяемой среде. Эти протоколы полностью определяют спе­цифику таких технологий, как Ethernet, Fast Ethernet, Gigabit Ethernet, Token Ring, FDDI, lOOVG-AnyLAN.

Уровень LLC отвечает за передачу кадров данных между узлами с различной степенью надежности, а также реализует функции интерфейса с прилегающим к нему сетевым уровнем. Именно через уровень LLC сетевой протокол запрашивает у канального уровня нужную ему транспортную операцию с нужным качеством. На уровне LLC существует несколько режимов работы, отличающихся наличием или отсутствием на этом уровне процедур восстановления кадров в случае их поте­ри или искажения, то есть отличающихся качеством транспортных услуг этого уровня.

Протоколы уровней MAC и LLC взаимно независимы - каждый протокол уровня MAC может применяться с любым протоколом уровня LLC, и наоборот.

Эта структура появилась в результате большой работы, проведенной комите­том 802 по выделению в разных фирменных технологиях общих подходов и общих функций, а также согласованию стилей их описания. В результате канальный уро­вень был разделен на два упомянутых подуровня. Описание каждой технологии разделено на две части: описание уровня MAC и описание физического уровня. Как видно из рисунка, практически у каждой технологии единственному протоко­лу уровня MAC соответствует несколько вариантов протоколов физического уров­ня (на рисунке в целях экономии места приведены только технологии Ethernet и Token Ring, но все сказанное справедливо также и для остальных технологий, та­ких как ArcNet, FDDI, lOOVG-AnyLAN).

Над канальным уровнем всех технологий изображен общий для них протокол LLC, поддерживающий несколько режимов работы, но независимый от выбора конкретной технологии. Стандарт LLC курирует подкомитет 802.2. Даже техноло­гии, стандартизованные не в рамках комитета 802, ориентируются на использова­ние протокола LLC, определенного стандартом 802.2, например протокол FDDI, стандартизованный ANSI.

Особняком стоят стандарты, разрабатываемые подкомитетом 802.1. Эти стан­дарты носят общий для всех технологий характер. В подкомитете 802.1 были разработаны общие определения локальных сетей и их свойств, определена связь трех уровней модели IEEE 802 с моделью OSI. Но наиболее практически важны-

186 Глава 3 Базовые технологии локальных сетей

ми являются стандарты 802.1, которые описывают взаимодействие между собой различных технологий, а также стандарты по построению более сложных сетей на основе базовых топологий. Эта группа стандартов носит общее название стан­дартов межсетевого взаимодействия (internetworking). Сюда входят такие важные стандарты, как стандарт 802.ID, описывающий логику работы моста/коммутато­ра, стандарт 802.1Н, определяющий работу транслирующего моста, который мо­жет без маршрутизатора объединять сети Ethernet и FDDI, Ethernet и Token Ring и т. п. Сегодня набор стандартов, разработанных подкомитетом 802.1, продолжа­ет расти. Например, недавно он пополнился важным стандартом 802.1Q, опреде­ляющим способ построения виртуальных локальных сетей VLAN в сетях на основе коммутаторов.

Стандарты 802.3,802.4, 802.5 и 802.12 описывают технологии локальных сетей, которые появились в результате улучшений фирменных технологий, легших в их основу. Так, основу стандарта 802.3 составила технология Ethernet, разработанная компаниями Digital, Intel и Xerox (или Ethernet DIX), стандарт 802.4 появился как обобщение технологии ArcNet компании Datapoint Corporation, а стандарт 802.5 в основном соответствует технологии Token Ring компании IBM.

Исходные фирменные технологии и их модифицированные варианты - стан­дарты 802.x в ряде случаев долгие годы существовали параллельно. Например, технология ArcNet так до конца не была приведена в соответствие со стандартом 802.4 (теперь это делать поздно, так как где-то примерно с 1993 года производство оборудования ArcNet было свернуто). Расхождения между технологией Token Ring и стандартом 802.5 тоже периодически возникают, так как компания IBM регуляр­но вносит усовершенствования в свою технологию и комитет 802.5 отражает эти усовершенствования в стандарте с некоторым запозданием. Исключение составля- ет технология Ethernet. Последний фирменный стандарт Ethernet DIX был принят в 1980 году, и с тех пор никто больше не предпринимал попыток фирменного раз­вития Ethernet. Все новшества в семействе технологий Ethernet вносятся только в результате принятия открытых стандартов комитетом 802.3.

Более поздние стандарты изначально разрабатывались не одной компанией, а группой заинтересованных компаний, а потом передавались в соответствующий подкомитет IEEE 802 для утверждения. Так произошло с технологиями Fast Ethernet, lOOVG-AnyLAN, Gigabit Ethernet. Группа заинтересованных компаний образовывала сначала небольшое объединение, а затем по мере развития работ к нему присоединялись другие компании, так что процесс принятия стандарта но­сил открытый характер.

Сегодня комитет 802 включает следующий ряд подкомитетов, в который вхо­дят как уже упомянутые, так и некоторые другие:

802.1 - Internetworking - объединение сетей;

802.2 - Logical Link Control, LLC - управление логической передачей данных;

802.3 - Ethernet с методом доступа CSMA/CD;

802.4 - Token Bus LAN - локальные сети с методом доступа Token Bus;

802.5 - Token Ring LAN - локальные сети с методом доступа Token Ring;

802.6 - Metropolitan Area Network, MAN - сети мегаполисов;

802.7 - Broadband Technical Advisory Group - техническая консультационная группа по широкополосной передаче;

3.1. Протоколы и стандарты локальных сетей 187

802.8 - Fiber Optic Technical Advisory Group - техническая консультационная группа по волоконно-оптическим сетям;

802.9 - Integrated Voice and data Networks - интегрированные сети передачи голоса и данных;

о 802.10 - Network Security - сетевая безопасность;

802.11 - Wireless Networks - беспроводные сети;

802.12 - Demand Priority Access LAN, lOOVG-AnyLAN - локальные сети с мето­дом доступа по требованию с приоритетами.

» При организации взаимодействия узлов в локальных сетях основная роль отво­дится классическим технологиям Ethernet, Token Ring, FDDI, разработанным более 15 лет назад и основанным на использовании разделяемых сред.

Разделяемые среды поддерживаются не только классическими технологиями локальных сетей Ethernet, Token Ring, FDDI, но и новыми - Fast Ethernet, lOOVG-AnyLAN, Gigabit Ethernet.

Современной тенденцией является частичный или полный отказ от разделяе­мых сред: соединение узлов индивидуальными связями (например, в техноло­гии ATM), широкое использование коммутируемых связей и микросегментации. Еще одна важная тенденция - появление полнодуплексного режима работы практически для всех технологий локальных сетей.

Комитет IEEE 802.x разрабатывает стандарты, которые содержат рекомендации для проектирования нижних уровней локальных сетей - физического и каналь­ного. Специфика локальных сетей нашла свое отражение в разделении каналь­ного уровня на два подуровня - LLC и MAC.

Стандарты подкомитета 802.1 носят общий для всех технологий характер и по­стоянно пополняются. Наряду с определением локальных сетей и их свойств, стандартами межсетевого взаимодействия, описанием логики работы моста/ком­мутатора к результатам работы комитета относится и стандартизация сравни­тельно новой технологии виртуальных локальных сетей VLAN.

» Подкомитет 802.2 разработал и поддерживает стандарт LLC. Стандарты 802.3, 802.4, 802.5 описывают технологии локальных сетей, которые появились в ре­зультате улучшений фирменных технологий, легших в их основу, соответствен­но Ethernet, ArcNet, Token Ring.

Более поздние стандарты изначально разрабатывались не одной компанией, а группой заинтересованных компаний, а потом передавались в соответствую­щий подкомитет IEEE 802 для утверждения.

188 Глава 3 Базовые технологии локальных сетей

Конец работы -

Эта тема принадлежит разделу:

Посвящаем нашей дочери анне

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Взаимодействие между одноименными уровнями модели в различных абонентских ЭВМ должно выполняться по определенным правилам.

Протокол -– это набор правил, определяющий взаимодействие двух одноименных уровней модели взаимодействия открытых систем (ВОС) в различных абонентских ЭВМ.

Протокол не является программой. Правила и последовательность выполнения действий при обмене информацией, определенные протоколом, должны быть реализованы в программе.

Легче всего поддаются стандартизации протоколы трех нижних уровней модели архитектуры открытых систем, так как они определяют действия и процедуры, свойственные для вычислительных сетей любого класса.

Труднее всего стандартизовать протоколы верхних уровней, особенно прикладного, из-за множественности прикладных задач и в ряде случаев их уникальности. Если по типам структур, методам доступа к физической передающей среде, используемым сетевым технологиям и некоторым другим особенностям можно насчитать примерно десяток различных моделей вычислительных сетей, то по их функциональному назначению пределов не существует.

Интернет. Принципы построения

Интернет - соединение, объединение различных сетей. При объединении в единое целое нескольких сетей используют специальный межсетевой протокол. Межсетевой протокол , по-английски – Internet Protocol (IP ) , и дал название сети Интернет. Обмен данными в этой глобальной сети осуществляется при помощи протокола управления передачей данных – Transmission Control Protocol (TCP ) . Таким образом, траспортировка информации в Интернет осуществляется по так называемому стеку протоколов TCP/IP.

Интернет - глобальная компьютерная сеть, соединяющая отдельные сети, которые работают согласно протоколу TCP/IP (Transmission Control Protocol / Internet Protocol), объединены через шлюзы и используют единое адресное пространство и пространство имен.

В основе Интернета лежит система магистральных сетей, называемых опорными. Региональные сети среднего уровня обеспечивают подключение отдельных территорий к высокоскоростной опорной сети.

В Интернет обмен данными между узлами может осуществляться по разным маршрутам, по разным линиям связи. Выход из строя отдельного телекоммуникационного канала не ведет к полному прекращению связи.

История появления Интернет

В 60-х годах ХХ века, после Карибского кризиса, специалисты Rand Corporation (мозговой центр США) преложили создать децентрализованную компьютерную сеть, покрывающую всю страну. Идея заключалась в том, что даже в случае ядерной атаки не была разрушена связь между военными компьютерами научных и образовательных учреждений, подключенных в эту сеть. Такая структура могла быть осуществлена только в том случае, если между узлами сети существуют множественные связи, то есть все узлы должны иметь одинаковый статус, каждый узел полномочен порождать, передавать и получать сообщения от любого другого узла. Если в обычной сети сервер, выходя из строя, выводил из строя всю сеть, то в новой сети, должно было существовать произвольное количество серверов, каждый из которых сам мог выбирать путь посылки информации.

Предполагалось, что данные, предназначенные для передачи, должны быть разбиты на небольшие стандартные блоки данных, называемые пакетами . Каждый пакет должен иметь адрес назначения и его доставка обеспечивается тем, что каждый узел имеет возможность посылать (или переадресовывать) пакеты по сети к месту назначения.

В 1968 году одно из подразделений Пентагона, – агентство ARPA, начало финансирование этого проекта и осенью 1969 года появилась сеть ARPANET, состоявшая всего из четырех узлов: SDS SIGMA (Калифорнийский университет), SDS-940 (Стэндфордский исследовательский институт), IBM-360 (Калифорнийский институт Санта-Барбары), DEC PDP-10 (университет штата Юта). Днем рождения Интернет принято считать 29 октября 1969 года, когда была предпринята первая попытка дистанционного подключения к компьютеру в исследовательском центре Стэндфордского университета с другого компьютера, который стоял в Калифорнийском университете в Лос-Анджелесе. "Отцом-основателем" Интернета иногда называют Винтона Серфа. В 1971 году в составе было уже 15 узлов, а в 1972 г. – 37 узлов. В 1973 году к сети были подключены зарубежные узлы – в Лондоне и Норвегии. В 1974 г. NSF (National Science Foundation) опубликовал стандарт протокола TCP/IP, который стал стандартным в ARPANET в 1983 году. К этому году сеть имела уже устоявшееся название INTERNET. В 80-е годы начался бурный рост Интернет. Схема соединения компьютеров в сеть с децентрализованным управлением распространилась по всему миру.

  • Стеки протоколов
  • Протоколы канального уровня
  • Протоколы межсетевого уровня
  • Транспортные протоколы
  • Прикладные протоколы

Как уже упоминалось ранее, в локальных сетях могут совместно работать компьютеры разных производителей, оснащенные различным набором устройств и обладающие несхожими техническими характеристиками. На практике это означает, что для обеспечения нормального взаимодействия этих компьютеров необходим некий единый унифицированный стандарт, строго определяющий алгоритм передачи данных в распределенной вычислительной системе. В современных локальных сетях, или, как их принято называть в англоязычных странах, LAN (Local Area Network), роль такого стандарта выполняют сетевые протоколы.
Итак, сетевым протоколом, или протоколом передачи данных, называется согласованный и утвержденный стандарт, содержащий описание правил приема и передачи между несколькими компьютерами команд, файлов, иных данных, и служащий для синхронизации работы вычислительных машин в сети.
Прежде всего следует понимать, что в локальных сетях передача информации осуществляется не только между компьютерами как физическими устройствами, но и между приложениями, обеспечивающими коммуникации на программном уровне. Причем под такими приложениями можно понимать как компоненты операционной системы, организующие взаимодействие с различными устройствами компьютера, так и клиентские приложения, обеспечивающие интерфейс с пользователем. Таким образом, мы постепенно приходим к пониманию многоуровневой структуры сетевых коммуникаций - как минимум, с одной стороны мы имеем дело с аппаратной конфигурацией сети, с другой стороны - с программной.
Вместе с тем передача информации между несколькими сетевыми компьютерами - не такая уж простая задача, как это может показаться на первый взгляд. Для того чтобы понять это, достаточно представить себе тот круг проблем, который может возникнуть в процессе приема или трансляции каких-либо данных. В числе таких «неприятностей» можно перечислить аппаратный сбой либо выход из строя одного из обеспечивающих связь устройств, например, сетевой карты или концентратора, сбой прикладного или системного программного обеспечения, возникновение ошибки в самих передаваемых данных, потерю части транслируемой информации или ее искажение. Отсюда следует, что в локальной сети необходимо обеспечить жесткий контроль для отслеживания всех этих ошибок, и более того, организовать четкую работу как аппаратных, так и программных компонентов сети. Возложить все эти задачи на один-единственный протокол практически невозможно. Как быть?
Выход нашелся в разделении протоколов на ряд концептуальных уровней, каждый из которых обеспечивает интерфейс между различными модулями программного обеспечения, установленного на работающих в сети компьютерах. Таким образом, механизм передачи какого-либо пакета информации через сеть от клиентской программы, работающей на о/щом компьютере, клиентской программе, работающей на другом компьютере, можно условно представить в виде последовательной пересылки этого пакета сверху вниз от некоего протокола верхнего уровня, обеспечивающего взаимодействие с пользовательским приложением, протоколу нижнего уровня, организующему интерфейс с сетью, его трансляции на компьютер-получатель и обратной передачи протоколу верхнего уровня уже на удаленной машине (рис. 2.1).

Рис. 2.1. Концептуальная модель многоуровневой системы протоколов

Согласно такой схеме, каждый из уровней подобной системы обеспечивает собственный набор функций при передаче информации по локальной сети.
Например, можно предположить, что протокол верхнего уровня, осуществляющий непосредственное взаимодействие с клиентскими программами, транслирует данные протоколу более низкого уровня, «отвечающему» за работу с аппаратными устройствами сети, преобразовывая их в «понятную» для него форму. Тот, в свою очередь, передает их протоколу, осуществляющему непосредственно пересылку информации на другой компьютер. На удаленном компьютере прием данных осуществляет аналогичный протокол «нижнего» уровня и контролирует корректность принятых данных, то есть определяет, следует ли транслировать их протоколу, расположенному выше в иерархической структуре, либо запросить повторную передачу. В этом случае взаимодействие осуществляется только между протоколами нижнего уровня, верхние уровни иерархии в данном процессе не задействованы. В случае если информация была передана без искажений, она транслируется вверх через соседние уровни протоколов до тех пор, пока не достигнет программы-получателя. При этом каждый из уровней не только контролирует правильность трансляции данных на основе анализа содержимого пакета информации, но и определяет дальнейшие действия исходя из сведений о его назначении. Например, один из уровней «отвечает» за выбор устройства, с которого осуществляется получение и через которое передаются данные в сеть, другой «решает», передавать ли информацию дальше по сети, или она предназначена именно этому компьютеру, третий «выбирает» программу, которой адресована принятая информация. Подобный иерархический подход позволяет не только разделить функции между различными модулями сетевого программного обеспечения, что значительно облегчает контроль работы всей системы в целом, но и дает возможность производить коррекцию ошибок на том уровне иерархии, на котором они возникли. Каждую из подобных иерархических систем, включающих определенный набор протоколов различного уровня, принято называть стеком протоколов.
Вполне очевидно, что между теорией и практикой, то есть между концептуальной моделью стека протоколов и его практической реализацией существует значительная разница. На практике принято несколько различных вариантов дробления стека протоколов на функциональные уровни, каждый из которых выполняет свой круг задач. Мы остановимся на одном из этих вариантов, который представляется наиболее универсальным. Данная схема включает четыре функциональных уровня, и так же, как и предыдущая диаграмма, описывает не конкретный механизм работы какого-либо стека протоколов, а общую модель, которая поможет лучше понять принцип действия подобных систем (рис. 2.2).
Самый верхний в иерархической системе, прикладной уровень стека протоколов обеспечивает интерфейс с программным обеспечением, организующим
работу пользователя в сети. При запуске любой программы, для функционирования которой требуется диалог с сетью, эта программа вызывает соответствующий протокол прикладного уровня. Данный протокол передает программе информацию из сети в доступном для обработки формате, то есть в виде системных сообщений либо в виде потока байтов. В точности таким же образом пользовательские приложения могут получать потоки данных и управляющие сообщения - как от самой операционной системы, так и от других запущенных на компьютере программ. То есть, обобщая, можно сказать, что протокол прикладного уровня выступает в роли своего рода посредника между сетью и программным обеспечением, преобразуя транслируемую через сеть информацию в «понятную» программе-получателю форму.

Рис. 2.2. Модель реализации стека протоколов

Основная задача протоколов транспортного уровня заключается в осуществлении контроля правильности передачи данных, а также в обеспечении взаимодействия между различными сетевыми приложениями. В частности, получая входящий поток данных, протокол транспортного уровня дробит его на отдельные фрагменты, называемые пакетами, записывает в каждый пакет некоторую дополнительную информацию, например идентификатор программы, для которой предназначены передаваемые данные, и контрольную сумму, необходимую для проверки целостности пакета, и направляет их на смежный уровень для дальнейшей обработки. Помимо этого протоколы транспортного уровня осуществляют управление передачей информации - например, могут запросить у получателя подтверждение доставки пакета и повторно выслать утерянные фрагменты транслируемой последовательности данных. Некоторое недоумение может вызвать то обстоятельство, что протоколы транспортного уровня так же, как и протоколы прикладного уровня, взаимодействуют с сетевыми программами и координируют передачу данных между ними. Эту ситуацию можно прояснить на следующем примере: предположим, на подключенном к сети компьютере запущен почтовый клиент, эксплуатирующий два различных протокола прикладного уровня - РОРЗ (Post Office Protocol) и SMTP (Simple Mail Transfer Protocol) - и программа загрузки файлов на удаленный сервер - FTP-клиент, работающий с протоколом прикладного уровня FTP (File Transfer Protocol). Все эти протоколы прикладного уровня опираются на один и тот же протокол транспортного уровня - TCP/IP (Transmission Control Protocol/Internet Protocol), который, получая поток данных от вышеуказанных программ, преобразует их в пакеты данных, где присутствует указание на конечное приложение, использующее эту информацию. Из рассмотренного нами примера следует, что данные, приходящие из сети, могут иметь различное назначение, и, соответственно, они обрабатываются различными программами, либо различными модулями одного и того же приложения. Во избежание путаницы при приеме и обработке информации каждая взаимодействующая с сетью программа имеет собственный идентификатор, который позволяет транспортному протоколу направлять данные именно тому приложению, для которого они предназначены. Такие идентификаторы носят название программных портов. В частности, протокол прикладного уровня SMTP, предназначенный для отправки сообщений электронной почты, работает обычно с портом 25, протокол входящей почты РОРЗ - с портом 110, протокол Telnet - с портом 23. Задача перенаправления потоков данных между программными портами лежит па транспортных протоколах.
На межсетевом уровне реализуется взаимодействие конкретных компьютеров распределенной вычислительной системы, другими словами, осуществляется процесс определения маршрута движения информации внутри локальной сети и выполняется отправка этой информации конкретному адресату. Данный процесс принято называть маршрутизацией. Получая пакет данных от протокола транспортного уровня вместе с запросом на его передачу и указанием получателя, протокол межсетевого уровня выясняет, на какой компьютер следует передать информацию, находится ли этот компьютер в пределах данного сегмента локальной сети или на пути к нему расположен шлюз, после чего трансформирует пакет в дейтаграмму - специальный фрагмент информации, передаваемый через сеть независимо от других аналогичных фрагментов, без образования виртуального канала (специально сконфигурированной среды для двустороннего обмена данными между несколькими устройствами) и подтверждения приема. В заголовок дейтаграммы записывается адрес компьютера-получателя пересылаемых данных и сведения о маршруте следования дейтаграммы. После чего она передается на канальный уровень.

ПРИМЕЧАНИЕ
Шлюз - это программа, при помощи которой можно передавать информацию между двумя сетевыми системами, использующими различные протоколы обмена данными.

Получая дейтаграмму, протокол межсетевого уровня определяет правильность ее приема, после чего выясняет, адресована ли она локальному компьютеру, или же ее следует направить по сети дальше. В случае, если дальнейшей пересылки не требуется, протокол межсетевого уровня удаляет заголовок дейтаграммы, вычисляет, какой из транспортных протоколов данного компьютера будет обрабатывать полученную информацию, трансформирует ее в соответствующий пакет и передает на транспортный уровень. Проиллюстрировать этот на первый взгляд сложный механизм можно простым примером. Предположим, на пеком компьютере одновременно используется два различных транспортных протокола: TCP/IP - для соединения с Интернетом и NetBEUI (NetBIOS Extended User Interface) для работы в локальной сети. В этом случае данные, обрабатываемые на транспортном уровне, будут для этих протоколов различны, однако на межсетевом уровне информация будет передаваться посредством дейтаграмм одного и того же формата.
Наконец, на канальном уровне осуществляется преобразование дейтаграмм в соответствующий сигнал, который через коммуникационное устройство транслируется по сети. В самом простом случае, когда компьютер напрямую подключен к локальной сети того или иного стандарта посредством сетевого адаптера, роль протокола канального уровня играет драйвер этого адаптера, непосредственно реализующий интерфейс с сетью. В более сложных ситуациях на канальном уровне могут работать сразу несколько специализированных протоколов, каждый из которых выполняет собственный набор функций.

Протоколы канального уровня

Протоколы, обеспечивающие взаимодействие компьютера с сетью на самом низком, аппаратном уровне, во многом определяют топологию локальной сети, а также ее внутреннюю архитектуру. В настоящее время на практике достаточно часто применяется несколько различных стандартов построения локальных сетей, наиболее распространенными среди которых являются технологии Ethernet, Token Ring, Fiber Distributed Data Interface (FDDI) и ArcNet.
На сегодняшний день локальные сети, построенные на основе стандарта Ethernet, являются наиболее популярными как в нашей стране, так и во всем мире. На долю сетей Ethernet приходится почти девяносто процентов всех малых и домашних локальных сетей, что не удивительно, поскольку именно эта технология позволяет строить простые и удобные в эксплуатации и настройке локальные сети с минимумом затрат. Именно поэтому в качестве основного рассматриваемого нами стандарта будет принята именно технология Ethernet. Протоколы канального уровня поддержки Ethernet, как правило, встроены в оборудование, обеспечивающее подключение компьютера к локальной сети на физическом уровне. Стандарт Ethernet является широковещательным, то есть каждый подключенный к сети компьютер принимает всю следующую через его сетевой сегмент информацию - как предназначенную именно для этого компьютера, так и данные, направляемые на другую машину. Во всех сетях Ethernet применяется один и тот же алгоритм разделения среды передачи информации - множественный доступ с контролем несущей и обнаружением конфликтов (Carrier Sense Multiple Access with Collision Detection, CSMA/CD).
В рамках технологии Ethernet сегодня различается несколько стандартов организации сетевых коммуникаций, определяющих пропускную способность канала связи и максимально допустимую длину одного сегмента сети, то есть расстояние между двумя подключенными к сети устройствами. Об этих стандартах мы побеседуем в следующей главе, посвященной изучению сетевого оборудования, пока же необходимо отметить, что в рамках стандарта Ethernet применяется, как правило, одна из двух различных топологий: конфигурация сети с общей шиной или звездообразная архитектура.

Протоколы межсетевого уровня

Протоколы уровня межсетевого взаимодействия, как уже упоминалось ранее, предназначены для определения маршрутов следования информации в локальной сети, приема и передачи дейтаграмм, а также для трансляции принятых данных протоколам более высокого уровня, если эти данные предназначены для обработки на локальном компьютере. К протоколам межсетевого уровня принято относить протоколы маршрутизации, такие как RIP (Routing Internet Protocol) и OSPF (Open Shortest Path First), а также протокол контроля и управления передачей данных ICMP (Internet Control Message Protocol). Но вместе с тем одним из самых известных протоколов межсетевого уровня является протокол IP.

Протокол IP

Протокол IP (Internet Protocol) используется как в глобальных распределенных системах, например в сети Интернет, так и в локальных сетях. Впервые протокол IP применялся еще в сети ArpaNet, являвшейся предтечей современного Интернета, и с тех пор он уверенно удерживает позиции в качестве одного из наиболее распространенных и популярных протоколов межсетевого уровня.
Поскольку межсетевой протокол IP является универсальным стандартом, он нередко применяется в так называемых составных сетях, то есть сетях, использующих различные технологии передачи данных и соединяемых между собой посредством шлюзов. Этот же протокол «отвечает» за адресацию при передаче информации в сети. Как осуществляется эта адресация?
Каждый человек, живущий на Земле, имеет адрес, по которому его в случае необходимости можно разыскать. Думаю, ни у кого не вызовет удивления то, что каждая работающая в Интернете или локальной сети машина также имеет свой уникальный адрес. Адреса в компьютерных сетях разительно отличаются от привычных нам почтовых. Боюсь, совершенно бесполезно писать на отправляемом вами в Сеть пакете информации нечто вроде «Компьютеру Intel Pentium III 1300 Mhz, эсквайру, Пэнии-Лэйн 114, Ливерпуль, Англия». Увидев такую надпись, ваша персоналка в лучшем случае фундаментально зависнет. Но если вы укажете компьютеру в качестве адреса нечто вроде 195.85.102.14, машина вас прекрасно поймет.
Именно стандарт IP подразумевает подобную запись адресов подключенных к сети компьютеров. Такая запись носит название IP-адрес.
Из приведенного примера видно, что IP-адрес состоит из четырех десятичных идентификаторов, или октетов, по одному байту каждый, разделенных точкой. Левый октет указывает тип локальной интрасети (под термином «интрасеть» (intranet) здесь понимается частная корпоративная или домашняя локальная сеть, имеющая подключение к Интернету), в которой находится искомый компьютер. В рамках данного стандарта различается несколько подвидов интрасетей, определяемых значением первого октета. Это значение характеризует максимально возможное количество подсетей и узлов, которые может включать такая сеть. В табл. 2.1 приведено соответствие классов сетей значению первого октета IP-адреса.

Таблица 2.1. Соответствие классов сетей значению первого октета IP-адреса

Адреса класса А используются в крупных сетях общего пользования, поскольку позволяют создавать системы с большим количеством узлов. Адреса класса В, как правило, применяют в корпоративных сетях средних размеров, адреса класса С - в локальных сетях небольших предприятий. Для обращения к группам машин предназначены широковещательные адреса класса D, адреса класса Е пока не используются: предполагается, что со временем они будут задействованы с целью расширения стандарта. Значение первого октета 127 зарезервировано для служебных целей, в основном для тестирования сетевого оборудования, поскольку IP-пакеты, направленные на такой адрес, не передаются в сеть, а ретранслируются обратно управляющей надстройке сетевого программного обеспечения как только что принятые. Кроме того, существует набор так называемых «выделенных» IP-адресов, имеющих особое значение. Эти адреса приведены в табл. 2.2.

Таблица 2.2. Значение выделенных IP-адресов

ПРИМЕЧАНИЕ
Хостом принято называть любой подключенный к Интернету компьютер независимо от его назначения.

Как уже упоминалось ранее, небольшие локальные сети могут соединяться между собой, образуя более сложные и разветвленные структуры. Например, локальная сеть предприятия может состоять из сети административного корпуса и сети производственного отдела, сеть административного корпуса, в свою очередь, может включать в себя сеть бухгалтерии, планово-экономического отдела и отдела маркетинга. В приведенном выше примере сеть более низкого уровня является подсетью системы более высокого уровня, то есть локальная сеть бухгалтерии - подсеть для сети административного корпуса, а та, в свою очередь, - подсеть для сети всего предприятия в целом.
Однако вернемся к изучению структуры IP-адреса. Последний (правый) идентификатор IP-адреса обозначает номер компьютера в данной локальной сети. Все, что расположено между правым и левым октетами в такой записи, - номера подсетей более низкого уровня. Непонятно? Давайте разберем на примере. Положим, мы имеем некий адрес в Интернете, на который хотим отправить пакет с набором свеженьких анекдотов. В качестве примера возьмем тот же IP-адрес- 195.85.102.14. Итак, мы отправляем пакет в 195-ю подсеть сети Интернет, которая, как видно из значения первого октета, относится к классу С. Допустим, 195-я сеть включает в себя еще 902 подсети, но наш пакет высылается в 85-ю. Она содержит 250 подсетей
более низкого порядка, но нам нужна 102-я. Ну и, наконец, к 102-й сети подключено 40 компьютеров. Исходя из рассматриваемого нами адреса, подборку анекдотов получит машина, имеющая в этой сетевой системе номер 14. Из всего сказанного выше становится очевидно, что IP-адрес каждого компьютера, работающего как в локальной сети, так и в глобальных вычислительных системах, должен быть уникален.
Централизованным распределением IP-адресов в локальных сетях занимается государственная организация - Стенфордский международный научно-исследовательский институт (Stanford Research Institute, SRI International), расположенный в самом сердце Силиконовой долины - городе Мэнло-Парк, штат Калифорния, США. Услуга по присвоению новой локальной сети IP-адресов бесплатная, и занимает она приблизительно неделю. Связаться с данной организацией можно по адресу SRI International, Room EJ210, 333 Ravenswood Avenue, Menlo Park, California 94025, USA, no телефону в США 1-800-235-3155 или по адресу электронной почты, который можно найти на сайте http://www.sri.com. Однако большинство администраторов небольших локальных сетей, насчитывающих 5-10 компьютеров, назначают IP-адреса подключенным к сети машинам самостоятельно, исходя из описанных выше правил адресации в IP-сетях. Тацой подход вполне имеет право на жизнь, но вместе с тем произвольное назначение IP-адресов может стать проблемой, если в будущем такая сеть будет соединена с другими локальными сетями или в ней будет организовано прямое подключение к Интернету. В данном случае случайное совпадение нескольких IP-адресов может привести к весьма неприятным последствиям, например к ошибкам в маршрутизации передаваемых по сети данных или отказу в работе всей сети в целом.
Небольшие локальные сети, насчитывающие ограниченное количество компьютеров, должны запрашивать для регистрации адреса класса С. При этом каждой из таких сетей назначаются только два первых октета IP-адреса, например 197.112.Х.Х, на практике это означает, что администратор данной сети может создавать подсети и назначать номера узлов в рамках каждой из них произвольно, исходя из собственных потребностей.
Большие локальные сети, использующие в качестве базового межсетевой протокол IP, нередко применяют чрезвычайно удобный способ структуризации всей сетевой системы путем разделения общей IP-сети на подсети. Например, если вся сеть предприятия состоит из ряда объединенных вместе локальных сетей Ethernet, то в ней может быть выделено несколько структурных составляющих, то есть подсетей, отличающихся значением третьего октета IP-адреса. Как правило, в качестве каждой из подсетей используется физическая сеть какого-либо отдела фирмы, скажем, сеть Ethernet, объединяющая все компьютеры бухгалтерии. Такой подход, во-первых, позволяет
излишне не расходовать IP-адреса, а во-вторых, предоставляет определенные удобства с точки зрения администрирования: например, администратор может открыть доступ к Интернету только для одной из вверенных ему подсетей или на время отключить одну из подсетей от локальной сети предприятия. Кроме того, в случае если сетевой администратор решит, что третий октет IP-адреса описывает номер подсети, а четвертый - номер узла в ней, то такая информация записывается в локальных таблицах маршрутизации сети вашего предприятия и не видна извне. Другими словами, данный подход обеспечивает большую безопасность.
Для того чтобы программное обеспечение могло автоматически выделять номера конкретных компьютеров из используемых в данной сетевой системе IP-адресов, применяются так называемые маски подсети. Принцип, по которому осуществляется распознавание номеров узлов в составе IP-адреса, достаточно прост: биты маски подсети, обозначающие номер самой IP-сети, должны быть равны единице, а биты, определяющие номер узла, - нулю. Именно поэтому в большинстве локальных IP-сетей класса С в качестве маски подсети принято значение 255.255.255.0: при такой конфигурации в состав общей сети может быть включено до 256 подсетей, в каждой из которых работает до 254 компьютеров. В ряде случаев это значение может изменяться, например, если возникла необходимость использовать в составе сети количество подсетей большее, чем 256, можно использовать маску подсети формата 255.255.255.195. В этой конфигурации сеть может включать до 1024 подсетей, максимальное число компьютеров в каждой из которых не должно превышать 60.
В локальных сетях, работающих под управлением межсетевого протокола IP, помимо обозначения IP-адресов входящих в сеть узлов принято также символьное обозначение компьютеров: например, компьютер с адресом 192.112.85.7 может иметь сетевое имя Localhost. Таблица соответствий IP-адресов символьным именам узлов содержится в специальном файле hosts, хранящемся в одной из системных папок; в частности, в операционной системе Microsoft Windows XP этот файл можно отыскать в папке flKCK:\Windows\system32\drivers\etc\. Синтаксис записи таблицы сопоставлений имен узлов локальной сети IP-адресам достаточно прост: каждый элемент таблицы должен быть расположен в новой строке, IP-адрес располагается в первом столбце, а за ним следует имя компьютера, при этом IP-адрес и имя должны быть разделены как минимум одним пробелом. Каждая из строк таблицы может включать произвольный комментарий, обозначаемый символом #. Пример файла hosts приведен ниже:

192.112.85.7 localhost # этот компьютер
192.112.85.1 server # сервер сети
192.112.85.2 director # компьютер приемной директора
192.112.85.5 admin # компьютер системного администратора

Как правило, файл hosts создается для какой-либо конкретной локальной сети, и его копия хранится на каждом из подключенных к ней компьютеров. В случае, если один из узлов сети имеет несколько IP-адресов, то в таблице соответствий обычно указывается лишь один из них, вне зависимости от того, какой из адресов реально используется. При получении из сети IP-пакета, предназначенного для данного компьютера, протокол IP сверится с таблицей маршрутизации и на основе анализа заголовка IP-пакета автоматически опознает любой из IP-адресов, назначенных данному узлу.
Помимо отдельных узлов сети собственные символьные имена могут иметь также входящие в локальную сеть подсети. Таблица соответствий IP-адресов именам подсетей содержится в файле networks, хранящемся в той же папке, что и файл hosts. Синтаксис записи данной таблицы сопоставлений несколько отличается от предыдущего, и в общем виде выглядит следующим образом: <сетевяе имя> <номер сети> [псевдонимы...] [#<конментарий>]
где сетевое имя - имя, назначенное каждой подсети, номер сети - часть IP-адреса подсети (за исключением номеров более мелких подсетей, входящих в данную подсеть, и номеров узлов), псевдонимы - необязательный параметр, указывающий на возможные синонимы имен подсетей: они используется в случае, если какая-либо подсеть имеет несколько различных символьных имен; и, наконец, комментарий - произвольный комментарий, поясняющий смысл каждой записи. Пример файла networks приведен ниже:

loopback 127
marketing 192.112.85 # отдел маркетинга
buhgalteria 192.112.81 # бухгалтерия
workshop 192.112.80 # сеть производственного цеха
workgroup 192.112.10 localnetwork # основная рабочая группа

Обратите внимание на то обстоятельство, что адреса, начинающиеся на 127, являются зарезервированными для протокола IP, а подсеть с адресом 192.112.10 в нашем примере имеет два символьных имени, используемых совместно.
Файлы hosts и networks не оказывают непосредственного влияния на принципиальный механизм работы протокола IP и используются в основном прикладными программами, однако они существенно облегчают настройку и администрирование локальной сети.

Протокол IPX

Протокол IPX (Internet Packet Exchange) является межсетевым протоколом, используемым в локальных сетях, узлы которых работают под управлением операционных систем семейства Nowell Netware. Данный протокол обеспечивает передачу дейтаграмм в таких сетях без организации логического соединения - постоянного двустороннего обмена данными между двумя узлами сети, которое организуется протоколом транспортного уровня. Разработанный на основе технологий Nowell, этот некогда популярный протокол в силу несовместимости с чрезвычайно распространенным стеком протоколов TCP/IP в настоящее время медленно, но верно утрачивает свои позиции.
Как и межсетевой протокол IP, IPX способен поддерживать широковещательную передачу данных посредством дейтаграмм длиной до 576 байт, 30 из которых занимает заголовок пакета. В сетях IPX используются составные адреса узлов, состоящих из номера сети, адреса узла и адреса прикладной программы, для которой предназначен передаваемый пакет информации, который также носит наименование гнезда или сокета. Для обеспечения обмена данными между несколькими сетевыми приложениями в многозадачной среде на узле, работающем под управлением протокола IPX, должно быть одновременно открыто несколько сокетов.
Поскольку в процессе трансляции данных протокол IPX не запрашивает подтверждения получения дейтаграмм, доставка данных в таких сетях не гарантируется, и потому функции контроля над передачей информации возлагаются на сетевое программное обеспечение. Фактически IPX обеспечивает только инкапсуляцию транслируемых по сети потоков данных в дейтаграммы, их маршрутизацию и передачу пакетов протоколам более высокого уровня.
Протоколам канального уровня IPX передает пакеты данных, имеющие следующую логическую структуру:

  • контрольная сумма, предназначенная для определения целостности передаваемого пакета (2 байта);
  • указание на длину пакета (2 байта);
  • данные управления транспортом (1 байт);
  • адрес сети назначения (4 байта);
  • адрес узла назначения (6 байт);
  • номер сокета назначения (2 байта);
  • адрес сети-отправителя (4 байта);
  • адрес узла-отправителя (6 байт);
  • номер сокета-отправителя (2 байта);
  • передаваемая информация (0-546 байт).

Протоколы канального уровня размещают этот пакет внутри кадра сети и передают его в распределенную вычислительную систему.

Транспортные протоколы

Как уже упоминалось ранее, протоколы транспортного уровня обеспечивают контроль над передачей данных между межсетевыми протоколами и приложениями уровня операционной системы. В настоящее время в локальных сетях наиболее распространено несколько разновидностей транспортных протоколов.

Протокол TCP

Протокол IP позволяет только транслировать данные. Для того чтобы управлять этим процессом, служит протокол TCP (Transmission Control Protocol), опирающийся на возможности протокола IP. Как же контролируется передача информации?
Положим, вы хотите переслать по почте вашему другу толстый журнал, не потратив при этом денег на отправку бандероли. Как решить эту проблему, если почта отказывается принимать письма, содержащие больше нескольких бумажных листов? Выход простой: разделить журнал на страницы и отправлять их отдельными письмами. По номерам страниц ваш друг сможет собрать журнал целиком. Приблизительно таким же способом работает протокол TCP. Он дробит информацию на несколько частей, присваивает каждой части номер, по которому данные впоследствии можно будет соединить воедино, добавляет к ней «служебную» информацию и укладывает все это в отдельный «IP-конверт». Далее этот «конверт» отправляется по сети - ведь протокол межсетевого уровня умеет обрабатывать подобную информацию. Поскольку в такой схеме протоколы TCP и IP тесно связаны, их часто объединяют в одно понятие: TCP/IP. Размер передаваемых в Интернете TCP/IP-пакетов составляет, как правило, от 1 до 1500 байт, что связано с техническими характеристиками сети.
Наверняка, пользуясь услугами обычной почтовой связи, вы сталкивались с тем, что обычные письма, посылки и иные почтовые отправления теряются и приходят совсем не туда, куда нужно. Те же проблемы характерны и для локальных сетей. На почте такие неприятные ситуации решают руководители почтовых отделений, а в сетевых системах этим занимается протокол TCP. Если какой-либо пакет данных не был доставлен получателю вовремя, TCP повторяет пересылку до тех пор, пока информация не будет принята корректно и в полном объеме.
В действительности данные, передаваемые по электронным сетям, не только теряются, но зачастую искажаются из-за помех на линиях связи. Встроенные в TCP алгоритмы контроля корректности передачи данных решают и эту проблему. Одним из самых известных механизмов контроля правильности пересылки информации является метод, согласно которому в заголовок каждого передаваемого пакета записывается некая контрольная сумма, вычисленная компьютером-отправителем. Компьютер-получатель по аналогичной системе вычисляет контрольную сумму и сравнивает ее с числом, имеющимся в заголовке пакета. Если цифры не совпадают, TCP пытается повторить передачу.
Следует отметить также, что при отправке информационных пакетов протокол TCP требует от компьютера-получателя подтверждения приема информации. Это организуется путем создания временных задержек при приеме-передаче - тайм-аутов, или ожиданий. Тем временем отправитель продолжает пересылать данные. Образуется некий объем уже переданных, но еще не подтвержденных данных. Иными словами, TCP организует двунаправленный обмен информацией, что обеспечивает более высокую скорость ее трансляции.
При соединении двух компьютеров их модули TCP следят за состоянием связи. При этом само соединение, посредством которого осуществляется обмен данными, носит название виртуального или логического канала.
Фактически протокол TCP является неотъемлемой частью стека протоколов TCP/IP, и именно с его помощью реализуются все функции контроля над передачей информации по сети, а также задачи ее распределения между клиентскими приложениями.

Протокол SPX

В точности так же, как протокол TCP для IP-сетей, для сетей, построенных на базе межсетевого протокола IPX, транспортным протоколом служит специальный протокол SPX (Sequenced Pocket eXchange). В таких локальных сетях протокол SPX выполняет следующий набор функций:

  • инициализация соединения;
  • организация виртуального канала связи (логического соединения);
  • проверка состояния канала;
  • контроль передачи данных;
  • разрыв соединения.

Поскольку транспортный протокол SPX и межсетевой протокол IPX тесно связаны между собой, их нередко объединяют в общее понятие - семейство протоколов IPX/SPX. Поддержка данного семейства протоколов реализована не только в операционных системах семейства Nowell Netware, но и в ОС Microsoft Windows 9x/Me/NT/2000/XP, Unix/Linux и OS/2.

Протоколы NetBIOS/NetBEUI

Разработанный компанией IBM транспортный протокол NetBIOS (Network Basic Input/Output System) является базовым протоколом для локальных
сетей, работающих под управлением операционных систем семейств Nowell Netware и OS/2, однако его поддержка реализована также и в ОС Microsoft Windows, и в некоторых реализациях Unix-совместимых операционных систем. Фактически можно сказать, что данный протокол работает сразу на нескольких логических уровнях стека протоколов: на транспортном уровне он организует интерфейс между сетевыми приложениями в качестве надстройки над протоколами IPX/SPX, на межсетевом - управляет маршрутизацией дейтаграмм, на канальном уровне - организует обмен сообщениями между различными узлами сети.
В отличие от других протоколов, NetBIOS осуществляет адресацию в локальных сетях на основе уникальных имен узлов и практически не требует настройки, благодаря чему остается весьма привлекательным для системных администраторов, управляющих сетями с небольшим числом компьютеров. В качестве имен хостов протоколом NetBIOS используются значащие последовательности длиной в 16 байт, то есть каждый узел сети имеет собственное уникальное имя (permanent name), которое образуется из сетевого адреса машины с добавлением десяти служебных байтов. Кроме этого, каждый компьютер в сетях NetBIOS имеет произвольное символьное имя, равно как произвольные имена могут иметь логические*рабочие группы, объединяющие несколько работающих совместно узлов - такие имена могут назначаться и удаляться по желанию системного администратора. Имена узлов служат для идентификации компьютера в сети, имена рабочих групп могут служить, в частности, для отправки данных нескольким компьютерам группы или для обращения к целому ряду сетевых узлов одновременно.
При каждом подключении к распределенной вычислительной системе протокол NetBIOS осуществляет опрос локальной сети для проверки уникальности имени узла; поскольку несколько узлов сети могут иметь идентичные групповые имена, определение уникальности группового имени не производится.
Специально для локальных сетей, работающих на базе стандарта NetBIOS, корпорацией IBM был разработан расширенный интерфейс для этого протокола, который получил название NetBEUI (NetBIOS Extended User Interface). Этот протокол рассчитан на поддержку небольших локальных сетей, включающих не более 150-200 машин, и по причине того, что данный протокол может использоваться только в отдельных сегментах локальных сетей (пакеты NetBEUI не могут транслироваться через мосты - устройства, соединяющие несколько локальных сетей, нередко использующих различную среду передачи данных или различную топологию), этот стандарт считается устаревшим и более не поддерживается операционной системой Microsoft Windows XP, хотя его поддержка имеется в ОС семейства Windows 9х/МЕ/2000.

Прикладные протоколы

Протоколы прикладного уровня служат для передачи информации конкретным клиентским приложениям, запущенным на сетевом компьютере. В IP-сетях протоколы прикладного уровня опираются на стандарт TCP и выполняют ряд специализированных функций, предоставляя пользовательским программам данные строго определенного назначения. Ниже мы кратко рассмотрим несколько прикладных протоколов стека TCP/IP.

Протокол FTP

Как следует из названия, протокол FTP (File Transfer Protocol) предназначен для передачи файлов через Интернет. Именно на базе этого протокола реализованы процедуры загрузки и выгрузки файлов на удаленных узлах Всемирной Сети. FTP позволяет переносить с машины па машину не только файлы, но и целые папки, включающие поддиректории на любую глубину вложений. Осуществляется это путем обращения к системе команд FTP, описывающих ряд встроенных функций данного протокола.

Протоколы РОРЗ и SMTP

Прикладные протоколы, используемые при работе с электронной почтой, называются SMTP (Simple Mail Transfer Protocol) и РОРЗ (Post Office Protocol), первый «отвечает» за отправку исходящей корреспонденции, второй - за доставку входящей.
В функции этих протоколов входит организация доставки сообщений e-mail и передача их почтовому клиенту. Помимо этого, протокол SMTP позволяет отправлять несколько сообщений в адрес одного получателя, организовывать промежуточное хранение сообщений, копировать одно сообщение для отправки нескольким адресатам. И РОРЗ, и SMTP обладают встроенными механизмами распознавания адресов электронной почты, а также специальными модулями повышения надежности доставки сообщений.

Протокол HTTP

Протокол HTTP (Hyper Text Transfer Protocol) обеспечивает передачу с удаленных серверов на локальный компьютер документов, содержащих код разметки гипертекста, написанный на языке HTML или XML, то есть веб-страниц. Данный прикладной протокол ориентирован прежде всего на предоставление информации программам просмотра веб-страниц, веб-браузерам, наиболее известными из которых являются такие приложения, как Microsoft Internet Explorer и Netscape Communicator.
Именно с использованием протокола HTTP организуется отправка запросов удаленным http-серверам сети Интернет и обработка их откликов; помимо
этого HTTP позволяет использовать для вызова ресурсов Всемирной сети адреса стандарта доменной системы имен (DNS, Domain Name System), то есть обозначения, называемые URL (Uniform Resource Locator) вида http:/ /www.domain.zone/page.htm (.html).

Протокол TELNET

Протокол TELNET предназначен для организации терминального доступа к удаленному узлу посредством обмена командами в символьном формате ASCII. Как правило, для работы с сервером по протоколу TELNET на стороне клиента должна быть установлена специальная программа, называемая telnet-клиентом, которая, установив связь с удаленным узлом, открывает в своем окне системную консоль операционной оболочки сервера. После этого вы можете управлять серверным компьютером в режиме терминала, как своим собственным (естественно, в очерченных администратором рамках). Например, вы получите возможность изменять, удалять, создавать, редактировать файлы и папки, а также запускать на исполнение программы на диске серверной машины, сможете просматривать содержимое папок других пользователей. Какую бы операционную систему вы ни использовали, протокол Telnet позволит вам общаться с удаленной машиной «на равных». Например, вы без труда сможете открыть сеанс UNIX на компьютере, работающем под управлением MS Windows.

Протокол UDP

Прикладной протокол передачи данных UDP (User Datagram Protocol) используется на медленных линиях для трансляции информации как дейтаграмм.
Дейтаграмма содержит полный комплекс данных, необходимых для ее отсылки и получения. При передаче дейтаграмм компьютеры не занимаются обеспечением стабильности связи, поэтому следует принимать особые меры для обеспечения надежности.
Схема обработки информации протоколом UDP, в принципе, такая же, как и в случае с TCP, но с одним отличием: UDP всегда дробит информацию по одному и тому же алгоритму, строго определенным образом. Для осуществления связи с использованием протокола UDP применяется система отклика: получив UDP-пакет, компьютер отсылает отправителю заранее обусловленный сигнал. Если отправитель ожидает сигнал слишком долго, он просто повторяет передачу.
На первый взгляд может показаться, что протокол UDP состоит сплошь из одних недостатков, однако есть в нем и одно существенное достоинство: прикладные интернет-программы работают с UDP в два раза быстрее, чем с его более высокотехнологичным собратом TCP.

Сквозные протоколы и шлюзы

Интернет - это единая глобальная структура, объединяющая на сегодня около 13 000 различных локальных сетей, не считая отдельных пользователей. Раньше все сети, входившие в состав Интернета, использовали сетевой протокол IP. Однако настал момент, когда пользователи локальных систем, не использующих IP, тоже попросились в лоно Интернета. Так появились шлюзы.
Поначалу через шлюзы транслировалась только электронная почта, но вскоре пользователям и этого стало мало. Теперь посредством шлюзов можно передавать любую информацию - и графику, и гипертекст, и музыку, и даже видео. Информация, пересылаемая через такие сети другим сетевым системам, транслируется с помощью сквозного протокола, обеспечивающего беспрепятственное прохождение IP-пакетов через не IP-сеть.

Главная > Рассказ

Глава 5 Протоколы локальных сетей По прочтении этой главы и после выполнения практических заданий вы сможете:

    рассказать о следующих протоколах и об их использовании в различных сетевых операционных системах:
    IPX/SPX; NetBEUI; AppleTalk; TCP/IP; SNA; DLC; DNA;
    обсуждать и внедрять методы повышения производительности локальных сетей.
В начале XX века социолог Георг Герберт Мид (George Herbert Mead), изучая влияние языка на людей, пришел к выводу о том, что человеческий интеллект в первую очередь развился благодаря языку. Язык помогает нам находить смысл в окружающей реальности и истолковывать ее детали. В сетях аналогичную роль выполняют сетевые протоколы, которые позволяют разнообразным системам находить общую среду для взаимодействия. В этой главе описываются протоколы, чаще всего используемые в локальных сетях, а также сетевые операционные системы, в которых они применяются. Вы узнаете о преимуществах и недостатках каждого протокола, благодаря чему вам станут понятны области их использования. Самый популярный протокол локальных сетей – TCP/IP – рассматривается в этой главе лишь кратко, поскольку подробнее он будет описан в главе 6. В заключении текущей главы вы познакомитесь с методами повышения производительности локальных сетей и выбора тех протоколов, которые необходимы в конкретной ситуации. Протоколы локальных сетей и их применение в сетевых операционных системах Сетевые протоколы напоминают местный язык или диалект: они обеспечивают в сетях беспрепятственный обмен информацией между подключенными устройствами. Эти протоколы имеют значение и для простых электрических сигналов, передаваемых по сетевому коммуникационному кабелю. Я протоколов сетевые коммуникации были бы просто невозможны. Для та чтобы два компьютера могли свободно общаться друг с другом, они должны использовать один и тот же протокол подобно тому, как два человека вынуждены общаться на одном языке.I В локальной сети несколько протоколов могут работать индивидуально и в некоторых сочетаниях. Сетевые устройства (например, маршрутизаторы) часто настраиваются на автоматическое распознавание и конфигурирование различных протоколов (в зависимости от операционной системы, используемой в маршрутизаторе). Например, в одной локальной сети Ethernet один протокол может использоваться для подключения к мэйнфрейму, другой для работы с серверами Novell NetWare, а третий – для серверов Windows (например, под управлением системы Windows NT Server) (рис. 5.1). Можно установить мост-маршрутизатор, который будет автоматически распознавать каждый протокол и конфигурироваться соответствующим образом, в результате чего для одних протоколов он будет выступать в роли маршрутизатора, а для других – в роли моста. Наличие нескольких протоколов в сети эффективно тем, что такая сеть сможет одновременно выполнять множество функций (например, обеспечивать доступ к Интернета также к мэйнфреймам и серверам). Недостатком такого подхода является что некоторые протоколы будут работать в режиме широковещания, то есть, будут периодически посылать пакеты для идентификации сетевых устройств, генерируя значительный избыточный трафик. Некоторые сетевые протоколы получили широкое распространение благодаря тому, что они связаны с конкретными сетевыми операционными системами (например, с Windows-системами, мэйнфреймами IBM, сервера UNIX и Novell NetWare). Имеет смысл изучать протоколы применительно тем операционным системам, где они применяются. В этом случае становится понятным, для чего конкретный протокол нужен в сети определенного типа. Кроме того, в этом случае вам легче будет понять, как один протокол (например, NetBEUI) можно заменить другими протоколами (такими как TCP/IP). Однако перед тем как изучать протоколы и их взаимосвязь операционными системами, важно узнать об общих свойствах протокол локальных сетей. Общие свойства протоколов локальной сети В основном протоколы локальных сетей имеют такие же свойства, как и Другие коммуникационные протоколы, однако некоторые из них были разработаны давно, при создании первых сетей, которые работали медленно, были ненадежными и более подверженными электромагнитным и радиопомехам. Поэтому для современных коммуникаций некоторые протоколы не вполне пригодны. К недостаткам таких протоколов относится слабая защита от ошибок или избыточный сетевой трафик. Кроме того, определенные протоколы были созданы для небольших локальных сетей и задолго до появления современных корпоративных сетей с развитыми средствами маршрутизации. Протоколы локальных сетей должны иметь следующие основные характеристики:
    обеспечивать надежность сетевых каналов; обладать высоким быстродействием; обрабатывать исходные и целевые адреса узлов; соответствовать сетевым стандартам, в особенности – стандарту IEEE 802.
В основном все протоколы, рассматриваемые в этой главе, соответствуют перечисленным требованиям, однако, как вы узнаете позднее, у одних протоколов возможностей больше, чем у других. В табл. 5.1 перечислены протоколы локальных сетей и операционные системы, с которыми эти протоколы могут работать. Далее в главе указаны протоколы и системы (в частности, операционные системы серверов и хост компьютеров) будут описаны подробнее. 4 Таблица 5.1. Протоколы локальных сетей и сетевые операционные системы

Протокол

Соответствующая операционная система

Первые версии операционных систем Microsoft Windows

UNIX, Novel NetWare, современные версии операционных систем Microsoft Windows, операционные системы мэйнфреймов IBM

Операционные системы мэйнфреймов и миникомпьютеров IBM

Клиентские системы, взаимодействующие с мэйнфреймами IBM, настроенными на работу с протоколом SNA

Примечание Компьютерная операционная система – это совокупность программных средств, выполняющих на компьютере две функции. Во-первых, они взаимодействуют с аппаратными средствами компьютера и базовой системой ввода/вывода (Basic input/output system, BIOS). Во-вторых, они взаимодействуют с пользовательским интерфейсом (например, с графическим пользовательским интерфейсом (GUI) системах Windows или с подсистемой X Window и рабочими столами в систем UNIX). Для сетевых компьютерных операционных систем имеется еще третий уровень взаимодействия, на котором эти системы могут общаться между собой по сети с помощью одного или нескольких протоколов. Протоколы IPX / SPX и система Novell NetWare Протокол Internetwork Packet Exchange (IPX ) (межсетевой пакетный обмен) был разработан компанией Novell для одной из самых первых сетевых операционных систем, выполняющей серверные функции и названной NetWare. Первоначально эта система предназначалась для сетей Ethernet с шинной топологией, сетей с маркерным кольцом и сетей ARCnet, она была ориентирована на работу с одним файл-сервером. ARCnet – это одна из частных альтернативных сетевых технологий, в которой используются специальные пакеты с маркерами и смешанная топология (шина и звезда). В настоящее время операционная система NetWare стала аппаратно-независимой и может поддерживать различные топологии и протоколы. В качестве прототипа протокола IPX компания Novell использовала один из первых протоколов локальных сетей – протокол Xerox Network System (XNS ), адаптировав его для своей файл-серверной операционной системы NetWare. Компания Xerox Corporation предложила протокол XNS в качестве средства передачи данных по сетям Ethernet. В начале 1980-х годов некоторые производители выпустили собственные версии этого протокола. Вариант компании Novell определил возникновение протокола IPX, предназначенного для серверов NetWare. Одновременно эта компания разработала сопутствующий протокол, названный Sequenced Packet Exchange (SPX ) и ориентированный на работу с прикладными программами, например, с базами данных. Протоколы IPX/SPX широко используются в серверах NetWare до 4-й версии включительно. Начиная с версии NetWare 5.0, компания Novell предлагает пользователям переходить на стек протоколов TCP/IP. В настоящее время именно эти протоколы являются основными для версий NetWare 6.0 и выше, при этом пользователи могут по-прежнему применять протоколы IPX/SPX, в частности, для совместимости с устаревшими серверами и оборудованием (например, с принтерами). Когда в сети Ethernet на основе серверов NetWare конфигурируются протоколы IPX/SPX, можно использовать фреймы Ethernet четырех типов:
      802 .2 – относительно новый тип фреймов, применяемый в сетях, базирующихся на серверах NetWare версий с 3.21 по 4.x; 802.3 – старый тип фреймов, применяемый в системах NetWare 286 (версий 2.x) и первых версиях системы NetWare 386 (3.0 и 3.1х); Ethernet II для обеспечения совместимости с сетями Ethernet II и более эффективного форматирования фреймов; Ethernet SNAP реализация описанного в главе 2 протокола SubNetwork Access Protocol (SNAP), предназначенного для работы специальных сл)Я и приложений фирм-изготовителей.
Достоинства и недостатки Достоинством протокола IPX (несмотря на его солидный возраст) по сравнению с другими ранними протоколами является возможность его маршрутизации, т. е. то, что с его помощью можно передавать данные по многим подсетям внутри предприятия. Недостатком протокола является дополнительный трафик, возникающий из-за того, что активные рабочие станции используют часто генерируемые широковещательные пакеты для подтверждения своего присутствия в сети. При наличии множества серверов NetWare и нескольких сотен клиентов применяемые протоколом IPX широковещательные пакеты типа "я здесь" могут создавать значительный сетевой трафик (рис. 5.2). Назначение протокола SPX Протокол SPX, дополняющий IPX, обеспечивает передачу данных прикладных программ с большей надежностью, чем IPX. Протокол IPX работает несколько быстрее своего "компаньона", однако в нем используются службы без установления соединения, работающие на подуровне LLC Канального уровня. Это означает, что IPX гарантирует доставку фрейма в пункт назначения с меньшей вероятностью. В протоколе SPX применяются службы с установлением соединения, что повышает надежность передачи данных. Чаще всего при упоминаниях обоих протоколов (IPX и SPX) используют сокращение IPX/SPX. Протокол SPX широко применяется для передачи по сети содержимого Я данных. Кроме того, на основе этого протокола работают утилита удаленной консоли и службы печати фирмы Novell. Удаленная консоль позволяет рабочей станции администратора видеть ту же информацию, которая отображается на консоли файл-сервера NetWare, благодаря чему пользователь может удаленно выполнять системные команды сервера, не находясь за его клавиатурой. Развертывание протоколов IPX / SPX Для установки протоколов IPX/SPX на компьютерах с системой DOS используются специальные DOS-драйверы, разработанные для NetWare. На 32-разрядных операционных системах (например, Windows 95 и старших версия), ля установки протоколов можно запустить программу Novell Client32, которая обеспечит командную среду для доступа к серверам NetWare.
Для того чтобы компьютеры под управлением Windows-систем могли обращаться к NetWare, можно также использовать два типа драйверов, позволяющих работать с несколькими протоколами: Open Datalink Interface (ODI) и Network Driver Interface Specification (NDIS). Когда в сети NetWare развернуты несколько протоколов (например, IPX/SPX и TCP/IP), серверы и клиенты зачастую используют драйвер Open Datalink Interface , ODI (открытый канальный интерфейс). Этот драйвер обеспечивает обмен данными с файл-серверами NetWare, мэйнфреймами и Мини-компьютерами, а также с Интернетом. ODI-драйверы можно применять в сетевых клиентах, работающих в среде MS-DOS и Microsoft Windows. В ранних версиях Windows (Windows 3.11, Windows 95, Windows 98 и Windows NT) компания Microsoft реализовала GDI-драйвер как 1б-разрядное приложение, которое не могло в полной мере использовать быстродействие и возможности 32-разрядной системы Windows 95 и более поздних версий. Начиная с Windows 95, для подключения к серверам NetWare по протоколу IPX/SPX применяются более совершенные решения компании Microsoft – протокол NetWare Link (NWLink ) IPX / SPX и драйвер Network Driver Interface Specification , NDIS (спецификация стандартного интерфейса сетевых адаптеров). В практических заданиях 5-1 и 5-2 рассказывается о том, как настроить системы Windows 2000 и Windows XP Professional для работы с протоколом NWLink. Как показано на рис. 5.3, драйверы NDIS (Microsoft) и ODI (Novell) работает на подуровне LLC Канального уровня, однако в отдельный момент времени к сетевому адаптеру может быть привязан только один из этих драйверов. Совет На большинстве Windows-систем при конфигурировании протокола NWLink IPX/SPX по умолчанию устанавливается такой режим, когда операционная система автоматически распознает тип фрейма Ethernet, используемый в уже существующей сети. В последних системах Windows (например, Windows 2000 и Windows XP) при выборе ручной настройки и отмене автоматического распознавания система по умолчанию задает тип фрейма 802.2 (если вы сами не укажите другой тип). Эмуляция IPX / SPX Протокол NWLink эмулирует работу IPX/SPX, поэтому любая использующая его система Windows работает как компьютер или устройство, настроенное на работу с IPX/SPX. NDIS – это спецификация программного драйвера, используемая протоколом NWLink и позволяющая ему и другим сетевым протоколам взаимодействовать с сетевым адаптером компьютера. При этом используется процедура установления связи между протоколом и адаптером, называемая привязкой. Привязка (binding) некоторого протокола к определенному адаптеру позволяет этому адаптеру работать и обеспечивать интерфейс с сетевой средой. Привязка к драйверу NDIS Драйвер NDIS компании Microsoft может привязывать к одному сетевому адаптеру один или несколько протоколов, благодаря чему все эти протоколы смогут работать через данный адаптер. Если протоколов несколько, то между ними устанавливается определенная иерархия, и если в сети развернуто несколько протоколов, то сетевой адаптер в первую очередь попытается прочитать фрейм или пакет, используя протокол, находящийся на верхней ступени этот иерархии. Если форматирование фрейма или пакета соответствует другому протоколу, то адаптер попробует прочитать его с помощью следующего протокола, указанного в иерархии, и т. д. Совет С помощью драйвера NDIS один протокол можно привязать к нескольким сетевым адаптерам компьютера (например, в сервере). При наличии нескольких адаптеров можно распределить между ними сетевую нагрузку и ускорить реакцию сервера на запросы при большом количестве пользователей. Кроме того, несколько адаптеров используются в том случае, если сервер также выполняет функции маршрутизатора. Привязка одного протокола к нескольким адаптерам позволяет также снизить объем занимаемой памяти, поскольку серверу не понадобится загружать в нее несколько экземпляров одного протокола. Нужно заметить, что пользователь может сам организовывать иерархию протоколов, привязанных к адаптеру. Эта иерархия называется порядком привязки. Например, если первым в иерархии указан протокол IPX/SPX, а вторым – TCP/IP, то фрейм или пакет TCP/IP сначала интерпретируется как данные в формате IPX/SPX. Сетевой адаптер быстро определяет ошибку и повторно читает фрейм или пакет в формате TCP/IP, распознавая его правильно. Порядок привязки протоколов можно задавать в большинстве операционных систем Microsoft Windows (например, в Windows 2000 и Windows ХР). На рис. 5.4 изображен порядок привязки на компьютере, работающем под управлением Windows XP Professional. На этом рисунке протоколы, перечисления ниже строки File and Printer Sharing for Microsoft Networks , отображают nil док привязки протоколов, используемых для доступа к общим файлам и принтерам. Под строкой Client for Microsoft Networks показан порядок привязки протоколов, необходимых для доступа к сетевым серверам. В практических заданиях 5-3 и 5-4 вы узнаете о том, как установить порядок привязки протоколов в системах Windows 2000 и Windows XP Professional. Другие протоколы, и спользуемые вместе с серверами NetWare Помимо IPX/SPX, операционная система Novell NetWare допускает использование и некоторых других протоколов при решении определенных задач (например, протокол RIP позволяет собирать информацию о маршрутизации; см. главу 4). Серверы NetWare можно настроить для работы в качестве маршрутизаторов, которые будут применять протокол RIP для обновления таблиц маршрутизации (впрочем, при этом необходимы также ручные настройки, выполняемые сетевым администратором, отвечающим за маршрутизацию). В табл. 5,2 перечислены протоколы, которые можно использовать в серверах NetWare. Примечание Как уже говорилось ранее в этой книге, не рекомендуется включать протокол RIP на серверах NetWare и Windows 2000/Server 2003, поскольку он создает в сети дополнительный трафик. Предпочтительнее, чтобы все задачи по маршрутизации выполняли специализированные сетевые маршрутизаторы. Таблица 5.2. Протоколы, используемые вместе с серверами NetWare

Аббре виатура

Полное название

Описание

Уровень модели OSI

Internetwork Packet Exchange

Используется как основной протокол передачи данных для приложений Ethernet. Можно применять любые типы фреймов: Ethernet 802.2, Ethernet 802.3, Ethernet II и Ethernet SNAP

Сетевой и Транспортный

Link Support Layer

Используется вместе с ODI-драйвером для поддержки нескольких протоколов на одном сетевом адаптере

Канальный

Multiple Link Interface Driver

Соединяет два или несколько каналов в одну телекоммуникационную линию (например, два терминальных адаптера ISDN). В сетях Ethernet протокол MLID в сочетании с сетевым адаптером рабочей станции позволяет определить уровень конфликтов в сети, в сетях с маркерным кольцом он координирует передачи маркера

Канальный (подуровень MAC)

NetWare Core Protocol

Часть операционной системы, обеспечивает обмен данными между клиентами и серверами при обращении к приложениям или открытым файлам, находящимся на сервере NetWare

Сеансовый, Представительский и Прикладной

NetWare Link Services Protocol

Обеспечивает пакеты IPX информацией о маршрутизации

Routing Information Protocol

Собирает информацию о маршрутизации для серверов, которые обеспечивают работу служб маршрутизации

Service Advertising Protocol

Позволяет клиентам NetWare идентифицировать серверы и сетевые службы, имеющиеся на них. Серверы генерируют широковещательные пакеты SAP каждые 60 с, а клиенты используют их для обнаружения ближайшего сервера

Сеансовый Представительский Прикладной

Sequenced Packet Exchange

Предоставляет прикладным программам механизм передачи данных, ориентированный на соединения

Транспортный

Протокол NetBEUI и серверы Microsoft Windows Система Microsoft Windows NT начиналась как совместный проект компаний Microsoft и IBM по развитию серверной операционной системы LANManager. В начале 1990-х годов компания Microsoft перешла от LAN Manager к системе Windows NT Server, которая впоследствии стала широко распространенной операционной системой. На основе продукта Windows NT Server были созданы системы Windows 2000 Server и Windows Server 2003. Как и современные версии Novell NetWare системы Windows NT, Windows 2000 и Windows Server 2003 совместимы локальными сетями Ethernet и Token Ring, они могут масштабироваться от небольших компьютеров с Intel-совместимыми процессорами до многопроцессорных систем. Чаще всего с указанными системами используются протоколы TCP/IP, однако до сих пор имеются системы Windows NT Server версий 3.51 и 4.0, в которых реализован родной протокол систем Windows NT – NetBIOS

Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: