Когда закончится майнинг биткоинов. Количество Биткоинов на данный момент – сколько осталось добыть? Что придет на замену биткоину

Лазерная локация

Лазерной локацией в зарубежной печати называют область оптикоэлектроники, занимающуюся обнаружением и определением местоположения различных объектов при помощи электромагнитных волн оптического диапазона, излучаемых лазерами. Объектами лазерной локации могут стать танки, корабли, ракеты, спутники, промышленные и вооруженные сооружения. Принципиально лазерная локация осуществляется активным методом.

В основе лазерной локации, так же как и в радиолокации лежат три основных свойства электромагнитных волн:

1. Способность отражаться от объектов. Цель и фон, на котором она расположена, по-разному отражают упавшее на них излучение.

Лазерное излучение отражается от всех предметов: металлических и неметаллических, от леса, пашни, воды. Более того, оно отражается от любых объектов, размеры которых меньше длины волны, лучше, чем радиоволны. Это хорошо известно из основной закономерности отражения, по которой следует, что чем короче длина волны, тем лучше она отражается. Мощность отраженного в этом случае излучения обратно пропорциональна длине волны в четвертой степени. Лазерному локатору принципиально присуща и большая обнаружительная способность, чем радиолокатору - чем короче волна, тем она выше. Поэтому-то и проявлялась по мере развития радиолокации тенденция к перехода от длинных волн к более коротким. Однако изготовление генераторов радиодиапазона, излучающих сверх короткие радиоволны становилось все труднее и труднее, а затем вовсе и зашло в тупик. Создание лазеров открыло новые перспективы в технике локации.

2. Способность распространяться прямолинейно. Использование узконаправленного лазерного луча, которым проводится просмотр пространства, позволяет определить направление на объект (пеленг цели) Это направление находят по расположению оси оптической системы, формирующей лазерное излучение. Чем уже луч, тем с большей точностью может быть определен пеленг.

Простые расчеты показывают - чтобы получить коэффициент направленности около 1.5, при использовании радиоволн сантиметрового диапазона, нужно иметь антенну диаметром около 10м. Такую антенну трудно поставить на танк, а тем более на летательный аппарат. Она громоздка и нетранспортабельна. Нужно использовать более короткие волны.

Угловой раствор луча лазера, изготовленного с помощью твердотельного активного вещества, как известно составляет всего 1.0.1.5 градуса и при этом без дополнительных оптических систем.

Следовательно, габариты лазерного локатора могут быть значительно меньше, чем аналогичного радиолокатора. Использование же незначительных по габаритам оптических систем позволит сузить луч лазера до нескольких угловых минут, если в этом возникнет необходимость.

3. Способность лазерного излучения распространяться с постоянной скоростью дает возможность определять дальность до объекта. Так, при импульсном методе дальнометрирования используется следующее соотношение: L = ct/2, где L - расстояние до объекта, с - скорость распространения излучения, t - время прохождения импульса до цели и обратно.

Рассмотрение этого соотношения показывает, что потенциальная точность измерения дальности определяется точностью измерения времени прохождения импульса энергии до объекта и обратно. Совершенно ясно, что чем короче импульс, тем лучше.

Какими же параметрами принято характеризовать локатор? Каковы его паспортные данные? Рассмотрим некоторые из них.

Прежде всего, зона действия. Под ней понимают область пространства, в которой ведется наблюдение. Ее границы обусловлены максимальной и минимальной дальностями действия и пределами обзора по углу места и азимуту. Эти размеры определяются назначением военного лазерного локатора.

Другим параметром является время обзора. Под ним понимается время, в течении которого лазерный луч производит однократный обзор заданного объема пространства.

Следующим параметром локатора является определяемые координаты.

Они зависят от назначения локатора. Если он предназначен для определения местонахождения наземных и подводных объектов, то достаточно измерять две координаты: дальность и азимут. При наблюдении за воздушными объектами нужны три координаты. Эти координаты следует определять с заданной точностью, которая зависит от систематических и случайных ошибок. Будем пользоваться таким понятием как разрешающая способность. Под разрешающей способностью понимается возможность раздельного определения координат близко расположенных целей.

Каждой координате соответствует своя разрешающая способность. Кроме того, используется такая характеристика, как помехозащищенность. Это способность лазерного локатора работать в условиях естественных и искусственных помех. И весьма важной характеристикой локатора является надежность. Это свойство локатора сохранять свои характеристики в установленных пределах в заданных условиях эксплуатации.

Введение

К настоящему времени сложились основные направления, по которым идет внедрение лазерной техники в военное дело. Этими направлениями являются:

  • 1. Лазерная локация (наземная, бортовая, подводная) .
  • 2. Лазерная связь.
  • 3. Лазерные навигационные системы.
  • 4. Лазерное оружие.
  • 5. Лазерные системы ПРО и ПКО.

Ускоренными темпами идет внедрение лазеров в военную технику США, Франции, Англии, Японии, Германии, Швейцарии. Государственные учреждения этих стран всемерно поддерживают и финансируют работы в данной области.

ЛАЗЕРНАЯ ЛОКАЦИЯ

Лазерной локацией в зарубежной печати называют область оптикоэлектроники, занимающуюся обнаружением и определением местоположения различных объектов при помощи электромагнитных волн оптического диапазона, излучаемых лазерами. Объектами лазерной локации могут стать танки, корабли, ракеты, спутники, промышленные и вооруженные сооружения. Принципиально лазерная локация осуществляется активным методом.

В основе лазерной локации, так же как и в радиолокации лежат три основных свойства электромагнитных волн:

1. Способность отражаться от объектов. Цель и фон, на котором она расположена, по-разному отражают упавшее на них излучение.

Лазерное излучение отражается от всех предметов: металлических и неметаллических, от леса, пашни, воды. Более того, оно отражается от любых объектов, размеры которых меньше длины волны, лучше, чем радиоволны. Это хорошо известно из основной закономерности отражения, по которой следует, что чем короче длина волны, тем лучше она отражается. Мощность отраженного в этом случае излучения обратно пропорциональна длине волны в четвертой степени. Лазерному локатору принципиально присуща и большая обнаружительная способность, чем радиолокатору - чем короче волна, тем она выше. Поэтому-то и проявлялась по мере развития радиолокации тенденция к перехода от длинных волн к более коротким. Однако изготовление генераторов радиодиапазона, излучающих сверх короткие радиоволны становилось все труднее и труднее, а затем вовсе и зашло в тупик. Создание лазеров открыло новые перспективы в технике локации.

2. Способность распространяться прямолинейно. Использование узконаправленного лазерного луча, которым проводится просмотр пространства, позволяет определить направление на объект (пеленг цели) Это направление находят по расположению оси оптической системы, формирующей лазерное излучение. Чем уже луч, тем с большей точностью может быть определен пеленг.

Простые расчеты показывают - чтобы получить коэффициент направленности около 1.5, при использовании радиоволн сантиметрового диапазона, нужно иметь антенну диаметром около 10м. Такую антенну трудно поставить на танк, а тем более на летательный аппарат. Она громоздка и нетранспортабельна. Нужно использовать более короткие волны.

Угловой раствор луча лазера, изготовленного с помощью твердотельного активного вещества, как известно составляет всего 1.0... 1.5 градуса и при этом без дополнительных оптических систем.

Следовательно, габариты лазерного локатора могут быть значительно меньше, чем аналогичного радиолокатора. Использование же незначительных по габаритам оптических систем позволит сузить луч лазера до нескольких угловых минут, если в этом возникнет необходимость.

3. Способность лазерного излучения распространяться с постоянной скоростью дает возможность определять дальность до объекта. Так, при импульсном методе дальнометрирования используется следующее соотношение: L = ct/2, где L - расстояние до объекта, с - скорость распространения излучения, t - время прохождения импульса до цели и обратно.

Рассмотрение этого соотношения показывает, что потенциальная точность измерения дальности определяется точностью измерения времени прохождения импульса энергии до объекта и обратно. Совершенно ясно, что чем короче импульс, тем лучше.

Какими же параметрами принято характеризовать локатор? Каковы его паспортные данные? Рассмотрим некоторые из них.

Прежде всего, зона действия. Под ней понимают область пространства, в которой ведется наблюдение. Ее границы обусловлены максимальной и минимальной дальностями действия и пределами обзора по углу места и азимуту. Эти размеры определяются назначением военного лазерного локатора.

Другим параметром является время обзора. Под ним понимается время, в течении которого лазерный луч производит однократный обзор заданного объема пространства.

Следующим параметром локатора является определяемые координаты.

Они зависят от назначения локатора. Если он предназначен для определения местонахождения наземных и подводных объектов, то достаточно измерять две координаты: дальность и азимут. При наблюдении за воздушными объектами нужны три координаты. Эти координаты следует определять с заданной точностью, которая зависит от систематических и случайных ошибок. Будем пользоваться таким понятием как разрешающая способность. Под разрешающей способностью понимается возможность раздельного определения координат близко расположенных целей.

Каждой координате соответствует своя разрешающая способность. Кроме того, используется такая характеристика, как помехозащищенность. Это способность лазерного локатора работать в условиях естественных и искусственных помех. И весьма важной характеристикой локатора является надежность. Это свойство локатора сохранять свои характеристики в установленных пределах в заданных условиях эксплуатации.


Осенью 1965 г. группа советских ученых выполнила уникальный эксперимент: определила расстояние до Луны с точностью до 200 м.

Ученые использовали лазер на рубине, генерировавший гигантские импульсы длительностью 5 10“8 с. Для посылки лазерных импульсов к Луне и последующего приема импульсов, отраженных лунной поверхностью, применялся оптический телескоп Крымской обсерватории с диаметром главного зеркала 260 см. В 1969 г. на поверхность Луны высадились американские астронавты с «Аполлона-11», а в 1970 г. на лунную поверхность опустился управляемый с Земли советский космический аппарат «Луноход-1». Астронавты и луноход доставили на Луну специальные светоотража- тели-катафоты. Катафот, или, иначе, уголковый отражатель предназначен для того, чтобы возвращать падающий на него световой луч назад-в направлении, строго параллельном первоначальному направлению луча. Такой способностью обладает, например, уголок, образованный тремя плоскими зеркалами, ориентированными под прямыми углами друг к другу. Используя отражение посылаемых с Земли коротких лазерных импульсов от уголковых отражателей, находящихся на лунной поверхности, ученые смогли определить расстояние от Земли до Луны (точнее говоря, от зеркала земного телескопа до лунного отражателя) с погрешностью, не превышающей нескольких десятков сантиметров. Чтобы представить себе, насколько высока такая точность, надо вспомнить, что Луна находится на расстоянии 380000 км от

Установленный на поверхности Луны лазерный отражатель представляет собой квадрат с длиной стороны 45 см, состоящий из 100 отдельных уголковых отражателей. Предусмотрена возможность изменения ориентации плоскости квадрата - с учетом местоположения отражателя на лунной поверхности
Земли. Погрешность измерения дальности, равная 40 см, в 109 раз меньше указанного расстояния!
Но зачем измерять расстояние до Луны со столь огромной точностью? Неужели это делается только из «спортивного интереса»? Конечно, нет. Такие измерения выполняют не для того, чтобы поточнее узнать расстояние от земного телескопа до лунного отражателя, а для того, чтобы поточнее определить изменения этого расстояния в течение некоторого промежутка времени, например в течение недели, месяца, года. Исследуя графики, описывающие изменение расстояния со временем, ученые получают информацию для ответа на ряд вопросов, имеющих большую научную важность: как распределена масса в недрах Луны? С какой скоростью сближаются или расходятся земные континенты? Как изменяется со временем положение магнитных полюсов Земли?
Вот поэтому и существуют в мире несколько десятков лазерно-локационных систем космического назна
чения. Они осуществляют локацию Луны, а также искусственных спутников Земли геодезического назначения. В качестве примера укажем лазерно-локационную систему Физического института имени П. Н. Лебедева АН СССР, предназначенную для локации Луны. Лазер на рубине генерирует гигантские световые импульсы длительностью 10“8 с и с энергией порядка 0,1 Дж. Импульсы проходят через квантовый усилитель, после чего их энергия увеличивается до 3 Дж. Затем световые импульсы попадают на 260-см зеркало телескопа и отправляются к Луне. Погрешность измерения расстояния до Луны составляет в данном случае 90 см. За счет сокращения длительности импульса до * 10“ 9 с погрешность уменьшена до 25 см. В качестве еще одного примера отметим лазерно-локационную систему Космического центра в США, предназначенную для локации искусственных спутников Земли. В ней используется импульсный рубиновый лазер, генерирующий импульсы длительностью 4* 10" 9 с и с энергией 0,25 Дж. Погрешность измерения расстояния составляет 8 см.
Упрощенная оптическая схема лазерно-локационной системы Физического института АН СССР: 7 - лазер на рубине, 2 - квантовый усилитель света, 3 - главное зеркало телескопа диаметром 260 см

Лазерные локаторы устанавливают не только на земной поверхности, но и на летательных аппаратах. Представим себе, что происходит сближение двух космических кораблей и предстоит их автоматическая стыковка. Необходимо точно контролировать взаимное положение кораблей, точно измерять расстояние между ними. Для этого на одном из кораблей устанавливают лазерный локатор. В качестве примера рассмотрим локатор на основе С02-лазера, генерирующего регулярную последовательность световых импульсов с частотой следования 50 кГц. Лазерный луч сканируется построчно (подобно электронному лучу в телевизионной трубке) в пределах телесного угла 5 х 5°; время обзора лучом этого сектора пространства составляет 10 с. Лазерный локатор осуществляет поиск и опознавание стыкуемого аппарата в указанном секторе пространства, непрерывное измерение его угловых координат и дальности, обеспечивает точное маневрирование - вплоть до момента стыковки. Всеми операциями локатора управляет бортовая ЭВМ.
Лазерные локаторы сегодня используют как в космонавтике, так и в авиации. В частности, они могут выполнять роль точных измерителей высоты. Заметим, что лазерный высотомер применялся на космических кораблях «Аполлон» для картографирования поверхности Луны.
Основное назначение лазерных локаторов-такое же, как и радиолокаторов: обнаружение и опознавание удаленных от наблюдателя объектов, слежение за перемещением этих объектов, получение информации о характере объектов и их движении. Как и в радиолокации, в оптической локации для обнаружения объекта и получения информации о нем используются импульсы излучения, отраженные объектом. При этом у оптической локации есть ряд преимуществ перед радиолокацией. Лазерный локатор позволяет более точно определять координаты и скорость объекта. Более того, он дает возможность выявлять размеры объекта, его форму, ориентацию в пространстве. На экране лазерного локатора можно наблюдать видеоизображение объекта.
Преимущества лазерной локации связаны с острой направленностью лазерных пучков, высокой частотой оптического излучения, исключительно малой длительностью световых импульсов. Действительно, ост- 66
ронаправленным лучом можно буквально «ощупать» объект, «просмотреть» разные участки его поверхности. Высокая частота оптического излучения позволяет более точно измерить скорость объекта. Напомним, что если объект движется на наблюдателя (от наблюдателя), то отраженный им световой импульс будет иметь уже не исходную частоту, а более высокую (более низкую) частоту. Это есть хорошо известный как в оптике, так и в акустике эффект Доплера; этот эффект лежит в основе обсуждавшихся ранее лазерных анемометров. Изменение частоты отраженного импульса (доплеровское смещение частоты) пропорционально скорости объекта (точнее, проекции скорости на направление от наблюдателя к объекту) и частоте излучения. Чем выше частота излучения, тем больше измеряемое локационной аппаратурой доплеровское смещение частоты и, следовательно, тем точнее может быть определена скорость объекта. Наконец, отметим важность использования в локации достаточно коротких импульсов излучения. Ведь измеряемое с помощью локатора расстояние до объекта пропорционально промежутку времени от отправления зондирующего импульса до приема отраженного импульса. Чем короче сам импульс, тем более точно можно определить этот промежуток времени, а значит, и расстояние до объекта. Недаром в космической лазерной локации используются световые импульсы длительностью порядка 10“8 с и меньше. Напомним, что при длительности импульса 10“8 с погрешность при локации Луны составила 90 см, а при длительности импульса 2 10_9с погрешность уменьшилась до 25 см.
Впрочем, у оптических локационных систем есть и недостатки. Конечно, довольно удобно «осматривать» объект с помощью узкого остронаправленного луча лазера. Однако не так-то просто с помощью такого луча обнаружить объект; время обзора контролируемой области пространства оказывается в данном случае относительно большим. Поэтому оптические локационные системы часто используют в комплексе с радиолокационными. Последние обеспечивают быстрый обзор пространства, быстрое обнаружение цели, а оптические системы затем измеряют параметры обнаруженной цели, осуществляют слежение за целью. Кроме того, при распространении оптического излуче
ния через естественную среду - атмосферу или воду- возникают проблемы, связанные с воздействием среды на световой луч. Во-первых, свет частично поглощается в среде. Во-вторых, по мере распространения излучения по трассе происходит непрерывно нарастающее искажение волнового фронта светового пучка вследствие турбулентности атмосферы, а также рассеяния света на частицах среды. Все это ограничивает дальность действия наземных и подводных оптических локационных систем и ставит их работу в зависимость от состояния среды и, в частности, от погодных условий.

Лазерной локацией называют область оптикоэлектроники, занимающегося обнаружением и определением местоположения различных объектов при помощи электромагнитных волн оптического диапазона, излучаемого лазерами. Объектами лазерной локации могут быть танки, корабли, ракеты, спутники, промышленные и военные сооружения. Принципиально лазерная локация осуществляется активным методом. Нам уже известно, что лазерное излучение отличается от температурного тем, что оно является узконаправленным, монохраматичным, имеет большую импульсивную мощность и высокую спектральную яркость. Все это делает оптическую локацию конкурентноспособной в сравнении с радиолокаций, особенно при ее использовании в космосе (где нет поглощающего воздействия атмосферы) и под водой (где лоя ряда волн оптического диапазона существуют окна прозрачности).

В основе лазерной локации, так же как и радиолокации, лежат три основных свойства электромагнитных волн:

1. Способность отражаться от объектов. Цель и фон на котором она расположена, по разному отражают упавшее на них излучение. Лазерное излучение отражается от всех предметов: металлических и неметаллических, от леса, пашни, воды. Более того, оно отражается от любых объектов, размеры которых меньше длины волны, лучше, чем радиоволны. Это хорошо известно из основной закономерности отражения, по которой следует, что чем короче длина волны, тем лучше она отражается. Мощность отраженного в этом случае излучения обратно пропорциональна длине волны в четвертой степени. Лазерному локатору принципиально присуща и большая обнаружительная способность, чем радиолокатору - чем, короче волна, тем она выше. Поэтому-то проявлялась по мере развития радиолокации тенденция перехода от длинных волн к более коротким. Однако изготовление генераторов радиодиапазона, излучающих сверх короткие радиоволны, становилось все более трудным делом, а затем и зашло в тупик.

Создание лазеров открыло новые перспективы в технике локации.

2. Способность распространяться прямолинейно. Использование узконаправленного лазерного луча, которым производиться просмотр пространства, позволяет определить направление на объект (пеленг цели).

Это направление находят по расположению оси оптической системы, формирующей лазерное излучение (в радиолокации - по направлению антенны). Чем уже луч, тем с большей точностью может быть определен пеленг. Определим коэффициент направленного действия и диаметр антенны по следующей простой формуле,

G = 4п * S

где G - коэффициент направленного действия, S - площадь антенны, м2, / - длина волны излучения мкм.

Простые расчеты показывают - чтобы получить коэффициент направленности около 1,5 при пользовании радиоволн сантиметрового диапазона, нужно иметь антенну диаметром около 10м. Такую антенну трудно поставить на танк, а тем более на летательный аппарат. Она громоздка и нетранспортабельна. Нужно использовать более короткие волны.

Угловой раствор луча лазера, изготовленного с использованием твердотельного активного вещества, как известно, составляет всего 1,0 - 1,5 градуса и при этом без дополнительных оптических фокусирующих систем (антенн). Следовательно, габариты лазерного локатора могут быть значительно меньше, чем аналогического радиолокатора. Использование же незначительных по габарита м оптических систем позволит сузить луч лазера до нескольких угловых минут, если в этом возникнет необходимость.

3. Способность лазерного излучения распространяться с постоянной скоростью дает возможность определять дальность до объекта. Так. при импульсном методе дальнометрирования используется следующее соотношение:

L = ct и

где L - расстояние до объекта, км, С - скорость распространения излучения км/с, t и -время прохождения импульса до цели и обратно, с.

Рассмотрение этого соотношения показывает, что потенциальная точность измерения дальности определяется точностью измерения времени прохождения импульса энергии до объекта и обратно. Совершенно ясно, что чем, короче импульс, тем лучше (при наличии хорошей полосы пропускания, как говорят радисты). Но нам уже известно, что самой физикой лазерного излучения заложена возможность получения импульсов с длительностью 10-7 - 10-8 с. А это обеспечивает хорошие данные лазерному локатору.

Какими же параметрами принято характеризовать локатор? Каковы его паспортные данные? Рассмотрим некоторые из них,см.рис.

Прежде всего з о н а д е й с т в и я. Под ней понимают область пространства, в которой ведется наблюдение. Ее границы обусловлены максимальной и минимальной дальности действия и пределами обзора по углу места и азимуту. Эти размеры определяются назначением военного лазерного локатора.

Другим параметром локатора является в р е м я о б з о р а. Под ним понимается время, в течение которого лазерный луч приводит однократный обзор заданного объема пространства.

Следующим параметром локатора являются о п р е д е л я е м ы е к о о р д и н а т ы. они зависят от назначения локатора. Если он предназначен для определения местонахождения наземных и надводных объектов, то достаточно измерять две координаты: дальность и азимут. При наблюдении за воздушными объектами нужны три координаты. Эти координаты следует определять с заданной точностью, которая зависит от систематических и случайных ошибок. Их рассмотрение выходит за рамки данной книги. Однако будем пользоваться таким понятием, как р а з р е ш а ю щ а я с п о с о б н о с т ь. Под разрешающей способностью понимается возможность раздельного определения координат близко расположенных целей. Каждой координате соответствует своя разрешающая способность. Кроме того, используется такая характеристика, как п о м е х о з а щ ищ е н н о с т ь. Это способность лазерного локатора работать в условиях естественных (Солнце, Луна) и искусственных помех.

И весьма важной характеристикой локатора является н а д е ж н н о с т ь. Это свойство локатора сохранять свои характеристики и установленных пределах в заданных условиях эксплуатации.

Схема лазерного локатора, предназначенного для измерения четырех основных параметров объекта (дальности, азимута, угла места и скорости) см. рис. на стр. 17. Хорошо видно, что конструктивно такой локатор состоит из трех блоков: передающего, приемного и индикаторного. Основное назначение передающего лока-тора - генерирование лазерного излучения, формирование его в пространстве, во времени и направлении в район объекта. Передающий блок состоит из лазера с источником возбуждения, модулятора добротности, сканирующего устройства, обеспечивающего посылку энергии в заданной зоне по заданному закону сканирования, а также передающей оптической системы.

Основное назначение приемного блока - прием излучения отраженного объектом, преобразование его в электрический сигнал и обработка для выделения информации об объекте. Оно состоит из приемной оптической системы, интерференционного фильтра, приемника излучения, а также блоков измерения дальности, скорости и угловых координат.

Индикаторный блок служит для указания в цифровой форме информации о параметрах цели.

В зависимости от того, для какой цели служит локатор, различают: дальномеры, измерители скорости (допплеровские локаторы), собственно локаторы(дальность, азимут, и угол места).

CХЕМА ЛАЗЕРНОГО ЛОКАТОРА

приемник

излучения

оптический фильтр

приемная оптическая система

ИНДИКАТОРНЫЙ БЛОК

ПРИЕМНЫЙ БЛОК

блок измерения дальности

блок измерения скорости

блок измерения угловых координат

Угол места

Скорость

Блок питания

Способ включает сканирование пространства последовательностью лазерных сигналов, генерируемых лазерным локатором, регистрацию рассеянных и/или отраженных объектом лазерных сигналов, определение расстояния до объекта и углового положения объекта. Расстояние до объекта определяется по времени задержки между излученными и принятыми сигналами. Угловое положение объекта определяется по направлению соответствующего излученного сигнала. В качестве генерируемого лазерным локатором сигнала используют цуг из по меньшей мере двух импульсов с изменяемым промежутком времени между импульсами и/или соотношением амплитуд импульсов в каждом цуге. Технический результат - увеличение производительности лазерной локации.

Заявляемое техническое решение относится к способам определения местоположения объектов, точнее к способам лазерной локации, и представляет интерес для лазерной локации космических объектов, поверхности Земли, лазерной геодезии, а также может быть использовано для определения скорости движущегося объекта.

Известен способ определения расстояния до удаленного объекта, включающий облучение его лазерным сигналом, прием отраженного или рассеянного объектом сигнала и определения времени задержки ΔT между моментами излучения зондирующего и приема отраженного или рассеянного объектом сигналов, при этом расстояние до объекта L определяется простой формулой L=cΔT/2, где c - скорость света .

Достоинством известного способа является возможность определять расстояние до удаленных, в том числе на космические расстояния, объектов с высокой точностью, которая фактически определяется быстродействием приемной системы и возможностью локатора генерировать короткие световые импульсы (прежде всего, с коротким передним фронтом). При давно достигнутом уровне быстродействия ~0,1 нс расстояние может быть определено с точностью несколько сантиметров, именно такая точность достигнута, например, при лазерной локации Луны.

Недостатком известного способа является невозможность с достаточной точностью определить направление на лоцируемый объект, обычно это направление известно заранее (как в случае, например, лазерной локации Луны было точно известно положение уголковых отражателей, возвращавших сигнал локатора). В другом варианте реализации известного способа генерируется мощный лазерный импульс, которым сразу «засвечивается» значительный участок пространства (значительный телесный угол), в котором лоцируемый объект находится заведомо, то есть расходимость используемого лазерного излучения достаточна велика. Это позволяет определить расстояние до объекта, однако не его положение в пространстве. Необходимость использования высокоэнергетичных лазерных локаторов является значительным недостатком известного способа, поскольку для этого требуется достаточно мощная и относительно громоздкая лазерная установка. Очевидно, что если зондирующее излучение может иметь в 10 раз меньшую расходимость, то энергия лазерного импульса может быть снижена, минимум, в 100 раз (если расстояние до объекта достаточно велико).

Наиболее близким техническим решением (прототипом) является способ лазерной локации, включающий сканирование пространства последовательностью лазерных сигналов, генерируемых лазерным локатором, регистрацию рассеянного и/или отраженного объектом лазерного сигнала и определение расстояния до объекта по времени задержки между излученным и принятым сигналами, а углового положения объекта по направлению излученного сигнала . В известном способе сканирующее устройство осуществляет программируемый поворот в пространстве зондирующего лазерного луча со сравнительно малой расходимостью. Использование известного способа позволяет определить не только расстояние до объекта, но и его угловое положение в пространстве, а двукратное применение соответствующей процедуры (то есть определение положения объекта в два различных момента времени) позволяет найти скорость объекта.

Основным недостатком известного способа является его сравнительно низкая производительность при определении положения объекта с достаточно высокой точностью. В самом деле, следующий лазерный сигнал излучается после того, как зафиксирован «возвращенный объектом» предшествующий сигнал или когда можно гарантировать, что в зондируемой области пространства искомого объекта нет (иначе возможно «перепутать», какому излученному сигналу соответствует зарегистрированный сигнал). Сформулированное условие ограничивает частоту следования лазерных сигналов f на предельном уровне fmax=c/2L, и, соответственно, время определения положения (поиска) объекта может быть велико. Например, если объект может быть расположен на расстоянии до 300 км, то максимальная частота работы лазерного локатора составит 500 Гц. Если известно, что объект находится в области с поперечным размером 10×10 км, а требуется определить его положение с точностью 100×100 метров (требуемая расходимость лазерного излучения составляет всего лишь ~0,3 мрад и соответствует апертуре телескопа менее 1 см для дифракционного качества излучения и длины волны зондирующего излучения ~1 мкм, угловая точность сканирующего устройства может быть на порядок выше), то всего может потребоваться 10000 лазерных импульсов и, соответственно, около 20 секунд. Заметим, что за такое время объект может выйти за пределы исследуемой области (для этого достаточно поперечной скорости ~500 м/с).

Указанная причина ограничивает, в том числе рабочую частоту и производительность лазерных локаторов, применяемых для лазерного зондирования земной поверхности, поскольку каждый следующий зондирующий импульс может быть излучен только после того, как зарегистрирован предыдущий «отраженный» импульс . В результате стоимость, например, лазерных геодезии и топографии высокого разрешения оказывается достаточно высокой.

Техническим результатом изобретения является увеличение производительности лазерной локации.

Технический результат достигается тем, что в способе лазерной локации, включающем сканирование пространства последовательностью лазерных сигналов, генерируемых лазерным локатором, регистрацию рассеянных и/или отраженных объектом лазерных сигналов, определение расстояния до объекта по времени задержки между излученными и принятыми сигналами, а углового положения объекта - по направлению соответствующего излученного сигнала, в качестве генерируемого лазерным локатором сигнала используют цуг из по меньшей мере двух импульсов с изменяемыми промежутками времени между импульсами и/или соотношением амплитуд импульсов в каждом цуге.

Под амплитудой импульса, в зависимости от соотношения между длительностью отдельного импульса τи и временным разрешением системы регистрации τp, подразумевается энергия импульса (если τи<τр) или его мощность (если τи>τр).

Применение заявляемого технического решения позволяет фактически «промаркировать» излучаемые лазерным локатором сигналы и установить взаимно однозначное соответствие между излученным и принятым сигналами. В результате даже при значительно более высокой, чем в прототипе, частоте следования генерируемых локатором лазерных сигналов возможно определить, какому излученному сигналу соответствует принятый, и, соответственно, используя только быстродействующий фотоприемник, одновременно определить расстояние до объекта (по времени задержки) и угловое положение объекта (по направлению, в котором излучался тот сигнал, который в дальнейшем был принят).

Реализация заявляемого технического решения для описанного выше примера локализации объекта, находящегося на расстоянии ~300 км, в области с поперечным размером 100×100 метров может быть, например, следующей. Лазерный локатор на частоте 100 кГц генерирует последовательность из цугов парных («сдвоенных») коротких (~1 нс) импульсов с изменяемым промежутком времени между ними, например: в первой паре второй импульс следует через 20 нс после первого, во второй паре - через 40 нс, в сотом цуге импульсов промежуток между импульсами составит 2 мкс и т.д.; после генерации 200 сдвоенных импульсов (промежуток времени между последними импульсами в паре составит 4 мкс) описанная выше последовательность цугов повторяется. Здесь частота 100 кГц означает, что промежуток времени между первыми лазерными импульсами в последовательно генерируемых цугах составляет 10 мкс. Таким образом, по промежутку времени между импульсами в цуге (при достаточном разрешении системы регистрации) возможно определить «номер» и момент генерации именно этого цуга. Один и тот же промежуток времени между двумя импульсами в цуге повторяется через 2 мс (10 мкс × 200), что как раз соответствует максимальному расстоянию до объекта 300 км. То есть при регистрации возвращаемого объектом сигнала возможно «перепутать» только расстояние L и L+300 (L - расстояние до объекта в километрах), что, очевидно, не произойдет при L≤300 км, поскольку амплитуда принимаемого сигнала будет отличаться многократно.

При той же самой, как в прототипе, расходимости излучения 0,3 мрад (пространственном «разрешении» 100 метров) время просмотра области пространства 10×10 км с расстояния ~300 км составит 0,1 с и уменьшится в 200 раз по сравнению с прототипом. Заметим, что необходимая для работы на указанной частоте 100 кГц угловая скорость поворота луча ~30 рад/с современными сканирующими устройствами обеспечивается с кратным запасом. Кроме того, при предварительной локализации объекта в области, например, 1×1 км время фиксации объекта может быть дополнительно уменьшено в 10 раз (или улучшено пространственное разрешение).

Если объект предположительно находится на большем расстоянии или необходима более высокая частота сканирования (меньшее время просмотра пространства), то период генерируемой последовательности цугов может быть, например, утроен следующим образом: вначале генерируется описанная выше последовательность цугов с одинаковой амплитудой обоих импульсов в каждом цуге, затем генерируется последовательность из 200 цугов с аналогично изменяемым промежутком времени между импульсами в цуге, но с амплитудой первого импульса, например, втрое большей, чем амплитуда второго импульса, затем генерируется последовательность из 200 цугов с обратным соотношением между амплитудами генерируемых импульсов в цуге. При использовании для «маркировки» излучаемых лазерным локатором сигналов цугов, состоящих, например, из трех импульсов, генерируемая последовательность из неповторяемых цугов может быть еще значительно длиннее.

В заявляемом техническом решении существенно используется тот факт, что в каждом конкретном цуге промежуток времени между входящими в цуг импульсами мал и не превышает несколько микросекунд. Это означает, что при любой реальной скорости лоцируемого объекта, если на него попадает один импульс из цуга, то попадут и все остальные импульсы из этого цуга. Действительно, при максимальном промежутке времени между импульсами в одном цуге 4 мкс и поперечной скорости объекта 8 км/с (первая космическая скорость) перемещение объекта (и приемника сигнала) между импульсами составит всего ~3 см. Это также означает, что все импульсы из одного цуга распространяются фактически по одной и той же траектории и потери при прохождении светом этой траектории с хорошей точностью одинаковы для всех импульсов, составляющих отдельный цуг; следовательно, соотношение амплитуд принятых импульсов в цуге будет соответствовать соотношению амплитуд излученных импульсов в этом цуге.

Аналогично возможно кратное увеличение производительности при лазерном зондировании Земли не только с «космических» расстояний (со спутников), но и при аэросъемке (с самолетов). Так, при высоте съемки (высоте полета самолета) 1,5 км частота следования зондирующих сигналов не превышает 100 кГц и может быть увеличена до 500-700 кГц (и выше) с использованием заявляемого способа. В этом случае взаимное перемещение объекта и приемника сигнала в рамках одного цуга импульсов не превысит ~0,2 мм (максимальный промежуток времени между импульсами в одном цуге не больше 1 мкс, а относительная скорость объекта и приемника ≤200 м/с).

Генерирование лазерным локатором последовательности цугов импульсов согласно заявляемому техническому решению может быть реализовано различными средствами, например системой генератор-усилитель, когда генератор излучает короткие импульсы на максимальной требуемой частоте (в приведенном выше примере на частоте 50 МГц, соответствующей временному интервалу 20 нс), а система управления «вырезает» требуемые для усиления импульсы, или при использовании двух (или более) соответствующим образом синхронизованных лазеров. Аналогично, пространственное сканирование может быть реализовано различными методами, однако конкретная реализация заявляемого способа лазерной локации не является предметом настоящей заявки на патент.

Таким образом, применение заявляемого технического решения позволяет многократно увеличить производительность лазерной локации и определять не только расстояние до объекта, но и направление на него (то есть угловое положение объекта) с использованием высокочувствительных и быстродействующих фотоприемников вообще без использования приемников излучения с пространственным разрешением типа ПЗС-матриц - как правило, заметно менее чувствительных и с большим уровнем шумов, а также обладающих сравнительно низким быстродействием . Заявляемый способ лазерной локации дает возможность использовать компактные маломощные лазерные локаторы, регистрировать сигнал на дневном фоне. Это позволяет сделать вывод о том, что заявляемое техническое решение удовлетворяет критериям «новизна» и «существенные отличия».

Литература

1. Смирнов В.А. Введение в оптическую радиоэлектронику. М.: Советское радио, 1973. - 189 с.

2. Матвеев И.Н., Протопопов В.В. и др. Лазерная локация. М.: Машиностроение, 1984. - 272 с. (прототип).

3. Данилин И.М., Медведев Е.М., Мельников С.Р. Лазерная локация Земли и леса: учебное пособие. - Красноярск: Институт леса им. В.Н.Сукачева СО РАН, 2005. - 182 с.

4. Патент RU 2352959, МПК: G01S 17/06, 20.04.2009.

Способ лазерной локации, включающий сканирование пространства последовательностью лазерных сигналов, генерируемых лазерным локатором, регистрацию рассеянных и/или отраженных объектом лазерных сигналов, определение расстояния до объекта по времени задержки между излученными и принятыми сигналами, а углового положения объекта - по направлению соответствующего излученного сигнала, отличающийся тем, что в качестве генерируемого лазерным локатором сигнала используют цуг из по меньшей мере двух импульсов с изменяемым промежутком времени между импульсами и/или соотношением амплитуд импульсов в каждом цуге.

Похожие патенты:

Изобретение относится к аппаратуре измерения расстояний и может быть использовано, например, для определения расстояния от измерительного прибора до поверхности стены, потолка помещения или до предмета (объекта) внутри или вне помещения.

Изобретение относится к оптико-электронному приборостроению. Окружающее пространство сканируют в горизонтальной плоскости и выбирают видеокадр с объектом, до которого требуется измерить расстояние. Вертикальную и горизонтальную координаты изображения объекта измеряют относительно координат начала видеокадра, при этом горизонтальную координату объекта вычисляют суммированием координаты начала выбранного видеокадра со значением горизонтальной координаты в видеокадре. Визирную ось лазерного дальномера устанавливают по измеренной вертикальной координате объекта. При следующем цикле сканирования проводят замер дальности до объекта в момент прохождения визирной оси лазерного дальномера по вычисленной при предыдущем цикле сканирования горизонтальной координате объекта. Устройство, реализующее способ, включает оптико-электронный модуль на сканирующей платформе с вращением вокруг вертикальной оси, снабженной приводом и датчиком углового положения. Лазерный дальномер размещают на своей одноосной платформе с возможностью ее поворота в вертикальной плоскости и снабженной приводом и датчиком углового положения. Технический результат - обеспечение возможности измерения дальности до объекта лазерным дальномером при непрерывном сканировании с большими скоростями окружающего пространства, в том числе и кругового. 2 н.п. ф-лы, 2 ил.

Способ увеличения информативности и производительности лазерной локации включает в себя сканирование пространства последовательностью лазерных сигналов, генерируемых лазерным локатором, регистрацию рассеянных и/или отраженных объектом лазерных сигналов, определение расстояния до объекта по времени задержки между излученными и принятыми сигналами. Угловое положение объекта определяют по направлению соответствующего излученного сигнала. При этом в качестве сканирующего лазерного излучения используют последовательность лазерных импульсов, различающихся по длине волны, поступающих на сканирующее устройство. Лазерные импульсы разделяют по длинам волн посредством селектора длин волн. Технический результат заключается в повышении производительности и информативности лазерного радара. 7 з.п. ф-лы, 3 ил.

Способ лазерной локации



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: