Эталонная модель osi физический уровень. Эталонная моДель OSI. Для чего нужна модель OSI и кто разработал данную модель

Эталонная модель OSI

Это описательная схема сети; ее стандарты гарантируют высокую совместимость и способность к взаимодействию различных типов сетевых технологий. Кроме того, она иллюстрирует процесс перемещения информации по сетям. Модель OSI описывает, каким образом информация проделывает путь через сетевую среду (например, провода) от одной прикладной программы (например, программы обработки таблиц) к другой прикладной программе, находящейся в другом подключенном к сети компьютере.

Эталонная модель OSI делит задачу перемещения информации между компьютерами через сетевую среду на семь менее крупных и, следовательно, более легко разрешимых подзадач. Каждая из этих семи подзадач выбрана потому, что она относительно автономна и, следовательно, ее легче решить без чрезмерной опоры на внешнюю информацию. Такое разделение на уровни называется иерархическим представлением. Каждый уровень соответствует одной из семи подзадач...

Поскольку нижние уровни (с 1 по 3) модели OSI управляют физической доставкой сообщений по сети, их часто называют уровнями среды передачи данных (media layers). Верхние уровни (с 4 по 7) модели OSI обеспечивают точную доставку данных между компьютерами в сети, поэтому их часто называют уровнями хост-машины (host layers).

Прикладной уровень (уровень 7) - это самый близкий к пользователю уровень OSI. Он отличается от других уровней тем, что не обеспечивает услуг ни одному из других уровней OSI. Он обеспечивает услугами прикладные процессы, лежащие за пределами масштаба модели OSI. Примерами таких прикладных процессов могут служить процессы передачи речевых сигналов, базы данных, текстовые процессоры и т.д.

Этот уровень идентифицирует и устанавливает наличие предполагаемых партнеров для связи, синхронизирует совместно работающие прикладные процессы, а также устанавливает и согласовывает процедуры устранения ошибок и управления целостностью информации. Прикладной уровень также определяет, имеется ли в наличии достаточно ресурсов для предполагаемой связи.

Проще говоря этот уровень отвечает за доступ приложений в сеть. Задачами этого уровня является перенос файлов, обмен почтовыми сообщениями и управление сетью.

К числу наиболее распространенных протоколов верхних уровней относятся:

FTP - протокол переноса файлов

TFTP - упрощенный протокол переноса файлов

X.400 - электронная почта

SMTP - простой протокол почтового обмена

CMIP - общий протокол управления информацией

SNMP - простой протокол управления сетью

NFS - сетевая файловая система

FTAM - метод доступа для переноса файлов

Представительный уровень (уровень 6) отвечает за то, чтобы информация, посылаемая из прикладного уровня одной системы, была читаемой для прикладного уровня другой системы. При необходимости представительный уровень осуществляет трансляцию между множеством форматов представления информации путем использования общего формата представления информации.

Этот уровень занят не только форматом и представлением фактических данных пользователя, но также структурами данных, которые используют программы. Поэтому кроме трансформации формата фактических данных (если она необходима), представительный уровень согласует синтаксис передачи данных для прикладного уровня.

Сеансовый уровень (уровень 5) устанавливает, управляет и завершает сеансы взаимодействия между прикладными задачами. Сеансы состоят из диалога между двумя или более объектами представления. Сеансовый уровень синхронизирует диалог между объектами представительного уровня и управляет обменом информации между ними.

Кроме того, предоставляет средства для отправки информации, класса услуг и уведомления в исключительных ситуациях о проблемах сеансового, представительного и прикладного уровней.

Транспортный уровень (уровень 4) Граница между сеансовым и транспортным уровнями может быть представлена как граница между протоколами высших (прикладных) уровней и протоколами низших уровней. В то время как прикладной, представительный и сеансовый уровни заняты прикладными вопросами, четыре низших уровня решают проблемы транспортировки данных.

Транспортный уровень обеспечивает услуги по транспортировке данных, что избавляет высшие слои от необходимости вникать в ее детали. Функцией транспортного уровня является надежная транспортировка данных через сеть. Предоставляя надежные услуги, транспортный уровень обеспечивает механизмы для установки, поддержания и упорядоченного завершения действия каналов, систем обнаружения и устранения неисправностей транспортировки и управления информационным потоком (с целью предотвращения переполнения системы данными из другой системы).

Проще говоря транспортный уровень делит потоки информации на достаточно малые фрагменты (пакеты) для передачи их на сетевой уровень.

Наиболее распространенные протоколы транспортного уровня включают:

TCP - протокол управления передачей

NCP - Netware Core Protocol

SPX - упорядоченный обмен пакетами

TP4 - протокол передачи класса 4

Сетевой уровень (уровень 3) - это комплексный уровень, который обеспечивает возможность соединения и выбор маршрута между двумя конечными системами.

Поскольку две конечные системы, желающие организовать связь, может разделять значительное географическое расстояние и множество подсетей, сетевой уровень является доменом маршрутизации. Протоколы маршрутизации выбирают оптимальные маршруты через последовательность соединенных между собой подсетей. Традиционные протоколы сетевого уровня передают информацию вдоль этих маршрутов.

Другими словами сетевой уровень отвечает за деление пользователей на группы. На этом уровне происходит маршрутизация пакетов на основе преобразования MAC-адресов в сетевые адреса. Сетевой уровень обеспечивает также прозрачную передачу пакетов на транспортный уровень.

Наиболее часто на сетевом уровне используются протоколы:

IP - протокол Internet

IPX - протокол межсетевого обмена

X.25 (частично этот протокол реализован на уровне 2)

CLNP - сетевой протокол без организации соединений

Канальный уровень (уровень 2) (формально называемый информационно-канальным уровнем) обеспечивает надежный транзит данных через физический канал. Выполняя эту задачу, канальный уровень решает вопросы физической адресации (в противоположность сетевой или логической адресации), топологии сети, линейной дисциплины (каким образом конечной системе использовать сетевой канал), уведомления об ошибках, упорядоченной доставки блоков данных и управления потоком информации.

Спецификации IEEE 802.x делят канальный уровень на два подуровня: управление логическим каналом (LLC) и управление доступом к среде (MAC). LLC обеспечивает обслуживание сетевого уровня, а подуровень MAC регулирует доступ к разделяемой физической среде. (Он же IEEE 802.1 - задает стандарты управления сетью на MAC-уровне, включая алгоритм Spanning Tree. Этот алгоритм используется для обеспечения единственности пути (отсутствия петель) в многосвязных сетях на основе мостов и коммутаторов с возможностью его замены альтернативным путем в случае выхода из строя.)

Наиболее часто используемые на уровне 2 протоколы включают:

HDLC для последовательных соединений

IEEE 802.2 LLC (тип I и тип II) обеспечивают MAC для сред 802.x

Физический уровень (уровень 1) определяет электротехнические, механические, процедурные и функциональные характеристики установления, поддержания и разъединения физического канала между конечными системами. Спецификации физического уровня определяют такие характеристики, как величины напряжений, параметры синхронизации, скорость передачи физической информации, максимальные расстояния передачи информации, физические соединители и другие аналогичные характеристики.

Этот уровень получает пакеты данных от вышележащего канального уровня и преобразует их в оптические или электрические сигналы, соответствующие 0 и 1 бинарного потока. Эти сигналы посылаются через среду передачи на приемный узел. Механические и электрические/оптические свойства среды передачи определяются на физическом уровне и включаютя:

Тип кабелей и разъемов

Разводку контактов в разъемах

Схему кодирования сигналов для значений 0 и 1

К числу наиболее распространенных спецификаций физического уровня относятся:

EIA-RS-232-C, CCITT V.24/V.28 - механические/электрические характеристики несбалансированного последовательного интерфейса.

EIA-RS-422/449, CCITT V.10 - механические, электрические и оптические характеристики сбалансированного последовательного интерфейса.

IEEE 802.3 -- Ethernet

IEEE 802.5 -- Token ring

Физической средой в различных телекоммуникационных системах могут быть самые разнообразные средства от простейшей пары проводов до сложной системы передачи синхронной цифровой иерархии.

Чтобы понять структуру и принципы функционирования сети, необходимо уяснить, что любой обмен данными в сети осуществляется от источника к получателю. Информацию, посланную в сеть, называют данными, или пакетами данных. Если один компьютер (источник) хочет послать данные другому компьютеру (получателю), то данные

сначала должны быть собраны в пакеты в процессе инкапсуляции; который перед отправкой в сеть погружает их в заголовок конкретного протокола. Этот процесс можно сравнить с подготовкой бандероли к отправке - обернуть содержимое бумагой, вложить в транспортный конверт, указать адрес отправителя и получателя, наклеить марки и бросить в почтовый ящик.

При выполнении сетями услуг пользователям, поток и вид упаковки информации изменяются.

Например..пять этапов преобразования:

1. Формирование данных. Когда пользователь посылает сообщение электронной почтой, алфавитно-цифровые символы сообщения преобразовываются в данные, которые могут перемещаться в сетевом комплексе.

2. Упаковка данных для сквозной транспортировки. Для передачи через сетевой комплекс данные соответствующим образом упаковываются. Благодаря использованию сегментов, транспортная функция гарантирует надежное соединение участвующих в обмене

Эталонная модель OSI являет собой 7-уровневую сетевую иерархию созданную международной организацией по стандартам (ISO). Представленная модель на рис.1 имеет 2 различных модели:

  • горизонтальная модель на основе протоколов, реализующую взаимодействие процессов и ПО на разных машинах
  • вертикальную модель на основе услуг, реализуемых соседними уровнями друг другу на одной машине

В вертикальной — соседние уровни меняются информацией с помощью интерфейсов API. Горизонтальная модель требует общий протокол для обмена информацией на одном уровне.

Рисунок — 1

Модель OSI описывает только системные методы взаимодействия, реализуемые ОС, ПО и тд. Модель не включает методы взаимодействия конечных пользователей. В идеальных условиях приложения должны обращаться к верхнему уровню модели OSI, однако на практике многие протоколы и программы имеют методы обращения к нижним уровням.

Физический уровень

На физическом уровне данные представлены в виде электрических или оптических сигналов, соответствующие 1 и 0 бинарного потока. Параметры среды передачи определяются на физическом уровне:

  • тип разъемов и кабелей
  • разводка контактов в разъемах
  • схема кодирования сигналов 0 и 1

Самые распространенные виды спецификаций на этом уровне:

  • — параметры несбалансированного последовательного интерфейса
  • — параметры сбалансированного последовательного интерфейса
  • IEEE 802.3 —
  • IEEE 802.5 —

На физическом уровне нельзя вникнуть в смысл данных, так как она представлена в виде битов.

Канальный уровень

На этом канале реализована транспортировка и прием кадров данных. Уровень реализует запросы сетевого уровня и использует физический уровень для приема и передачи. Спецификации IEEE 802.x делят этот уровень на два подуровня управление логическим каналом (LLC) и управление доступом к среде (MAC). Самые распространенные протоколы на этом уровне:

  • IEEE 802.2 LLC и MAC
  • Ethernet
  • Token Ring

Также на этом уровне реализуется обнаружение и исправление ошибок при передаче. На канальном уровне пакет помещается в поле данных кадра — инкапсуляция. Обнаружение ошибок возможно с помощью разных методов. К примеру реализация фиксированных границ кадра, или контрольной суммой.

Сетевой уровень

На этом уровне происходит деление пользователей сети на группы. Здесь реализуется маршрутизация пакетов на основе MAC-адресов. Сетевой уровень реализует прозрачную передачу пакетов на транспортный уровень. На этом уровне стираются границы сетей разных технологий. работают на этом уровне. Пример работы сетевого уровня показан на рис.2 Самые частые протоколы:

Рисунок — 2

Транспортный уровень

На этом уровне потоки информации делятся на пакеты для передачи их на сетевом уровне. Самые распространенные протоколы этого уровня:

  • TCP — протокол управления передачей

Сеансовый уровень

На этом уровне происходит организация сеансов обмена информацией между оконечными машинами. На этом уровне идет определение активной стороны и реализуется синхронизация сеанса. На практике многие протоколы других уровней включают функцию сеансового уровня.

Уровень представления

На этом уровне происходит обмен данными между ПО на разных ОС. На этом уровне реализовано преобразование информации ( , сжатие и тд) для передачи потока информации на транспортный уровень. Протоколы уровня используются и те, что используют высшие уровни модели OSI.

Прикладной уровень

Прикладной уровень реализует доступ приложения в сеть. Уровень управляет переносом файлов и управление сетью. Используемые протоколы:

  • FTP/TFTP — протокол передачи файлов
  • X 400 — электронная почта
  • Telnet
  • CMIP — управление информацией
  • SNMP — управление сетью
  • NFS — сетевая файловая система
  • FTAM — метод доступа для переноса файлов

Эталонная модель

Эталонная модель (англ. reference model , master model ) - это абстрактное представление понятий и отношений между ними в некоторой проблемной области. На основе эталонной строятся более конкретные и детально описанные модели, в итоге воплощённые в реально существующие объекты и механизмы. Понятие эталонной модели используется в информатике .

Примеры Эталонных моделей

  • Сетевая модель OSI (Open Systems Interconnection Reference Model),
  • модель Открытого геопространственного консорциума (англ.) ,
  • архитектура фон Неймана - модель эталонной модели с последовательными вычислениями,
  • эталонная модель Архитектуры государственного предприятия (англ.) ,
  • Эталонная Информационная Модель HL7 (Reference Information Model, RIM HL7),
  • Эталонная Модель (Reference Model, RM) openEHR .

Wikimedia Foundation . 2010 .

Смотреть что такое "Эталонная модель" в других словарях:

    эталонная модель - иерархическая модель — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом Синонимы иерархическая модель EN reference model …

    эталонная модель - etaloninis modelis statusas T sritis automatika atitikmenys: angl. master model; reference model vok. Referenzmodell, n rus. эталонная модель, f pranc. modèle de référence, m; modèle standard, m … Automatikos terminų žodynas

    эталонная модель - 3.1.41 эталонная модель (reference model): Структурированный комплект взаимосвязанных представлений об объекте (например информационной системе), охватывающий данный объект в целом, упрощающий разбиение связей по тематике, который может быть… … Словарь-справочник терминов нормативно-технической документации

    эталонная модель ВОС - Модель взаимодействия открытых систем, разработанная ISO в 1984 г. Позволяет универсальным образом описать логику информационного обмена между взаимосвязанными системами и абонентами. Полная модель содержит семь уровней. На самом нижнем… … Справочник технического переводчика

    эталонная модель ISO/OSI - Семиуровневая эталонная модель протоколов передачи данных. Определяет уровни: физический, канальный, сетевой, транспортный, сеансовый, представительский и прикладной. В CAN сетях обычно реализуются только физический, канальный и прикладной уровни … Справочник технического переводчика

    эталонная модель протоколов широкополосной ISDN-сети - Модель включает четыре горизонтальных уровня (физический, ATM, адаптации ATM и верхние уровни) и три вертикальных плоскости (пользователя, управления и администрирования). Соответствие между моделями В ISDN и OSI обеспечивается на физическом… … Справочник технического переводчика

    эталонная модель BOC - ЭМВОС Модель, разработанная МОС, содержащая семь уровней (слоев) протоколов и предназначенная для коммуникации между устройствами в сети. [Е.С.Алексеев, А.А.Мячев. Англо русский толковый словарь по системотехнике ЭВМ. Москва 1993] Тематики… … Справочник технического переводчика

    эталонная модель взаимодействия открытых систем - — Тематики электросвязь, основные понятия EN ISO/OSI reference model … Справочник технического переводчика

    эталонная модель протокола - — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN protocol reference modulePRM … Справочник технического переводчика

    эталонная модель соединения открытых систем - — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN reference model of open systems … Справочник технического переводчика

Книги

  • Компьютерные сети. В 2 томах. Том 1. Системы передачи данных , Р. Л. Смелянский. Приведены теоретические основы систем передачи данных, характеристики основных видов физических сред, способы кодирования и передачи аналоговых и цифровых данных, основы организации…

Только начали работать сетевым администратором? Не хотите оказаться сбитым с толку? Наша статья вам пригодится. Слышали, как проверенный временем администратор говорит о сетевых неполадках и упоминает какие-то уровни? Может вас когда-нибудь спрашивали на работе, какие уровни защищены и работают, если вы используете старый брандмауэр? Чтобы разобраться с основами информационной безопасности, нужно понять принцип иерархии модели OSI. Попробуем увидеть возможности данной модели.

Уважающий себя системный администратор должен хорошо разбираться в сетевых терминах

В переводе с английского - базовая эталонная модель взаимодействия открытых систем. Точнее, сетевая модель стека сетевых протоколов OSI/ISO. Введена в 1984 году в качестве концептуальной основы, разделившей процесс отправки данных во всемирной паутине на семь несложных этапов. Она не является самой популярной, так как затянулась разработка спецификации OSI. Стек протоколов TCP/IP выгоднее и считается основной используемой моделью. Впрочем, у вас есть огромный шанс столкнуться с моделью OSI на должности системного администратора или в IT-сфере.

Создано множество спецификаций и технологий для сетевых устройств. В таком разнообразии легко запутаться. Именно модель взаимодействия открытых систем помогает понимать друг друга сетевым устройствам, использующим различные методы общения. Заметим, что наиболее полезна OSI для производителей программного и аппаратного обеспечения, занимающихся проектированием совместимой продукции.

Спросите, какая же в этом польза для вас? Знание многоуровневой модели даст вам возможность свободного общения с сотрудниками IT-компаний, обсуждение сетевых неполадок уже не будет гнетущей скукой. А когда вы научитесь понимать, на каком этапе произошёл сбой, сможете легко находить причины и значительно сокращать диапазон своей работы.

Уровни OSI

Модель содержит в себе семь упрощённых этапов:

  • Физический.
  • Канальный.
  • Сетевой.
  • Транспортный.
  • Сеансовый.
  • Представительский.
  • Прикладной.

Почему разложение на шаги упрощает жизнь? Каждый из уровней соответствует определённому этапу отправки сетевого сообщения . Все шаги последовательны, значит, функции выполняются независимо, нет необходимости в информации о работе на предыдущем уровне. Единственная необходимая составляющая - способ получения данных с предшествующего шага, и каким образом пересылается информация на последующий шаг.

Перейдём к непосредственному знакомству с уровнями.

Физический уровень

Главная задача первого этапа - пересылка битов через физические каналы связи. Физические каналы связи - устройства, созданные для передачи и приёма информационных сигналов. К примеру, оптоволокно, коаксиальный кабель или витая пара. Пересылка может проходить и через беспроводную связь. Первый этап характеризуется средой передачи данных: защитой от помех, полосой пропускания, волновым сопротивлением. Так же задаются качества электрических конечных сигналов (вид кодирования, уровни напряжения и скорость передачи сигнала) и подводятся к стандартным типам разъёмов, назначаются контактные соединения.

Функции физического этапа осуществляются абсолютно на каждом устройстве, подключённом к сети. Например, сетевой адаптер реализовывает эти функции со стороны компьютера. Вы могли уже столкнуться с протоколами первого шага: RS -232, DSL и 10Base-T, определяющими физические характеристики канала связи.

Канальный уровень

На втором этапе связываются абстрактный адрес устройства с физическим устройством, проверяется доступность среды передачи. Биты сформировываются в наборы - кадры. Основная задача канального уровня - выявление и правка ошибок. Для корректной пересылки перед и после кадра вставляются специализированные последовательности битов и добавляется высчитанная контрольная сумма . Когда кадр достигает адресата, вновь высчитывается контрольная сумма, уже прибывших данных, если она совпадает с контрольной суммой в кадре, кадр признаётся правильным. В ином случае появляется ошибка, исправляемая через повторную передачу информации.

Канальный этап делает возможным передачу информации, благодаря специальной структуре связей. В частности, через протоколы канального уровня работают шины, мосты, коммутаторы. В спецификации второго шага входят: Ethernet, Token Ring и PPP. Функции канального этапа в компьютере исполняют сетевые адаптеры и драйверы к ним.

Сетевой уровень

В стандартных ситуациях функций канального этапа не хватает для высококачественной передачи информации. Спецификации второго шага могут передавать данные лишь между узлами с одинаковой топологией, к примеру, дерева. Появляется необходимость в третьем этапе. Нужно образовать объединённую транспортную систему с разветвлённой структурой для нескольких сетей, обладающих произвольной структурой и различающихся методом пересылки данных.

Если объяснить по-другому, то третий шаг обрабатывает интернет-протокол и исполняет функцию маршрутизатора: поиск наилучшего пути для информации. Маршрутизатор - устройство, собирающее данные о структуре межсетевых соединений и передающее пакеты в сеть назначения (транзитные передачи - хопы). Если вы сталкиваетесь с ошибкой в IP-адресе, то это проблема, возникшая на сетевом уровне. Протоколы третьего этапа разбиваются на сетевые, маршрутизации или разрешения адресов: ICMP, IPSec, ARP и BGP.

Транспортный уровень

Чтобы данные дошли до приложений и верхних уровней стека, необходим четвёртый этап. Он предоставляет нужную степень надёжности передачи информации. Значатся пять классов услуг транспортного этапа. Их отличие заключается в срочности, осуществимости восстановления прерванной связи, способности обнаружить и исправить ошибки передачи. К примеру, потеря или дублирование пакетов.

Как выбрать класс услуг транспортного этапа? Когда качество каналов транспортировки связи высокое, адекватным выбором окажется облегчённый сервис. Если каналы связи в самом начале работают небезопасно, целесообразно прибегнуть к развитому сервису, который обеспечит максимальные возможности для поиска и решения проблем (контроль поставки данных, тайм-ауты доставки). Спецификации четвёртого этапа: TCP и UDP стека TCP/IP, SPX стека Novell.

Объединение первых четырёх уровней называется транспортной подсистемой. Она сполна предоставляет выбранный уровень качества.

Сеансовый уровень

Пятый этап помогает в регулировании диалогов. Нельзя, чтобы собеседники прерывали друг друга или говорили синхронно. Сеансовый уровень запоминает активную сторону в конкретный момент и синхронизирует информацию, согласуя и поддерживая соединения между устройствами. Его функции позволяют возвратиться к контрольной точке во время длинной пересылки и не начинать всё заново. Также на пятом этапе можно прекратить соединение, когда завершается обмен информацией. Спецификации сеансового уровня: NetBIOS.

Представительский уровень

Шестой этап участвует в трансформации данных в универсальный распознаваемый формат без изменения содержания. Так как в разных устройствах утилизируются различные форматы, информация, обработанная на представительском уровне, даёт возможность системам понимать друг друга, преодолевая синтаксические и кодовые различия. Кроме того, на шестом этапе появляется возможность шифровки и дешифровки данных, что обеспечивает секретность. Примеры протоколов: ASCII и MIDI, SSL.

Прикладной уровень

Седьмой этап в нашем списке и первый, если программа отправляет данные через сеть. Состоит из наборов спецификаций, через которые юзер , Web-страницам. Например, при отправке сообщений по почте именно на прикладном уровне выбирается удобный протокол. Состав спецификаций седьмого этапа очень разнообразен. К примеру, SMTP и HTTP, FTP, TFTP или SMB.

Вы можете услышать где-нибудь о восьмом уровне модели ISO. Официально, его не существует, но среди работников IT-сферы появился шуточный восьмой этап. Всё из-за того, что проблемы могут возникнуть по вине пользователя, а как известно, человек находится у вершины эволюции, вот и появился восьмой уровень.

Рассмотрев модель OSI, вы смогли разобраться со сложной структурой работы сети и теперь понимаете суть вашей работы. Всё становится довольно просто, когда процесс разбивается на части!

Несмотря на то что протоколы, связанные с эталонной моделью OSI, используются сейчас очень редко, сама модель до сих пор весьма актуальна, а свойства ее уровней, которые будут обсуждаться в этом разделе, очень важны. В эталонной модели TCP/IP все наоборот - сама модель сейчас почти не используется, а ее протоколы являются самыми распространенными. Исходя из этого, мы обсудим подробности, касающиеся обеих моделей.

Эталонная модель OSI

Эталонная модель OSI (за исключением физической среды) показана на рис. 1.16. Эта модель основана на разработке Международной организации по стандарти­зации (International Organization for Standardization, ISO) и является первым ша­гом к международной стандартизации протоколов, используемых на различных уровнях (Day и Zimmerman, 1983). Затем она была пересмотрена в 1995 году (Day, 1995). Называется эта структура эталонной моделью взаимодействия от­крытых систем ISO (ISO OSI (Open System Interconnection) Reference Model), поскольку она связывает открытые системы, то есть системы, открытые для свя­зи с другими системами. Для краткости мы будем называть эту модель просто «модель OSI».

Модель OSI имеет семь уровней. Появление именно такой структуры было обусловлено следующими соображениями.

1. Уровень должен создаваться по мере необходимости отдельного уровня абстракции.

2. Каждый уровень должен выполнять строго определенную функцию.

3. Выбор функций для каждого уровня должен осуществляться с учетом создания стандартизированных международных протоколов.

4. Границы между уровнями должны выбираться так, чтобы поток данных между интерфейсами был минимальным.

5. Количество уровней должно быть достаточно большим, чтобы различные функции не объединялись в одном уровне без необходимости, но не слишком высоким, чтобы архитектура не становилась громоздкой.

Далее мы обсудим каждый уровень модели, начиная с самого нижнего. Обра­тите внимание: модель OSI не является сетевой архитектурой, поскольку она не описывает службы и протоколы, используемые на каждом уровне. Она просто определяет, что должен делать каждый уровень. Тем не менее ISO также разработала стандарты для каждого уровня, хотя эти стандарты не входят в саму эталонную модель. Каждый из них был опубликован как отдельный международный стандарт.

Физический уровень

Физический уровень занимается реальной передачей необработанных битов по каналу связи. При разработке сети необходимо убедиться, что когда одна сторона передает единицу, то принимающая сторона получает также единицу, а не ноль. Принципиальными вопросами здесь являются следующие: какое напряжение должно использоваться для отображения единицы, а какое - для нуля; сколько микросекунд длится бит; может ли передача производиться одновременно в двух направлениях; как устанавливается начальная связь и как она прекращается, когда обе стороны закончили свои задачи; из какого количества проводов должен состоять кабель и какова функция каждого провода. Вопросы разработки в основном связаны с механическими, электрическими и процедурными интерфейсами, а также с физическим носителем, лежащим ниже физического уровня.

Уровень передачи данных

Основная задача уровня передачи данных - быть способным передавать «сырые» данные физического уровня по надежной линии связи, свободной от необнаруженных ошибок с точки зрения вышестоящего сетевого уровня. Уровень выполняет эту задачу при помощи разбиения входных данных на кадры, обычный размер которых колеблется от нескольких сотен до нескольких тысяч байт. Кадры данных передаются последовательно с обработкой кадров подтверждения, отсылаемых обратно получателем.

Еще одна проблема, возникающая на уровне передачи данных (а также и на большей части более высоких уровней), - как не допустить ситуации, когда быстрый передатчик заваливает приемник данными. Должен быть предусмотрен некий механизм регуляции, который информировал бы передатчик о наличии свободного места в буфере приемника на текущий момент. Часто подобное управление объединяется с механизмом обработки ошибок.

В широковещательных сетях существует еще одна проблема уровня передачи данных: как управлять доступом к совместно используемому каналу. Эта проблема разрешается введением специального дополнительного подуровня уровня передачи данных - подуровня доступа к носителю.

Сетевой уровень

Сетевой уровень занимается управлением операциями подсети. Важнейшим моментом здесь является определение маршрутов пересылки пакетов от источника к пункту назначения. Маршруты могут быть жестко заданы в виде таблиц и редко меняться. Кроме того, они могут задаваться в начале каждого соединения, например терминальной сессии. Наконец, они могут быть в высокой степени динамическими, то есть вычисляемыми заново для каждого пакета с учетом текущей загруженности сети.

Если в подсети одновременно присутствует слишком большое количество пакетов, то они могут закрыть дорогу друг другу, образуя заторы в узких местах. Недопущение подобной закупорки также является задачей сетевого уровня. В бо­лее общем смысле сетевой уровень занимается предоставлением определенного уровня сервиса (это касается задержек, времени передачи, вопросов синхронизации).

При путешествии пакета из одной сети в другую также может возникнуть ряд проблем. Так, способ адресации, применяемый в одной сети, может отличаться от принятого в другой. Сеть может вообще отказаться принимать пакеты из-за того, что они слишком большого размера. Также могут различаться протоколы, и т. д. Именно сетевой уровень должен разрешать все эти проблемы, позволяя объединять разнородные сети.

В широковещательных сетях проблема маршрутизации очень проста, поэтому в них сетевой уровень очень примитивный или вообще отсутствует.

Транспортный уровень

Основная функция транспортного уровня - принять данные от сеансового уровня, разбить их при необходимости на небольшие части, передать их сетевому уровню и гарантировать, что эти части в правильном виде прибудут по назначению. Кроме того, все это должно быть сделано эффективно и таким образом, чтобы изолировать более высокие уровни от каких-либо изменений в аппаратной технологии.

Транспортный уровень также определяет тип сервиса, предоставляемого сеансовому уровню и, в конечном счете, пользователям сети. Наиболее популярной разновидностью транспортного соединения является защищенный от ошибок канал между двумя узлами, поставляющий сообщения или байты в том порядке, в каком они были отправлены. Однако транспортный уровень может предоставлять и другие типы сервисов, например пересылку отдельных сообщений без гарантии соблюдения порядка их доставки или одновременную отправку сообщения различным адресатам по принципу широковещания. Тип сервиса определяется при установке соединения. (Строго говоря, полностью защищенный от ошибок канал создать невозможно. Говорят лишь о таком канале, уровень ошибок в котором достаточно мал, чтобы ими можно было пренебречь на практике.)

Транспортный уровень является настоящим сквозным уровнем, то есть доставляющим сообщения от источника адресату. Другими словами, программа на машине-источнике поддерживает связь с подобной программой на другой машине при помощи заголовков сообщений и управляющих сообщений. На более низких уровнях для поддержки этого соединения устанавливаются соединения между всеми соседними машинами, через которые проходит маршрут сообщений.

Сеансовый уровень

Сеансовый уровень позволяет пользователям различных компьютеров устанавливать сеансы связи друг с другом. При этом предоставляются различные типы сервисов, среди которых управление диалогом (отслеживание очередности передачи данных), управление маркерами (предотвращение одновременного выполнения критичной операции несколькими системами) и синхронизация (установка служебных меток внутри длинных сообщений, позволяющих после устранения ошибки продолжить передачу с того места, на котором она оборвалась).

Уровень представления

В отличие от более низких уровней, задача которых - достоверная передача битов и байтов, уровень представления занимается по большей части синтаксисом и семантикой передаваемой информации. Чтобы было возможно общение компьютеров с различными представлениями данных, необходимо преобразовывать форматы данных друг в друга, передавая их по сети в неком стандартизированном виде. Уровень представления занимается этими преобразованиями, предоставляя возможность определения и изменения структур данных более высокого уровня (например, записей баз данных).

Прикладной уровень

Прикладной уровень содержит набор популярных протоколов, необходимых пользователям. Одним из наиболее распространенных является протокол передачи гипертекста HTTP (HyperText Transfer Protocol), который составляет основу технологии Всемирной Паутины. Когда браузер запрашивает веб-страницу, он передает ее имя (адрес) и рассчитывает на то, что сервер будет использовать HTTP. Сервер в ответ отсылает страницу. Другие прикладные протоколы используются для передачи файлов, электронной почты, сетевых рассылок.

Критика модели и протоколов OSI

Некоторое время назад, многим экспертам в данной области казалось, что модель OSI и ее протоколы завоюют весь мир и вытеснят все остальное. Этого не случилось. По­чему? Может быть, полезно оглянуться и учесть некоторые из уроков этой истории. Основных причин неудачи модели OSI было четыре:

Несвоевременность;

Неудачная технология;

Неудачная реализация;

Неудачная политика.

Несвоевременность

Прежде всего рассмотрим причину номер один: несвоевременность. Для успеха стандарта чрезвычайно важно, в какое время он устанавливается. У Дэвида Клар­ка (David Clark) из M.I.T. есть теория стандартов, которую он называет апокалипсисом двух слонов.

На этом рисунке изображена активность, сопровождающая любую новую разработку. Открытие новой темы вначале вызывает всплеск исследовательской активности в виде дискуссий, статей и собраний. Через некоторое время наступает спад активности, эту тему открывают для себя корпорации, и в результате в нее инвестируются миллиарды долларов.

Существенным является то, что стандарты пишутся именно в период между двумя «слонами». Если их создавать слишком рано, прежде чем закончатся исследования, предмет может оказаться еще слишком мало изучен и понят, что повлечет принятие плохих стандартов. Если создавать их слишком поздно, компании могут успеть вложить деньги в несколько отличные от стандартов технологии, так что принятые стандарты могут оказаться проигнорированными. Если интервал между двумя пиками активности будет слишком коротким (а все стремятся делать деньги как можно быстрее), разработчики стандартов могут просто не успеть их выработать.

Теперь становится ясно, почему стандартные протоколы OSI потерпели неудачу. К моменту их появления среди исследовательских университетов уже получили широкое распространение конкурирующие с ними протоколы TCP/IP. И хотя волна инвестиций еще не обрушилась на данную область, рынок университетов был достаточно широк для того, чтобы многие разработчики стали осторожно предлагать продукты, поддерживающие протоколы TCP/IP. Когда же появился OSI, разработчики не захотели поддерживать второй стек протоколов; таким образом, начальных предложений не было. Каждая компания выжидала, пока первым начнет кто-нибудь другой, поэтому OSI так никто и не стал поддерживать.

Плохая технология

Второй причиной, по которой модель OSI не была реализована, оказалось несовершенство как самой модели, так и ее протоколов. Выбор семиуровневой структуры стал больше политическим решением, чем техническим. В результате два уровня (сеансовый и уровень представления) почти пусты, тогда как два других (сетевой и передачи данных) перегружены.

Эталонная модель OSI вместе с соответствующими определениями служб и протоколами оказалась невероятно сложной. Если сложить в стопку распечатку официального описания стандартов, получится кипа бумаги высотой в один метр. Модель тяжело реализуема и неэффективна в работе.

Еще одна проблема, помимо невозможности понять стандарты OSI, заключалась в том, что некоторые функции, такие как адресация, управление потоком и обработка ошибок, повторялись снова и снова в каждом уровне. Так, например, в книге Saltzer и др. (1984) указывается, что для того, чтобы контроль за ошибками был эффективным, он должен осуществляться на самом верхнем уровне, поэтому повторение его снова и снова на каждом уровне часто оказывается излишним и неэффективным.

Неудачная реализация

Учитывая огромную сложность модели и протоколов, громоздкость и медлительность первых реализаций не стали неожиданностью. Неудачу потерпели все, кто попытался реализовать эту модель. Поэтому вскоре понятие «OSI» стало ассоциироваться с плохим качеством. И хотя со временем продукты улучшились, ассоциации остались.

Первые реализации TCP/IP, основанные на Berkley UNIX, напротив, были достаточно хороши (не говоря уже о том, что они были открытыми). Они довольно быстро вошли в употребление, что привело к появлению большого сообщества пользователей. Это вызвало исправления и улучшения реализации, в результате чего сообщество пользователей еще выросло. В данном случае обратная связь явно была положительной.

Неудачная политика

Из-за особенностей первоначальной реализации многие, особенно в университетских кругах, считали TCP/IP частью системы UNIX. А к системе UNIX в университетских кругах в 80-е годы испытывали чувства, средние между родительскими (в те времена некорректно по отношению к правам мужского населения называемые материнскими) и чувствами к яблочному пирогу.

С другой стороны, OSI считался детищем европейских телекоммуникационных министерств, Европейского сообщества и (позднее) правительства США. Все это было лишь отчасти верным, однако сама мысль о группе правительственных чиновников, пытающихся протолкнуть неудачный в техническом отношении стандарт в глотки бедных исследователей и программистов, прокладывавших компьютерные сети в траншеях, не способствовала продвижению этой модели. Кое-кто рассматривал это развитие в том же свете, что и заявления корпорации IBM, сделанные в 1960 году, о том, что PL/I будет языком будущего, или Министерства обороны, поправлявшего позднее это утверждение своим заявлением, что в действительности таким языком будет Ada.

Несмотря на все недостатки, модель OSI (кроме сеансового уровня и уровня представления) показала себя исключительно полезной для теоретических дискуссий о компьютерных сетях. Протоколы OSI, напротив, не получили широкого распространения. Для TCP/IP верно обратное: модель практически не существует, тогда как протоколы чрезвычайно популярны.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: