Помехоустойчивость радиоканала связи с удаленными стационарными объектами. Основные понятия и термины

Выполняем все виды студенческих работ

Помехоустойчивость радиоканала связи с удаленными стационарными объектами

Тип работы: Реферат Предмет: ТЕХНИЧЕСКИЕ НАУКИ

Оригинальная работа

Тема

Выдержка из работы

Автоматика. Информатика. Управление. Приборы УДК 621.396.96

ПОМЕХОУСТОЙЧИВОСТЬ РАДИОКАНАЛА СВЯЗИ С УДАЛЕННЫМИ СТАЦИОНАРНЫМИ ОБЪЕКТАМИ В. В. Аксенов, В. И. Павлов Кафедра «Конструирование радиоэлектронных и микропроцессорных систем», ФГБОУВПО «ТГТУ" — [email protected]

Представлена членом редколлегии профессором Д. Ю. Муромцевым Ключевые слова и фразы: индикаторные функции помех- канал связи- помехоустойчивость.

Аннотация: Рассмотрены математические модели сигналов и преднамеренных помех применительно к каналу связи с удаленными стационарными объектами. Предложено использование совокупности индикаторных функций помех для повышения помехоустойчивости канала радиосвязи. Представлен пример использования индикаторной функции.

Радиосистемы управления и связи, как правило, являются составной частью сложных комплексов управления (объектами, людьми) и предназначаются для передачи измерительной информации, характеризующей вектор состояния управляемых объектов, передачи командной и различного вида связной информации . При этом требуемая точность передачи сообщений, а также и выполнение других функций должны достигаться в сложной помеховой обстановке, что в значительной степени будет определяться помехоустойчивостью канала связи .

В связи со сложной криминогенной обстановкой и террористической угрозой важное значение имеет устойчивость канала связи к действию преднамеренных помех, создаваемых третьими лицами с целью искажения, приостановки или прекращения передачи информации. Отдельного внимания требуют объекты, имеющие критически важное значение (например, магистральные продуктопроводы), использующие открытые каналы связи для мониторинга технического состояния.

Как правило, для таких объектов известен характер и структура передаваемой по каналу связи информации (сигналы с датчиков, команды управления отдельными устройствами). Сообщения обычно передаются периодически и в пакетном режиме. Третьими лицами с помощью средств радиотехнической разведки возможно длительное накапливание информации о режиме связи, используемых частотных диапазонах, типах сигналов, модуляции и пр.

Данная информация может использоваться как для формирования режима противодействия системе связи в целом, так и конкретных преднамеренных помех каналу. Поэтому для повышения помехоустойчивости возникает необходимость своевременного обнаружения факта присутствия преднамеренной помехи в принятом сигнале и адаптации канала связи к действию помехи.

Как известно , помехозащищенность средств радиосвязи (СРС) достигается за счет комплекса организационных мер, способов и средств, направленных на обеспечение устойчивой работы СРС в условиях воздействия организованных (преднамеренных) помех радиоэлектронного подавления (РЭП).

Процесс функционирования СРС в условиях организованных помех по своей физической сущности может быть представлен как радиоэлектронный конфликт, в котором с одной стороны участвуют СРС, а с другой — система РЭП, состоящая в общем случае из станции радиотехнической разведки (РТР) и непосредственно станции помех. На рисунке 1 в общем виде представлена структурная схема радиоэлектронного конфликта.

Проблеме защиты канала связи от преднамеренных помех уделяется немалое внимание . Защищенным считается канал, обеспечивающий требуемые показатели скрытности передачи информации и устойчивости к действию преднамеренных помех. Модель защищенного канала связи (ЗКС) должна дополнительно содержать модель специально разработанного передаваемого сигнала, модель преднамеренных помех, способы борьбы с помехами.

Модель передаваемого сигнала. В общем случае в ЗКС сигналы s (t) передаются при воздействии мультипликативной ^(t) и аддитивной?(t) помех (рис. 1). Эти помехи следует рассматривать как непреднамеренные. Если преднамеренные помехи отсутствуют, то на входе приемника наблюдаются реализации случайного процесса

x (t)=Kt)s (t)+^(t). (1)

Функция ^(t) — случайный процесс, причем ^(t) > 0, t е R = . — М.: Радио и связь, 2003. — 640 с.

5. Борисов В. И. Помехозащищенность систем радиосвязи: основы теории и принципы реализации. — М.: Наука, 2009. — 358 с.

6. Варакин, Л. Е. Теория сложных сигналов / Л. Е. Варакин. — М.: Сов. радио, 1970. — 376 с.

7. Павлов, В. И. Оптимальное обнаружение изменения свойств случайных последовательностей по информации измерителя и индикатора / В. И. Павлов // Автоматика и телемеханика. — 1998. — № 1. — С. 54−59.

Stability to Hindrances of the Radio Channel of Communication with Remote Stationary Objects

V.V. Aksenov, V. I Pavlov

Department «Design of Radio Electronic and Microprocessor Systems «, TSTU-

Key words and phrases: communication channel- indication functions of hindrances- stability to hindrances.

Abstract: Mathematical models of signals and deliberate hindrances with reference to a communication channel with remote stationary objects are considered. The use of set of indication functions of hindrances for increase of stability to hindrances of the channel of radio communication is offered. The example of use of indication function with some deliberate hindrances is presented.

Storungsstabilitat des Funkkanals der Kommunikation mit den entfernten Stationarobjekten

Zusammenfassung: Es sind die matematischen Modelle der Signale und der vorausgesehenen Storungen in bezug auf den Kommunikationskanal mit den entfernten Stationarobjekten betrachtet. Es ist die Benutzung der Gesamtheit der Indikatorfunktionen der Storungen fur die Erhohung der Storungsstabilitat des Funkkanals der Kommunikation vorgeschalagen. Es ist das Beispiel der Benutzung der Indikatorfunktion dargelegt.

Rigidite aux erreurs de la chaine de liaison de radio avec les objets stationnaires eloignes

Resume: Sont examines les modeles mathematiques des signaux et des erreurs deliberees conformement a la chaine de liaison de radio avec les objets stationnaires eloignes. Est proposee l’utilisation de l’ensemble des fonctions indiquees des erreurs pour l’augmentation de la rigidite aux erreurs de la chaine de liaison de radio, est presente l’exemple de l’utilisation de la fonction indiquee.

Авторы: Аксенов Виктор Владимирович — аспирант кафедры «Конструирование радиоэлектронных и микропроцессорных систем" — Павлов Владимир Иванович — доктор технических наук, профессор кафедры «Конструирование радиоэлектронных и микропроцессорных систем», ФГБОУ ВПО «ТГТУ».

Рецензент: Шамкин Валерий Николаевич — доктор технических наук, профессор кафедры «Конструирование радиоэлектронных и микропроцессорных систем», ФГБОУ ВПО «ТГТУ».

Заполнить форму текущей работой
Другие работы
Название Тип

Размер: px

Начинать показ со страницы:

Транскрипт

1 УДК АНАЛИЗ ПОМЕХОУСТОЙЧИВОСТИ РАДИОСТАНЦИИ ПРИ ВОЗДЕЙСТВИИ ОРГАНИЗОВАННЫХ ПОМЕХ А. Х. Абед, В. М.Жуков Кафедра «Конструирование радиоэлектронных и микропроцессорных систем» ФГБУ ВПО «ТГТУ»; Ключевые слова и фразы: методы; помехозащищенность; помехоустойчивость, радиопомехи; радиоразведка, радиосвязь; радиостанция; радиоэлектронное противодействие. Аннотация: Рассматриваются технические методы повышения эффективности радиосвязи, связанные с помехозащищенностью. Указываются и разбираются методы повышения помехозащищенности и помехоустойчивости, приведены факторы, их формирующие. В качестве наиболее опасных помех, воздействующих на работу радиостанции, выделены ретранслирующие. Постоянное совершенствование средств радиоразведки (РР) и радиопомех (РП), внедрение автоматизированных комплексов радиоэлектронного противодействия (РЭП) привело за последние годы к существенному повышению возможностей вероятного противника по радио-подавлению КВ-УКВ радиостанций (РС) средней мощности. С учетом этого становится весьма сложной задача обеспечения устойчивой радиосвязи в условиях РЭП. Успешное ее решение невозможно без принятия специальных технических и организационных мер защиты от радиоразведки и радиопомех. Технические методы повышения эффективности радиосвязи в условиях РЭП направлены на повышение их разведо-и помехозащищенности. Для повышения помехозащищенности в существующих РС используются те же методы, что и для борьбы со случайными станционными помехами. Основными из них, являются: - частотно-разнесенная передача и прием; - связь через удаленный ретранслятор; - применение компенсаторов помех и высокоскоростных модемов; - метод группового использования частот; - применение широкополосных сигналов.

2 В общем случае электронное подавление включает два последовательных этапа техническую разведку и противодействие. Применительно к радиостанциям целью технической разведки является установление факта передачи информации между объектами и определение параметров сигналов. Целью противодействия является создание таких условий, которые затруднили бы работу РС или привели к срыву выполнения задачи. Критерий помехозащищенности следующей форме: где вероятность разведки параметров сигналов; работы РС. РС может быть представлен в ПМЗ 1 H, (1) H вероятность нарушения По результатам анализа возможностей современных средств технической разведки можно утверждать, что представить в виде: где в (1) практически всегда будет равна 1. Тогда (1) можно ПМЗ 1, (2) H ПМУ P ПМУ вероятность выполнения РС задачи в условиях подавления (критерий помехоустойчивости). Формула (2) верна для случая, когда перед технической разведкой не ставится задача раскрытия смысла передаваемой информации, а только обнаруживается сигнал носитель информации. Величина PH является количественной мерой помехоустойчивости РС при действии на нее помех. Помехоустойчивость зависит от сочетания большого количества факторов: формы полезного сигнала, вида (формы) помехи, ее интенсивности, структуры приемника, применяемых способов борьбы с помехами и т.д. Помехоустойчивость РС по отношению к имитирующим помехам разного вида с различной степенью близости к полезному сигналу во многом определяется взаимно и автокорреляционными характеристиками рассматриваемых сигналов и их функцией неопределенности. Практика электронного подавления показывает, что эффективность имитирующих помех зависит от тактики их применения и степени раскрытия структуры полезного сигнала средствами технической разведки. Важным фактором структуры скрытности являются разнообразие и особенности ансамбля полезного сигнала. Информационная скрытность РС определяется способностью противостоять мерам, направленным на раскрытие смысла передаваемой с помощью сигналов информации. Раскрытие смысла передаваемой информации означает отожествление каждого принятого сигнала с той командой, которая передается. Наличие априорной и

3 апостериорной информации делает эту задачу вероятностной, а в качестве меры информационной скрытности выступает вероятность раскрытия смысла передаваемой информации р инф при условии, что сигнал обнаружен и выделен . Таким образом, на помехозащищенность РС влияют следующие существенные факторы: вид сигнала, являющегося физическим носителем информации и обеспечивающим спектральную и энергетическую эффективность; структура сигнала, обеспечивающая структурную и информационную скрытность; методы и алгоритмы преобразования сигнала в передатчике и приемнике, обеспечивающие устойчивость к воздействию организованных помех. имеет вид где Критерий помехозащищенности РС, учитывающий основные факторы влияния, р пмз 1 рн рстр ринф рн, (3) р стр, р инф - вероятности раскрытия структуры и смысла передаваемой информации соответственно. Исходные условия, при которых необходимо обеспечить требуемый уровень помехозащищенности РС, следующие: противоборствующей стороне-организатору радиоэлектронного подавления (криптоаналитику) известны пространственные координаты передатчиков и приемников сигналов; известен частотный диапазон работы радиоканала РС; известна структура передаваемой информации; обмен информацией между объектами осуществляется непрерывно; вероятность организованного противодействия практически равна единице. В этих условиях выбор сигнала для радиоканала РС определяется, исходя из спектральной и энергетической эффективности, а не из маскирующих свойств, т.к. местонахождение объектов известно. Наилучшими характеристиками в этом смысле обладают модулированные сигналы с непрерывной фазой (МНФ). В общем виде сигнал, манипулированный фазой, (МНФ) на -ом тактовом интервале можно записать следующим образом: (4) где A 0 амплитуда сигнала; разного вида несущая частота; 0 t, C A cos t 2 C h qt i T, t 0 0 i i 1 i1 0 1 T, T, h i индекс модуляции на i -ом тактовом интервале; 0 начальная фаза; C C C, 1 2 вектор m - C ичных информационных символов, принимающих одно значение из ряда C i 1; 3; m 1 ; t q фазовый импульс (ФИ) длиной L тактовых интервалов.

4 Длина L фазового импульса является одной из наиболее важных характеристик, определяющих свойства сигнала; при L 1 сигнал МНФ принято называть сигналом с полным откликом, а при L 2 сигналом с частичным откликом. Среди большого разнообразия сигналов МНФ наибольшую известность приобрели сигналы (для t 0, LT t t LT прямоугольный; q 2 q q t 1 cost LT 4), которые могут быть использованы в РС: полупериод синусоиды; t t 2LT sin2 t LT 4 приподнятый косинус. Вид ФИ напрямую определяет спектральные характеристики сигнала МНФ, в частности, скорость B спада внеполосного изучения. Наряду с белым шумом в радиоканале РС могут присутствовать организованные помехи. Наиболее вероятными помехами, учитывая условия функционирования РС, следует считать: t A t Пг П 0 cos гармоническую помеху; m t A a t П -ФМ П 0 ПСП cos сигнал с бинарной фазовой манипуляцией псевдослучайной последовательностью (ПСП-ФМ) помеху; ретранслированную помеху, Пр 0 i i 1 T i1 t A cos t 2 C h qt i где A П А0 - амплитуда помехи; относительная интенсивность помехи; П m a случайный бинарный символ помехи ПСП-ФМ длительностью Т П Т М; М относительная скорость манипуляции помехи; задержка ретранслированной помехи. В приведены результаты анализа помехоустойчивости оптимального демодулятора сигнала МНФ с глубиной решения N тактовых интервалов при воздействии 3-х указанных организованных помех. Считалось, что несущие частоты полезных сигналов и организованных помех совпадают. Анализ проводился с использованием евклидова расстояния между точками концов векторов, соответствующих информативных сигналов. формуле (5) Евклидово расстояние между сигнальными точками D ab NT NT N D ab рассчитывалось по T dt, 2 at b t dt A0 2 1 cos2 C a Cb hi q t i i1

5 где векторы информационных символов позициями. C a и C a обязательно отличаются первыми Анализ проводился при отношении сигнал/шум 2 E N 0 20 и относительной интенсивности той или иной помехи μ 0, 2, количество тактовых интервалов принималось оптимальным N 3. На рис.1 показана вероятность ошибочного распознавания сигнала в виде приподнятого косинуса при действии организованных помех. Рис 1. Вероятность ошибочного распознавания сигнала при действии организованных помех: -в беспомеховой ситуации; - при действии ПСП-ФМ помехи; - при действии ретранслированной помехи. Проведенный анализ показывает, что наиболее опасной для РС является ретранслированная помеха. Это обусловлено тем, что корреляционная функция полезного сигнала и ретранслированной помехи принимает большие значения по сравнению со значениями для ПСП-ФМ и гармонической помех. Необходимо заметить, что различные варианты кодирования источника информации принципиально не влияют на помехоустойчивость РС при действии указанных помех. Список литературы 1. Жуков, В.М. Оперативное определение воздействия помех в каналах связи / В.М. Жуков // Радиотехника С Жуков, В.М. Особенности приема ортогональных многопозиционных сигналов в многолучевых каналах связи / В.М. Жуков, И.Г. Карпов, Г.Н. Нурутдинов// Радиотехника С

6 An analysis of Radio Interference Immunity Under the Influence of Organized Interference А.H. Abed, V.M. Zhuov Deartment Design of Radio and Microrocessor ystem,ttu; Key words and hrases: methods; immunity; interference; radio reconnaissance; radio; radio station; electronic countermeasures. Abstract: The technical methods to imrove the efficiency of radio-related interference rotection. Include and understand methods to imrove noise immunity and immunity, given the factors forming them. The most harmful interference affecting the wor of the station, allocated rebroadcast. References 1. Zhuov, V.M. The oerational definition of interference in the communication channels / V.M. Zhuov // Radio engineering Zhuov, VM Features multi-osition recetion orthogonal signals in multiath channels of communication / V.M. Zhuov, I.G. Karov G.N. Nurutdinov // Radio engineering


ЖУРНАЛ РАДИОЭЛЕКРОНИКИ, N4, 03 УДК 6.39, 6.39.8 ОЦЕНКА ОНОШЕНИЯ СИГНАЛ/ШУМ НА ОСНОВЕ ФАЗОВЫХ ФЛУКУАЦИЙ СИГНАЛА В. Г. Патюков, Е. В. Патюков, А. А. Силантьев Институт инженерной физики и радиоэлектроники,

10 УДК 621.391 А.С. КОЛОМИЕЦ 1, А.С. ЖУЧЕНКО 2, А.П. БАРДА 3 1 Полтавский военный институт связи, Украина 2 Харьковский университет Воздушных Сил им. И. Кожедуба, Украина 3 Национальная академия обороны

УДК 621.372 Моделирование радиосистемы передачи информации с когерентным приемом сигнала в среде Matlab+Simulink Попова А.П., студент Россия, 105005, г. Москва, МГТУ им. Н.Э. Баумана, кафедра «Радиоэлектронные

Безруков В.Н., Комаров П.Ю., Коржихин Е.О. 1 Специфика коррекции характеристик радиоканала в системе цифрового телевидения по стандарту DVB-T Аннотация. Доклад посвящен особенностям оценки характеристик

А.В. Эсауленко, ФГКУ УВО ГУ МВД России по Краснодарскому краю А.Н. Бабкин, кандидат технических наук, доцент СПОСОБ КОНТРОЛЯ РАДИОКАНАЛА WAY OF CONTROL OF THE RADIO CHANNEL Рассмаивается способ коноля

МОДЕЛЬ МОДЕМА СОТОВОЙ СИСТЕМЫ СВЯЗИ С.С. Твердохлебов, студент каф. РТС, научн. руководитель, доцент каф. РТС А.М. Голиков [email protected] Частотная манипуляция (FSK). Значениям и информационной последовательности

УДК 621.376 СПОСОБ ЗАЩИТЫ РЛС СО СЛОЖНЫМ СИГНАЛОМ ОТ ИМИТИРУЮЩЕЙ ПОМЕХИ Ю.Т. Карманов, Г.А. Непомнящий ONE WAY TO PROTECT THE RADAR OF A COMPLEX SIGNALS FROM SIMULATING INTERFERENCE Y.T. Karmanov, G.A.

2. Разработка модели формирования квазистохастического телеграфного сигнала, содержащего информацию о начальной фазе передаваемого сообщения Важным функциональным узлом автоматического радиоприемного устройства

УДК 61.396.6 АНАЛИЗ МОДУЛЯЦИОННЫХ ХАРАКТЕРИСТИК КВАДРАТУРНОГО ФОРМИРОВАТЕЛЯ РАДИОПОМЕХ С ШИРОКОПОЛОСНОЙ УГЛОВОЙ МОДУЛЯЦИЕЙ ПРИ ИСПОЛЬЗОВАНИИ ЦИФРОВОЙ ОБРАБОТКИ МОДУЛИРУЮЩЕГО СИГНАЛА С.А. Шерстюков В статье

УДК 004.732.056 Исследование перспективных технологий цифровой модуляции в системах охранно-пожарной сигнализации Кашпур Е.И., студент Россия, 105005, г. Москва, МГТУ им. Н.Э. Баумана, кафедра «Защита

ФЕДЕРАЛЬНОЕ БЮДЖЕТНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» ТЕЛЕКОНТРОЛЬ И ТЕЛЕУПРАВЛЕНИЕ

УДК 621.396.4 А. И. Сенин, И. В. Крючков, С. В. Чернавский, С. И. Нефедов, Г. А. Лесников МНОГОАДРЕСНАЯ ШИРОКОПОЛОСНАЯ СИСТЕМА ПЕРЕДАЧИ ИНФОРМАЦИИ ДЛЯ МНОГОПОЗИЦИОННЫХ РАДИОЛОКАЦИОННЫХ СТАНЦИЙ Рассмотрены

Министерство образования и науки Российской Федерации А.Е. Манохин МНОГОКАНАЛЬНЫЕ РАДИОСИСТЕМЫ ПЕРЕДАЧИ ИНФОРМАЦИИ С КОМБИНИРОВАННЫМ РАЗДЕЛЕНИЕМ КАНАЛОВ Электронное текстовое издание Методические указания

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «НИЖЕГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. Р.Е.

ИСПОЛЬЗОВАНИЕ МЕТОДА ДОСТУПА OFDM И ЕГО МОДЕРНИЗАЦИЯ В ЦИФРОВОМ ТВ Лохвицкий Михаил Сергеевич К.т.н., доцент(МТУСИ) Хромой Борис Петрович Д.т.н., профессор (МТУСИ) ЗАЧЕМ НУЖЕН OFDM Пусть используется

Панова Ксения Сергеевна инженер по метрологии ООО «Челэнергоприбор» г. Челябинск, Челябинская область МЕТОДЫ ИЗМЕРЕНИЯ ФАЗОВОГО СДВИГА Аннотация: в данной статье описаны различные методы измерения фазового

Двумерная корреляционная функция сигнала * (τ,) () (τ)exp R U t U t jt dt * S jω S jω j exp jωτ dω. () π Двумерная корреляционная функция имеет следующие свойства:) максимальное значение ее R (0,0)

Федеральное государственное бюджетное образовательное учреждение высшего образования Поволжский государственный университет телекоммуникаций и информатики кафедра ТОРС Задание и методические указания к

УДК 621.396.67 ВСКРЫТИЕ ВРЕМЕННОЙ СТРУКТУРЫ ПАКЕТНЫХ ФАЗОМАНИПУЛИРОВАННЫХ СИГНАЛОВ А. П. Дятлов, П. А. Дятлов, А. Н. Шостак Институт радиотехнических систем и управления инженерно-технологической академии

УДК 621.37 РАЗРАБОТКА ИМИТАЦИОННЫХ МОДЕЛЕЙ РАДИОТЕХНИЧЕСКИХ СИСТЕМ С РАЗЛИЧНЫМИ ТИПАМИ КОДИРОВАНИЯ В СРЕДЕ MATLAB Крашевская Т.И., Савенко К.В. (СКГУ им. М.Козыбаева) MATLAB - это интерактивная среда для

ФЕДЕРАЛЬНОЕ БЮДЖЕТНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» ТЕЛЕКОНТРОЛЬ И ТЕЛЕУПРАВЛЕНИЕ

Лекция 6 СТАНДАРТЫ СПУТНИКОВОГО ЦИФРОВОГО ТЕЛЕВИДЕНИЯ DVB-S и DVB-S2 6.1 Общие сведения о системах и стандартах спутникового цифрового телевизионного вещания Радиус действия передающей телевизионной станции

Специальная техника, 5, 2000 Каргашин Виктор Леонидович Кандидат технических наук Проблемы обнаружения и идентификации радиосигналов средств негласного контроля информации Часть 3. Эффективность сканирующих

Министерство образования и науки Российской Федерации ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ КАЗАНСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТЕХНИЧЕСКИЙ

Generalized Mathematical Model of Signals with FHSS in the Bases of the Spline Characters Functions Ключевые слова: метод расширения спектра на основе ППРЧ method of spectrum extension on the basis of

Беспроводные сенсорные сети Тема 4: Основы радиопередачи МАИ каф. 609, Терентьев М.Н., [email protected] Вэтой теме Радиоволны Распространение радиоволн различных частот Аналоговые и цифровые сигналы Диапазоны

РАСПОЗНАВАНИЕ ВИДА МОДУЛЯЦИИ УЗКОПОЛОСНЫХ СИГНАЛОВ ВО ВРЕМЕННОЙ ОБЛАСТИ С ИСПОЛЬЗОВАНИЕМ ИНТЕГРАЛЬНОГО КРИТЕРИЯ УЗКОПОЛОСНОСТИ Верстаков Е.В., Захарченко В.Д. Рассмотрен интегральный критерий узкополосности

ТИТУЛЬНЫЙ ЛИСТ Программа составлена на основе федерального государственного образовательного стандарта высшего образования (уровень подготовки кадров высшей квалификации) по направлению подготовки 11.06.01

36 Теория информации и передачи сигналов. Модуляция и управление информационными параметрами сигналов Модуляция сигналов позволяет выполнить преобразование сигналов с целью повышения эффективности и помехоустойчивости

Михаил Прокофьев, Василий Стеченко Список використаної літератури: 1. Герасименко В. А. Защита информации в автоматизированных системах обработки данных. В -х кн.: Кн.1. М.: Энергоатомиздат, 1994. 400

1 Специальная техника, 3, 2000 Каргашин Виктор Леонидович Кандидат технических наук Проблемы обнаружения и идентификации радиосигналов средств негласного контроля информации Часть 1. Основные требования

ВЫСОКОТОЧНАЯ ПЕЛЕНГАЦИЯ МНОГОЛУЧЕВЫХ СИГНАЛОВ С ИСПОЛЬЗОВАНИЕМ МАЛОЭЛЕМЕНТНЫХ АНТЕННЫХ РЕШЕТОК КВ ДИАПАЗОНА Л.И. Пономарев, А.А. Васин Московский авиационный институт (государственный технический университет)

УДК 654.165 ВЗАИМОСВЯЗЬ ВИДА МОДУЛЯЦИИ И ВЕЛИЧИНЫ РАДИУСА СОТЫ ПОКРЫТИЯ ПО ТЕХНОЛОГИИ WIMAX Л.В. Шаповалова Донецкий национальный технический университет Процес розрахунку покриття мережі WiMax залежить

68 Вестник СибГУТИ 2009 4 УДК 621393 К оценке помехоустойчивости инвариантной системы связи ВВ Лебедянцев, ДС Качан, ЕВ Морозов Решается задача оценки влияния белого шума на качество приѐма сообщений в

Разновидности сигналов ФМ-4 1. ФМ-4 (QPSK) Плотность мощности сигнала ФМ-4 (и ФМ-4С) описывается уравнением Рисунок 1. Спектр сигнала ФМ-4. Полоса частот (от нулевого уровня до нулевого уровня) сигнала

УДК 6.396 Методика определения порогового уровня решения при оценивании информативных признаков дальностных радиолокационных портретов И. В. Лазарев В. С. Кириллов Воронежский институт МВД России Воронежский

Введение LTE-беспроводная связь 4-го поколения, наиболее перспективный на сегодняшний день стандарт связи. Одной из основных проблем в сети, является система синхронизации базовых и мобильных станций.

Лекция 2. Основные понятия и определения для радиотехнических систем передачи информации (РСПИ) 1. ИНФОРМАЦИЯ, СООБЩЕНИЕ, СИГНАЛ Под информацией понимают совокупность сведений о каком-либо событии, объекте.

КОМПЛЕКС СРЕДСТВ РАДИОСВЯЗИ «СТИЛЕТ» Разработанный в АО «Руспром» комплекс средств радиосвязи «СТИЛЕТ» позволяет обеспечивать высококачественную, скрытую от прослушивания связь в условиях блокирования

8. Коваленко А. А. Анализ источников помех в системах абонентского радио доступа: з б. матеріалів 11-го Міжнародного молодіжного форуму [«Радіоелектроніка і молодь у XXI ст.»] / Х.:ХНУРЕ, 2007. С. 72.

ОАО РОССИЙСКИЙ ИНСТИТУТ МОЩНОГО РАДИОСТРОЕНИЯ ПРОГРАММА вступительного экзамена в аспирантуру по специальности 05.12.13 Системы, сети и устройства телекоммуникаций 1. Математические модели сообщений, сигналов,

СПОСОБЫ ОЦЕНКИ СКОРОСТИ ЦЕЛИ ПО ДОПЛЕРОВСКОМУ РАДИОСИГНАЛУ В.Д. Захарченко, Е.В. Верстаков Волгоградский государственный университет [email protected] Проводится сравнительный анализ методов оценки средней

ТЕХНИЧЕСКИЕ НАУКИ Красиков Максим Сергеевич магистрант ФГОБУ ВПО «Сибирский государственный университет телекоммуникаций и информатики» г. Новосибирск, Новосибирская область ИССЛЕДОВАНИЕ ВЛИЯНИЯ ПОМЕХ

O1 ИСПОЛЬЗОВАНИЕ ШУМОПОДОБНЫХ СИГНАЛОВ ДЛЯ ПЕРЕДАЧИ ИНФОРМАЦИИ ОТ ЗАБОЯ СКВАЖИНЫ П.Н. Александров (ЦГЭМИ ИФЗ РАН, Троицк) O1 USING NOISE-LIKE SIGNALS TO PASS INFORMATION FROM DOWNHOLE P.N. Alexandrov(IGEMI

Звук и видео как сигналы Цифровой звук и видео Лекция 1 2 Определение сигнала «процесс изменения во времени физического состояния какого-то объекта, в результате которого осуществляется передача энергии

Федеральное государственное бюджетное образовательное учреждение высшего образования «ОМСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» «Утверждаю» Проректор по УМР Л.О. Штриплинг 201 г. РАБОЧАЯ ПРОГРАММА

Сверхширокополосная Система Связи с Высокой Скоростью Передачи Данных UWBUSIS 02 Харьковский Национальный Университет, Харьков, Украина 1 Октября 2002 И.Я. Иммореев, A.A. Судаков Кафедра Аналоговых и Цифровых

РАЗДЕЛ 4. ПРИБОРОСТРОЕНИЕ, МЕТРОЛОГИЯ И ИНФОРМАЦИОННО-ИЗМЕРИТЕЛЬНЫЕ ПРИБОРЫ И СИСТЕМЫ УДК681..83 АНАЛИЗАТОР ГАРМОНИК НА ОСНОВЕ ШИРОТНО- ИМПУЛЬСНОЙ МОДУЛЯЦИИ А.А. Аравенков, Ю.А. Пасынков Рассматривается

ТРУДЫ МФТИ. 2014. Том 6, 4 Д. В. Орёл, А. П. Жук 119 УДК 621.396 Д. В. Орёл, А. П. Жук ФГАОУ ВПО «Северо-Кавказский федеральный университет» Метод повышения помехозащищённости навигационного сигнала спутниковой

ИНФОРМАТИКА, ВЫЧИСЛИТЕЛЬНАЯ ТЕХНИКА И УПРАВЛЕНИЕ УДК 681.327 Д. Г. Конопелько, 2008 ИССЛЕДОВАНИЕ МЕТОДА КОДОВОГО РАЗДЕЛЕНИЯ КАНАЛОВ И СИНХРОНИЗАЦИИ ПРИ ПЕРЕДАЧЕ ДАННЫХ ПО КОАКСИАЛЬНЫМ КАБЕЛЯМ 1 Конопелько

Лабораторная работа 1 Исследование скремблеров и дескремблеров Цель работы: получение навыков построения скремблеров и дескремблеров. Содержание: Краткие теоретические сведения... 1 Задание для выполнения...

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Технологический институт Федерального государственного образовательного учреждения высшего профессионального образования

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ИНСТИТУТ РАДИОТЕХНИКИ, ЭЛЕКТРОНИКИ И АВТОМАТИКИ (ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ)» Подлежит возврату

УДК 621.391 использующая некогерентный пороговый прием, частотно-позиционное кодирование и динамически выделяемый диапазон частот, в условиях подавления полезного сигнала Д. С. Осипов, канд. техн. наук,

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ А.Н.ДЕНИСЕНКО, В.Н.ИСАКОВ МЕТОДИЧЕСКИЕ УКАЗАНИЯ по выполнению лабораторных работ на ПК по дисциплине «ТЕОРИЯ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ»

Оценка уровня интерференций для сигналов с OFDM-модуляцией О.А. Шорин, профессор МТУСИ, д.т.н.; [email protected] Р.С. Аверьянов, аспирант МТУСИ; [email protected] УДК 621.396 Аннотация: Описывается

ЛАБОРАТОРНАЯ РАБОТА 7 МНОГОКАНАЛЬНЫЕ СПИ С ВРЕМЕННЫМ РАЗДЕЛЕНИЕМ КАНАЛОВ 1. ЦЕЛЬ РАБОТЫ Изучение принципов построения и характеристик многоканальных систем передачи информации с временным разделением каналов.

ФОРМИРОВАНИЕ И ОБРАБОТКА ШУМОПОДОБНЫХ СИГНАЛОВ В СТАНЦИИ ТРОПОСФЕРНОЙ СВЯЗИ 3 Технічні засоби системи захисту інформації. Стандартизація та метрологічне забезпечення систем ТЗІ. Визначення відповідності

1. ПОЯСНИТЕЛЬНАЯ ЗАПИСКА 1. Цель Государственного экзамена Итоговая аттестация обучающихся в форме государственного экзамена проводится с целью определения теоретической и практической готовности выпускника

1 Актуальность темы 2 Терагерцовый диапазон в электромагнитном спектре и радиочастотный ресурс для разработки 3 Научно-исследовательские работы кафедры по теме доклада На кафедре ведется научно-исследовательская

Теоретические основы синтеза радиотехнических систем Лекция 7. Статистическое описание событий и процессов Практическое понятие вероятности Если имеется N результатов экспериментов, среди которых событие

Министерство образования Республики Беларусь Учреждение образования БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ Кафедра систем управления Н.И.Сорока, Г.А.Кривинченко ЭКСПРЕСС

Труды МАИ. Выпуск 86 УДК 621.391.825 www.mai.ru/science/trudy/ Исследование влияния имитирующих помех на аппаратуру потребителей навигационной информации Романов А.С. *, Турлыков П.Ю. * * Московский авиационный

1 УДК 621.391 Применение субоптимального приема в целом в каналах с пакетными Л. Н. Баранников, А. Б. Ткачёв, А. В. Хромцев ошибками. В статье рассмотрено применение помехоустойчивого кодирования при субоптимальном

ПРАКТИЧЕСКОЕ ЗАНЯТИЕ ПРЕОБРАЗОВАНИЕ НЕПРЕРЫВНОГО СИГНАЛА В ДИСКРЕТНЫЙ СИГНАЛ Теоретический материал В 933 году в работе "О пропускной способности "эфира" и проволоки в электросвязи" В.А. Котельников доказал

Труды МАИ. Выпуск 91 УДК 621.372.542.2 www.mai.ru/science/trudy/ Исследование возможности повышения избирательности фильтров нижних частот с линейной фазовой характеристикой Тихомиров А.В.*, Омельянчук

Изобретение относится к области радиосвязи и может быть использовано для обеспечения радиосвязи при наличии большого числа помех различной природы. Технический результат - повышение помехоустойчивости и мобильности системы связи. Устройство содержит М (М 2) радиостанций, каждая из которых содержит N (N 1) разнесенных антенн, подключенных к первым входам соответствующих приемных трактов, N аналого-цифровых преобразователей, радиомодем с подключенной приемопередающей антенной, мультиплексор, демультиплексор, адаптивный компенсатор помех, опорный генератор и блок управления. 4 ил.

Рисунки к патенту РФ 2439794

Изобретение относится к области радиосвязи и может быть использовано для обеспечения радиосвязи при наличии большого числа помех различной природы.

Известна система радиосвязи, в радиостанциях (PC) которой используются адаптивные компенсаторы помех (АКП), приведенные, например, в описании полезной модели № 30044 «Адаптивный компенсатор помех», 2002 г.

Недостатком указанного АКП является низкая эффективность при работе системы связи в сложной помеховой обстановке при числе помех больше одной.

Наиболее близкой по технической сущности является система радиосвязи, в радиостанции которой используется многоканальный адаптивный компенсатор помех, описанный в книге «Адаптивная компенсация помех в каналах связи» / Под ред. Ю.И.Лосева, М., Радио и связь, 1988, стр.22, принятая за прототип.

Структурная схема системы-прототипа, состоящей из N радиостанций, приведена на фиг.1.

Схема приемной части радиостанции-прототипа приведена на фиг.2, где обозначено:

1 - N - разнесенные антенные элементы;

2 - N - приемные тракты;

3 - блок управления;

4 - опорный генератор;

6 - N-канальный адаптивный компенсатор помех (АКП).

Приемная часть радиостанции-прототипа содержит N разнесенных антенн 1, подключенных к первым входам соответствующих N приемных трактов 2. Выход общего опорного генератора 4 подключен ко вторым входам соответствующих N приемных каналов 2, линейные выходы которых через соответствующие N аналого-цифровые преобразователи 5 подключены к соответствующим входам N-канального АКП 6, выход которого является выходом полезного сигнала. Выход блока управления 3 соединен с третьими входами приемных трактов 2.

Устройство-прототип работает следующим образом.

Полезный сигнал и помехи, приходящие с различных направлений, принимаются одновременно всеми антеннами 1. С выходов приемных антенн смесь сигнала и помех поступает на входы соответствующих приемных трактов 2, где производится частотная селекция, преобразование входного колебания на промежуточную частоту и необходимое линейное усиление. Для когерентного приема сигналов N разнесенными антеннами 1 используется общий опорный генератор 4. Блок управления 3 формирует сигналы, управляющие частотой настройки и другими параметрами всех приемных трактов одновременно.

Смеси сигнала и помех с выхода каждого приемного тракта преобразуются в N аналого-цифровых преобразователях 5 в цифровые отсчеты и поступают на вход N-канального компенсатора помех 6. На выходе АКП 6 формируются отсчеты полезного сигнала, очищенного от помех для дальнейшей обработки в радиостанции: демодуляции, декодирования и т.д.

С одной стороны, необходимость одновременного подавления большого (больше одной) числа помех возникает достаточно редко. И поэтому большие габариты и масса PC, обусловленные наличием многоканального приемного устройства и многоэлементной антенной системы, в большинстве случаев являются избыточными. С другой стороны, в случае, например, военной радиосвязи даже короткое нарушение связи вследствие воздействия помех влечет за собой исключительно тяжелые потери. Отсюда возникает необходимость компромисса, заключающегося в том, чтобы число компенсационных каналов приема АКП наращивать только по мере появления помеховых воздействий, то есть необходимость в динамическом изменении конфигурации приемного устройства PC в зависимости от помеховой обстановки. А это возможно при совместном использовании приемных каналов и антенн близко (на расстоянии нескольких длин волн) расположенных однотипных PC, например, узла связи.

Недостатком известной системы связи является громоздкость реализации в радиостанциях многоканального приемного устройства и многоэлементной антенной системы. Этот недостаток является решающим в случае, например, мобильных средств связи.

Задачей предлагаемого технического решения является повышение помехоустойчивости и мобильности системы связи.

Для решения поставленной задачи в систему радиосвязи, состоящую из М (М 2) радиостанций, каждая из которых содержит N (N 1) разнесенных антенн, подключенных к первым входам соответствующих приемных трактов, линейные выходы которых через соответствующие N аналого-цифровые преобразователи подсоединены к соответствующим N входам адаптивного компенсатора помех, а также опорный генератор, выход которого соединен со вторыми входами N приемных трактов, и блок управления, подключенный к третьим входам приемных трактов, согласно изобретению, в приемную часть каждой радиостанции системы введены радиомодем с подключенной приемопередающей антенной, а также мультиплексор и демультиплексор, причем выходы N аналого-цифровых преобразователей соединены с соответствующими входами мультиплексора, выход которого соединен с информационным входом радиомодема, информационный выход которого соединен с входами блока управления и демультиплексора, К выходов которого подсоединены к соответствующим введенным К входам адаптивного компенсатора помех, при этом управляющие входы мультиплексора, демультиплексора и радиомодема подсоединены к соответствующим выходам блока управления.

Схема приемной части PC, входящей в предлагаемую систему радиосвязи, приведена на фиг.3, где обозначено:

1.1-1.N - разнесенные антенные элементы;

2.1-2.N - приемные тракты;

3 - блок управления;

4 - опорный генератор;

5.1-5.N - аналого-цифровые преобразователи (АЦП);

6 - N-канальный аналоговый компенсатор помех (АКП);

7 - мультиплексор;

8 - демультиплексор;

9 - радиомодем;

10 - приемопередающая антенна радиомодема.

Предлагаемое устройство содержит N приемных антенн 1, подсоединенных к первым входам соответствующих N приемных трактов 2, выходы которых соединены с входами соответствующих N АЦП 5, выходы которых соединены с соответствующими N входами АКП 6, выход которого является выходом полезного сигнала. При этом выход опорного генератора 4 соединен со вторыми входами N приемных трактов 2. Кроме того, выходы N АЦП 5 соединены с соответствующими входами мультиплексора 7, выход которого соединен с информационным входом радиомодема 9 с подключенной к его другому входу приемопередающей антенной 10, информационный выход радиомодема 9 подсоединен к входам демультиплексора 8 и блока управления 3. Причем К выходов демультиплексора 8 соединены с введенными К входами АКП 6 соответственно. Первый выход блока управления 3 соединен со вторыми входами приемных трактов 2. Управляющие входы мультиплексора 7, демультиплексора 8 и радиомодема 9 подсоединены к соответствующим выходам блока управления 3.

В каждой радиостанции, имеющей минимальное число антенн N (следовательно, минимальные габариты), например, две, имеется встроенный АКП с (N+K) входами, позволяющий компенсировать (N+K-1) помех. Из них N входов обеспечиваются собственными антеннами, а К дополнительных входов обеспечиваются антеннами соседних PC, оцифрованные сигналы которых передаются с помощью встроенных радиомодемов. При одновременном воздействии более чем одной помехи, двухканальный компенсатор не позволяет выделять полезный сигнал.

В этом случае в предлагаемой системе связи PC, обслуживающая абонента с высоким приоритетом, имеет возможность увеличить число подавляемых помех без увеличения своих габаритов за счет использования дополнительных антенн и приемных трактов, расположенных в других радиостанциях узла связи.

Для обеспечения такой возможности в каждую PC дополнительно введен радиомодем с приемопередающей антенной, работающий в другом частотном диапазоне. Он обеспечивает, во-первых, внешнее управление по радиоканалу от более приоритетного абонента режимом работы (частотой настройки и т.д.) отдельных радиотрактов в PC. Во-вторых, через радиомодем передаются (или принимаются) цифровые значения отсчетов сигналов с выхода линейных радиотрактов соседних PC.

Предлагаемая система связи работает следующим образом.

Каждая PC может работать в системе либо как ведущая (с высоким приоритетом), либо как ведомая (с низким приоритетом).

В первом случае (с высоким приоритетом) PC работает следующим образом.

Начальная организация локальной сети встроенных радиомодемов не требует внешних команд и обеспечивается их внутренним программным обеспечением, как только они оказываются на расстоянии взаимной досягаемости. При этом радиомодемы автоматически обмениваются технологическими данными, в частности, о значении системного времени, взаимных приоритетах и т.п. Это реализовано в большинстве известных встраиваемых радиомодемах, например, таких как Bluetooth, ZigBee и др.

Далее, блок управления 3 ведущей PC через свой радиомодем передает ведомым PC команды, обеспечивающие настройку этих PC на одну и ту же частоту, а затем инициирует передачу через их встроенные радиомодемы цифровых отсчетов принятых сигналов.

Принятые по каналу радиомодема оцифрованные сигналы ведомых PC после демодуляции поступают на демультиплексор 8 и вход блока управления 3. В зависимости от индивидуального номера ведомой PC и номера ее антенны в локальной сети, блок управления адресует отсчеты сигнала этой PC на одни и те же выходы демультиплексора 8. Таким образом, на N входов АКП поступают отсчеты сигналов собственных радиотрактов, а на К других входов поступают отсчеты К ведомых PC. В результате количество подавляемых помех увеличивается до (N+K-1) без увеличения габаритов PC.

Во втором случае (с низким приоритетом) PC работает следующим образом.

После начальной организации локальной сети радиомодемов ведомая PC через свой радиомодем принимает команды управления настройкой (их получает блок управления PC), а затем блок управления 3 направляет последовательно через мультиплексор 7 отсчеты сигналов N приемных каналов на информационный вход радиомодема 9. Отсчеты сигналов радиотрактов передаются в виде пакетов в ведущую PC.

На фиг.4 представлена временная диаграмма сигналов (пакетов), принимаемых ведущей радиостанцией по каналу радиомодема 9. В момент Т=0 в самой ведущей радиостанции (в АЦП 5) производится взятие отсчетов сигналов с выхода собственных приемных трактов 2.

Длительность кадра, в котором периодически передаются данные от других PC, не должна превышать длительности интервала дискретизации Т д =1/F д, где F д - частота дискретизации принимаемого сигнала. Она, как известно, должна быть, по крайней мере, в два раза выше верхней частоты в спектре сигнала. Таким образом, до конца интервала Т д в ведущей PC оказываются отсчеты сигнала, принятого соседними PC в один и тот же момент времени.

Благодаря наличию в локальной сети системных часов, отсчеты сигналов во всех разнесенных радиотрактах производятся одновременно. Пакетный режим передачи отсчетов позволяет затем объединять на входе АКП 6 ведущей PC отсчеты сигналов, взятые в один и тот же момент в разнесенных ведомых PC.

Пространственно-разнесенный прием, осуществляемый с помощью приемных радиотрактов других объектов, связанных по локальной сети, будем называть сетевым приемом.

Таким образом, в условиях сетевого приема все антенны, подключенные к своим радиотрактам PC, расположенных на узле связи, представляют собой общий ресурс, который может оперативно перераспределяться с помощью локальной сети, образованной встроенными в PC радиомодемами, в зависимости от числа и приоритета обслуживаемых абонентов и изменяющейся помеховой обстановки.

Такое построение системы связи обеспечивает в самом крайнем случае, при воздействии комплекса помех, объединение ресурсов всех имеющихся на узле связи PC для обеспечения устойчивой связью наиболее приоритетное должностное лицо.

Кроме этого, в предлагаемой системе связи обеспечивается существенное повышение надежности радиосвязи путем предоставления технической возможности любому должностному лицу (при оперативной необходимости или в случае отказа своей PC) воспользоваться любой работоспособной PC соседних объектов, охваченных локальной сетью связи и управления.

В частном случае, в каждой PC системы может быть одна антенна и один приемный тракт (N=1). Такая PC лишена возможности подавления помех. Однако, благодаря наличию в ней АКП с (К+1) входами, появляется возможность обеспечить подавление К помех при наличии в зоне локальной сети К PC.

Описанное объединение ресурсов с целью помехоустойчивости наиболее ответственных линий связи возможно не только при организации узла связи, но в любом случае, когда PC оказываются в пределах досягаемости встроенных радиомодемов. Например, при движении отдельных PC на транспортных средствах в колонне, когда близко расположенные PC могут быть объединены через локальную сеть.

Радиостанции, входящие в предлагаемую систему связи, могут быть реализованы из широко известных узлов, назначение которых ясно из прилагаемых чертежей и к которым не предъявляются специфические дополнительные требования. Так, для реализации радиоприемных трактов существует большое количество наборов микросхем (чипсетов) от разных мировых производителей.

В качестве встроенных радиомодемов можно использовать известные законченные решения, например, радиомодемы ZigBee, Bluetooth или им подобные, обеспечивающие высокое качество передачи цифровой информации со скоростью порядка 2 Мбит/с на расстоянии до 100 м.

ФОРМУЛА ИЗОБРЕТЕНИЯ

Помехоустойчивая система радиосвязи, состоящая из М (М 2)

радиостанций, каждая из которых содержит N (N 1) разнесенных антенн, подключенных к первым входам соответствующих приемных трактов, линейные выходы которых через соответствующие N аналого-цифровые преобразователи подсоединены к соответствующим N входам адаптивного компенсатора помех, а также опорный генератор, выход которого соединен со вторыми входами N приемных трактов, и блок управления, подключенный к третьим входам приемных трактов, отличающаяся тем, что в приемную часть каждой радиостанции системы введены радиомодем с подключенной приемопередающей антенной, а также мультиплексор и демультиплексор, причем выходы N аналого-цифровых преобразователей соединены с соответствующими входами мультиплексора, выход которого соединен с информационным входом радиомодема, информационный выход которого соединен с входами блока управления и демультиплексора, К выходов которого подсоединены к соответствующим введенным К входам адаптивного компенсатора помех, при этом управляющие входы мультиплексора, демультиплексора и радиомодема подсоединены к соответствующим выходам блока управления.

ПОМЕХОУСТОЙЧИВОСТЬ СИСТЕМ ПЕРЕДАЧИ ДИСКРЕТНЫХ СООБЩЕНИЙ

Основные понятия и термины

Основными задачами, стоящими перед техникой связи, является решение двух проблем:

1) эффективности связи;

2) помехоустойчивости связи.

Эффективность связи заключается в том, чтобы передать наибольшее количество информации наиболее экономным способом.

Скорость передачи информации по каналу связи измеряется количеством информации, передаваемой в единицу времени. Максимальная скорость передачи информации, которую может обеспечить канал связи с данными характеристиками, называется его пропускной способностью.

Помехоустойчивость связи – это способность системы сохранять свои функции неизменными или изменяющимися в допустимых пределах при действии помех.

Количественно помехоустойчивость оценивается различными показателями, использующими вероятностное описание сигналов и помех. Например, применяются такие показатели, как отношение сигнал/шум на входе и выходе приёмного устройства, вероятность правильного обнаружения сигнала, при передаче дискретных сообщений используется вероятность ошибки, а при передаче непрерывных сообщений в качестве меры различия между переданным и принятым сообщением часто используется среднеквадратическое отклонение.

В теории помехоустойчивости различают две основные задачи – анализ и синтез сигналов.

Задача анализа состоит в расчете показателей помехоустойчивости существующих (разработанных) систем. В этом случае, полагая известными вероятностное описание сигнала и помехи на входе, определяют вероятностные характеристики выходного процесса, а по нему – показатели помехоустойчивости. Эта задача, по своей сути, сводится к анализу прохождения случайного процесса через линейные и нелинейные цепи, из которых состоит система.

Задача синтеза заключается в определении структурной схемы системы или, в более простом варианте, структурной схемы радиоприёмного устройства, которое обладало бы наилучшими, или оптимальными, показателями помехоустойчивости при заданном предназначении устройства и при известном вероятностном описании сигнала и помехи на входе.

Задача синтеза называется также задачей оптимального радиоприёма и разделяется на четыре частные подзадачи: обнаружения сигнала, различения сигналов, оценки параметров сигнала, фильтрации сигнала или сообщений.

В подзадаче обнаружения требуется по заданному критерию оптимальности на основании наблюдения процесса ответить на вопрос, содержит ли наблюдаемый процесс вместе с помехой сигнал или является только помехой?

В подзадаче различения требуется по заданному критерию оптимальности ответить на вопрос, какой именно сигнал вместе с помехой присутствует в наблюдаемом процессе, поскольку этот процесс может вместе с помехой содержать один из двух взаимно исключающих сигналов.

В подзадаче оценки параметров требуется по заданному критерию оценить неизвестные параметры сигнала. Считается, что в наблюдаемом процессе вместе с помехой существует сигнал с одним или несколькими неизвестными параметрами (параметр является случайной, но постоянной величиной на интервале наблюдения).

К задаче оценки параметров тесно примыкает задача разрешения сигнала, когда считается, что вместе с помехой в наблюдаемом процессе могут существовать один или два сигнала, неизвестные параметры которых незначительно различаются между собой. Однако сколько этих сигналов – один или два – заранее неизвестно. Требуется, увеличивая различие между параметрами сигнала, определить то наименьшее различие, при котором наступает уверенное разрешение сигналов.

В подзадаче оптимальной фильтрации требуется в каждый момент времени дать оценку меняющемуся параметру по заданному критерию оптимальности. Считается, что в соответствии со случайным законом модуляции в наблюдаемом процессе существует вместе с помехой сигнал с изменяющимся во времени параметром, т. е. параметр является случайной функцией времени.

В процессе передачи сообщений в системах связи выполняются различные преобразования, основные из которых показаны на упрощенной структурной схеме дискретной системы связи (рис. 17.1).

Рис. 17.1. Упрощенная структурная схема дискретной системы связи

Источник сигнала ИС включает в себя источник сообщений и преобразователь сообщения a (t ) в первичный сигнал b (t ). Первичный сигнал подвергается кодированию (экономному и/или помехоустойчивому) в кодере К , после чего сигнал b ц (t ), называемый цифровым, поступает в модулятор М (передатчик), вырабатывающий сигнал u (t ), приспособленный по своим характеристикам для передачи по линии связи ЛС. В линии связи происходит искажение сигнала и его взаимодействие с помехой ξ (t ) (в простейшем случае аддитивное), в результате чего на вход демодулятора ДМ (приемника) поступает наблюдаемое колебание z (t ). Демодулятор выполняет функцию, обратную модуляции, поэтому, в идеале, на его выходе должен быть выработан сигнал b ц (t ). Однако в реальности вследствие воздействия помех результат демодуляции отличается от сигнала b ц (t ), поэтому результат декодирования не совпадает с первичным сигналом b (t ).

Для облегчения восприятия в дальнейшем рассматривается идеализированный канал связи без памяти, в котором отсутствуют искажения сигнала, тогда наблюдаемое

, (17.1)

где s (t ) – посылка длительности τ, ξ (t ) – помеха.

Задача демодулятора состоит в том, чтобы по наблюдаемому колебанию z (t ) принять такое решение о переданном сигнале b ц (t ), которое обеспечило бы максимальную верность. Правило (алгоритм) принятия решения – это закон преобразования z (t ) в . Поскольку помеха является случайной, задача построения оптимального (наилучшего) демодулятора представляет собой статистическую задачу и решается на основе методов теории вероятности и математической статистики (теории статистических решений).

Материалом для принятия решения в демодуляторе служит в анализируемом случае реализация колебания z (t ) на интервале длительности T . Если бы помеха отсутствовала, то эта реализация совпадала бы с элементарным сигналом (посылкой), который можно считать точкой в гильбертовом пространстве сигналов, определенных на заданном временном интервале. Все возможные в данной системе связи посылки изображаются различными точками, и демодулятор должен вырабатывать свои решения в зависимости от того, какой именно точке соответствует принятая реализация z (t ).

Реализация помехи, взаимодействуя с посылкой, смещает точку, изображающую принятую реализацию, причем смещение случайно вследствие случайного характера помехи. Если смещения будут значительными, демодулятор может ошибаться. Ошибка является случайным событием, поэтому качество решения можно характеризовать вероятностью ошибки.

Задача синтеза оптимального приемника (демодулятора) ставится следующим образом: найти оптимальный алгоритм обработки и оптимальное правило, обеспечивающие максимальную вероятность безошибочного (правильного) решения.

Максимум этой вероятности академик РАН В. А. Котельников назвал потенциальной помехоустойчивостью, а приемник, реализующий этот максимум, – идеальным приемником .

Алгоритм работы приемника состоит в разбиении гильбертова пространства реализаций входного колебания на области так, что решение принимается в соответствии с тем, какой области принадлежит принятая реализация. Количество областей равно количеству различных кодовых символов данной системы связи. Ошибка возникает, если в результате воздействия помехи реализация попадает в «чужую» область. Оптимальный приемник разбивает пространство реализаций наилучшим образом, поэтому средняя вероятность ошибки минимальна при всех возможных разбиениях.

Каждая область соответствует предположению (гипотезе) о том, что передан был один из возможных сигналов.

Пример. Предположим, что результатом обработки в двоичной системе связи с амплитудной телеграфией является значение y , соответствующее окончанию интервала наблюдения. Если в колебании z (t ) присутствует только шум, имеющий гауссово распределение с нулевым математическим ожиданием, то плотность распределения величины y имеет вид:

, (17.2)

если кроме шума на вход приемника поступает сигнал, то результат обработки имеет ненулевое (для определенности – положительное) среднее значение a , и плотность распределения величины y имеет вид:

. (17.3)

Гипотезы, соответствующие выражениям (17.2) и (17.3), являются простыми. Если среднеквадратическое отклонение σ неизвестно, гипотезы являются сложными.

Рассмотрим систему связи, в которой используются K различных символов. Тогда демодулятор должен различать K различных гипотез. При этом возможны ошибки: может быть принято решение D j в пользу j -й гипотезы, в то время как справедливой является i -я гипотеза. Такая ситуация характеризуется условной вероятностью ошибки p ij = P {D j / H i }. Различные ошибки могут наносить разный вред, поэтому вводится численная характеристика П ij , называемая потерей, или риском.

Каждая (i -я) гипотеза характеризуется некоторой вероятностью p i осуществления, которая называется априорной вероятностью. Суммируя возможные ошибки, можно ввести усредненную характеристику (критерий) качества принятия решения, называемую средним риском: .

Средний риск представляет собой математическое ожидание потерь, связанных с принятием решения.

Если априорные вероятности гипотез точно известны, а потери назначены обоснованно, то приемник, обеспечивающий наименьший средний риск, будет наиболее выгодным. Критерий минимума среднего рисканазывают также критерием Байеса.

Иногда потери, связанные с различными ошибками, принимают равными друг другу, П ij =П ; П i i = 0; i = 1,… К , тогда оптимальный байесовский приемник обеспечивает минимальную среднюю вероятностьошибки (критерий идеального наблюдателя) и называется идеальным приемником Котельникова:

.

Если принять равными и априорные вероятности гипотез p i = 1/K ;
i = 1,…К , то критерий Байеса сводится к критерию минимума суммарнойусловной вероятности ошибки:



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: