Технология Ethernet, Fast Ethernet, Gigabit Ethernet. Основные отличия. Характеристики. Технология Fast Ethernet

Наибольшее распространение среди стандартных сетей получила сеть Ethernet. Она появилась в 1972 году, а в 1985 году стала международным стандартом. Ее приняли крупнейшие международные организации по стандартам: комитет 802 IEEE (Institute of Electrical and Electronic Engineers) и ECMA (European Computer Manufacturers Association).

Стандарт получил название IEEE 802.3 (по-английски читается как "eight oh two dot three"). Он определяет множественный доступ к моноканалу типа шина с обнаружением конфликтов и контролем передачи, то есть с уже упоминавшимся методом доступа CSMA/CD.

Основные характеристики первоначального стандарта IEEE 802.3:

· топология – шина;

· среда передачи – коаксиальный кабель;

· скорость передачи – 10 Мбит/с;

· максимальная длина сети – 5 км;

· максимальное количество абонентов – до 1024;

· длина сегмента сети – до 500 м;

· количество абонентов на одном сегменте – до 100;

· метод доступа – CSMA/CD;

· передача узкополосная, то есть без модуляции (моноканал).

Строго говоря, между стандартами IEEE 802.3 и Ethernet существуют незначительные отличия, но о них обычно предпочитают не вспоминать.

Сеть Ethernet сейчас наиболее популярна в мире (более 90% рынка), предположительно таковой она и останется в ближайшие годы. Этому в немалой степени способствовало то, что с самого начала характеристики, параметры, протоколы сети были открыты, в результате чего огромное число производителей во всем мире стали выпускать аппаратуру Ethernet, полностью совместимую между собой.

В классической сети Ethernet применялся 50-омный коаксиальный кабель двух видов (толстый и тонкий). Однако в последнее время (с начала 90-х годов) наибольшее распространение получила версия Ethernet, использующая в качестве среды передачи витые пары. Определен также стандарт для применения в сети оптоволоконного кабеля. Для учета этих изменений в изначальный стандарт IEEE 802.3 были сделаны соответствующие добавления. В 1995 году появился дополнительный стандарт на более быструю версию Ethernet, работающую на скорости 100 Мбит/с (так называемый Fast Ethernet, стандарт IEEE 802.3u), использующую в качестве среды передачи витую пару или оптоволоконный кабель. В 1997 году появилась и версия на скорость 1000 Мбит/с (Gigabit Ethernet, стандарт IEEE 802.3z).



Помимо стандартной топологии шина все шире применяются топологии типа пассивная звезда и пассивное дерево. При этом предполагается использование репитеров и репитерных концентраторов, соединяющих между собой различные части (сегменты) сети. В результате может сформироваться древовидная структура на сегментах разных типов (рис.7.1).

В качестве сегмента (части сети) может выступать классическая шина или единичный абонент. Для шинных сегментов используется коаксиальный кабель, а для лучей пассивной звезды (для присоединения к концентратору одиночных компьютеров) – витая пара и оптоволоконный кабель. Главное требование к полученной в результате топологии – чтобы в ней не было замкнутых путей (петель). Фактически получается, что все абоненты соединены в физическую шину, так как сигнал от каждого из них распространяется сразу во все стороны и не возвращается назад (как в кольце).

Максимальная длина кабеля сети в целом (максимальный путь сигнала) теоретически может достигать 6,5 километров, но практически не превышает 3,5 километров.

Рис. 7.1. Классическая топология сети Ethernet.

В сети Fast Ethernet не предусмотрена физическая топология шина, используется только пассивная звезда или пассивное дерево. К тому же в Fast Ethernet гораздо более жесткие требования к предельной длине сети. Ведь при увеличении в 10 раз скорости передачи и сохранении формата пакета его минимальная длина становится в десять раз короче. Таким образом в 10 раз уменьшается допустимая величина двойного времени прохождения сигнала по сети (5,12 мкс против 51,2 мкс в Ethernet).

Для передачи информации в сети Ethernet применяется стандартный манчестерский код.

Доступ к сети Ethernet осуществляется по случайному методу CSMA/CD, обеспечивающему равноправие абонентов. В сети используются пакеты переменной длины.

Для сети Ethernet, работающей на скорости 10 Мбит/с, стандарт определяет четыре основных типа сегментов сети, ориентированных на различные среды передачи информации:

· 10BASE5 (толстый коаксиальный кабель);

· 10BASE2 (тонкий коаксиальный кабель);

· 10BASE-T (витая пара);

· 10BASE-FL (оптоволоконный кабель).

Наименование сегмента включает в себя три элемента: цифра "10" означает скорость передачи 10 Мбит/с, слово BASE – передачу в основной полосе частот (то есть без модуляции высокочастотного сигнала), а последний элемент – допустимую длину сегмента: "5" – 500 метров, "2" – 200 метров (точнее, 185 метров) или тип линии связи: "Т" – витая пара (от английского "twisted-pair"), "F" – оптоволоконный кабель (от английского "fiber optic").

Точно так же для сети Ethernet, работающей на скорости 100 Мбит/с (Fast Ethernet) стандарт определяет три типа сегментов, отличающихся типами среды передачи:

· 100BASE-T4 (счетверенная витая пара);

· 100BASE-TX (сдвоенная витая пара);

· 100BASE-FX (оптоволоконный кабель).

Здесь цифра "100" означает скорость передачи 100 Мбит/с, буква "Т" – витую пару, буква "F" – оптоволоконный кабель. Типы 100BASE-TX и 100BASE-FX иногда объединяют под именем 100BASE-X, а 100BASE-T4 и 100BASE-TX – под именем 100BASE-T.


Сеть Token-Ring

Сеть Token-Ring (маркерное кольцо) была предложена компанией IBM в 1985 году (первый вариант появился в 1980 году). Она предназначалась для объединения в сеть всех типов компьютеров, выпускаемых IBM. Уже тот факт, что ее поддерживает компания IBM, крупнейший производитель компьютерной техники, говорит о том, что ей необходимо уделить особое внимание. Но не менее важно и то, что Token-Ring является в настоящее время международным стандартом IEEE 802.5 (хотя между Token-Ring и IEEE 802.5 есть незначительные отличия). Это ставит данную сеть на один уровень по статусу с Ethernet.

Разрабатывалась Token-Ring как надежная альтернатива Ethernet. И хотя сейчас Ethernet вытесняет все остальные сети, Token-Ring нельзя считать безнадежно устаревшей. Более 10 миллионов компьютеров по всему миру объединены этой сетью.

Сеть Token-Ring имеет топологию кольцо, хотя внешне она больше напоминает звезду. Это связано с тем, что отдельные абоненты (компьютеры) присоединяются к сети не напрямую, а через специальные концентраторы или многостанционные устройства доступа (MSAU или MAU – Multistation Access Unit). Физически сеть образует звездно-кольцевую топологию (рис.7.3). В действительности же абоненты объединяются все-таки в кольцо, то есть каждый из них передает информацию одному соседнему абоненту, а принимает информацию от другого.

Рис. 7.3. Звездно-кольцевая топология сети Token-Ring.

В качестве среды передачи в сети IBM Token-Ring сначала применялась витая пара, как неэкранированная (UTP), так и экранированная (STP), но затем появились варианты аппаратуры для коаксиального кабеля, а также для оптоволоконного кабеля в стандарте FDDI.

Основные технические характеристики классического варианта сети Token-Ring:

· максимальное количество концентраторов типа IBM 8228 MAU – 12;

· максимальное количество абонентов в сети – 96;

· максимальная длина кабеля между абонентом и концентратором – 45 метров;

· максимальная длина кабеля между концентраторами – 45 метров;

· максимальная длина кабеля, соединяющего все концентраторы – 120 метров;

· скорость передачи данных – 4 Мбит/с и 16 Мбит/с.

Все приведенные характеристики относятся к случаю использования неэкранированной витой пары. Если применяется другая среда передачи, характеристики сети могут отличаться. Например, при использовании экранированной витой пары (STP) количество абонентов может быть увеличено до 260 (вместо 96), длина кабеля – до 100 метров (вместо 45), количество концентраторов – до 33, а полная длина кольца, соединяющего концентраторы – до 200 метров. Оптоволоконный кабель позволяет увеличивать длину кабеля до двух километров.

Для передачи информации в Token-Ring применяется бифазный код (точнее, его вариант с обязательным переходом в центре битового интервала). Как и в любой звездообразной топологии, никаких дополнительных мер по электрическому согласованию и внешнему заземлению не требуется. Согласование выполняется аппаратурой сетевых адаптеров и концентраторов.

Для присоединения кабелей в Token-Ring используются разъемы RJ-45 (для неэкранированной витой пары), а также MIC и DB9P. Провода в кабеле соединяют одноименные контакты разъемов (то есть используются так называемые "прямые" кабели).

Сеть Token-Ring в классическом варианте уступает сети Ethernet как по допустимому размеру, так и по максимальному количеству абонентов. Что касается скорости передачи, то в настоящее время имеются версии Token-Ring на скорость 100 Мбит/с (High Speed Token-Ring, HSTR) и на 1000 Мбит/с (Gigabit Token-Ring). Компании, поддерживающие Token-Ring (среди которых IBM, Olicom, Madge), не намерены отказываться от своей сети, рассматривая ее как достойного конкурента Ethernet.

По сравнению с аппаратурой Ethernet аппаратура Token-Ring заметно дороже, так как используется более сложный метод управления обменом, поэтому сеть Token-Ring не получила столь широкого распространения.

Однако в отличие от Ethernet сеть Token-Ring значительно лучше держит высокий уровень нагрузки (более 30-40%) и обеспечивает гарантированное время доступа. Это необходимо, например, в сетях производственного назначения, в которых задержка реакции на внешнее событие может привести к серьезным авариям.

В сети Token-Ring используется классический маркерный метод доступа, то есть по кольцу постоянно циркулирует маркер, к которому абоненты могут присоединять свои пакеты данных (см. рис. 4.15). Отсюда следует такое важное достоинство данной сети, как отсутствие конфликтов, но есть и недостатки, в частности необходимость контроля целостности маркера и зависимость функционирования сети от каждого абонента (в случае неисправности абонент обязательно должен быть исключен из кольца).

Предельное время передачи пакета в Token-Ring 10 мс. При максимальном количестве абонентов 260 полный цикл работы кольца составит 260 x 10 мс = 2,6 с. За это время все 260 абонентов смогут передать свои пакеты (если, конечно, им есть чего передавать). За это же время свободный маркер обязательно дойдет до каждого абонента. Этот же интервал является верхним пределом времени доступа Token-Ring.


Сеть Arcnet

Сеть Arcnet (или ARCnet от английского Attached Resource Computer Net, компьютерная сеть соединенных ресурсов) – это одна из старейших сетей. Она была разработана компанией Datapoint Corporation еще в 1977 году. Международные стандарты на эту сеть отсутствуют, хотя именно она считается родоначальницей метода маркерного доступа. Несмотря на отсутствие стандартов, сеть Arcnet до недавнего времени (в 1980 – 1990 г.г.) пользовалась популярностью, даже серьезно конкурировала с Ethernet. Большое количество компаний производили аппаратуру для сети этого типа. Но сейчас производство аппаратуры Arcnet практически прекращено.

Среди основных достоинств сети Arcnet по сравнению с Ethernet можно назвать ограниченную величину времени доступа, высокую надежность связи, простоту диагностики, а также сравнительно низкую стоимость адаптеров. К наиболее существенным недостаткам сети относятся низкая скорость передачи информации (2,5 Мбит/с), система адресации и формат пакета.

Для передачи информации в сети Arcnet используется довольно редкий код, в котором логической единице соответствует два импульса в течение битового интервала, а логическому нулю – один импульс. Очевидно, что это самосинхронизирующийся код, который требует еще большей пропускной способности кабеля, чем даже манчестерский.

В качестве среды передачи в сети используется коаксиальный кабель с волновым сопротивлением 93 Ом, к примеру, марки RG-62A/U. Варианты с витой парой (экранированной и неэкранированной) не получили широкого распространения. Были предложены и варианты на оптоволоконном кабеле, но и они также не спасли Arcnet.

В качестве топологии сеть Arcnet использует классическую шину (Arcnet-BUS), а также пассивную звезду (Arcnet-STAR). В звезде применяются концентраторы (хабы). Возможно объединение с помощью концентраторов шинных и звездных сегментов в древовидную топологию (как и в Ethernet). Главное ограничение – в топологии не должно быть замкнутых путей (петель). Еще одно ограничение: количество сегментов, соединенных последовательной цепочкой с помощью концентраторов, не должно превышать трех.

Таким образом, топология сети Arcnet имеет следующий вид (рис.7.15).

Рис. 7.15. Топология сети Arcnet типа шина (B – адаптеры для работы в шине, S – адаптеры для работы в звезде).

Основные технические характеристики сети Arcnet следующие.

· Среда передачи – коаксиальный кабель, витая пара.

· Максимальная длина сети – 6 километров.

· Максимальная длина кабеля от абонента до пассивного концентратора – 30 метров.

· Максимальная длина кабеля от абонента до активного концентратора – 600 метров.

· Максимальная длина кабеля между активным и пассивным концентраторами – 30 метров.

· Максимальная длина кабеля между активными концентраторами – 600 метров.

· Максимальное количество абонентов в сети – 255.

· Максимальное количество абонентов на шинном сегменте – 8.

· Минимальное расстояние между абонентами в шине – 1 метр.

· Максимальная длина шинного сегмента – 300 метров.

· Скорость передачи данных – 2,5 Мбит/с.

При создании сложных топологий необходимо следить за тем, чтобы задержка распространения сигналов в сети между абонентами не превышала 30 мкс. Максимальное затухание сигнала в кабеле на частоте 5 МГц не должно превышать 11 дБ.

В сети Arcnet используется маркерный метод доступа (метод передачи права), но он несколько отличается от аналогичного в сети Token-Ring. Ближе всего этот метод к тому, который предусмотрен в стандарте IEEE 802.4.

Так же, как и в случае Token-Ring, конфликты в Arcnet полностью исключены. Как и любая маркерная сеть, Arcnet хорошо держит нагрузку и гарантирует величину времени доступа к сети (в отличие от Ethernet). Полное время обхода маркером всех абонентов составляет 840 мс. Соответственно, этот же интервал определяет верхний предел времени доступа к сети.

Маркер формируется специальным абонентом – контроллером сети. Им является абонент с минимальным (нулевым) адресом.


Сеть FDDI

Сеть FDDI (от английского Fiber Distributed Data Interface, оптоволоконный распределенный интерфейс данных) – это одна из новейших разработок стандартов локальных сетей. Стандарт FDDI был предложен Американским национальным институтом стандартов ANSI (спецификация ANSI X3T9.5). Затем был принят стандарт ISO 9314, соответствующий спецификациям ANSI. Уровень стандартизации сети достаточно высок.

В отличие от других стандартных локальных сетей, стандарт FDDI изначально ориентировался на высокую скорость передачи (100 Мбит/с) и на применение наиболее перспективного оптоволоконного кабеля. Поэтому в данном случае разработчики не были стеснены рамками старых стандартов, ориентировавшихся на низкие скорости и электрический кабель.

Выбор оптоволокна в качестве среды передачи определил такие преимущества новой сети, как высокая помехозащищенность, максимальная секретность передачи информации и прекрасная гальваническая развязка абонентов. Высокая скорость передачи, которая в случае оптоволоконного кабеля достигается гораздо проще, позволяет решать многие задачи, недоступные менее скоростным сетям, например, передачу изображений в реальном масштабе времени. Кроме того, оптоволоконный кабель легко решает проблему передачи данных на расстояние нескольких километров без ретрансляции, что позволяет строить большие по размерам сети, охватывающие даже целые города и имеющие при этом все преимущества локальных сетей (в частности, низкий уровень ошибок). Все это определило популярность сети FDDI, хотя она распространена еще не так широко, как Ethernet и Token-Ring.

За основу стандарта FDDI был взят метод маркерного доступа, предусмотренный международным стандартом IEEE 802.5 (Token-Ring). Несущественные отличия от этого стандарта определяются необходимостью обеспечить высокую скорость передачи информации на большие расстояния. Топология сети FDDI – это кольцо, наиболее подходящая топология для оптоволоконного кабеля. В сети применяется два разнонаправленных оптоволоконных кабеля, один из которых обычно находится в резерве, однако такое решение позволяет использовать и полнодуплексную передачу информации (одновременно в двух направлениях) с удвоенной эффективной скоростью в 200 Мбит/с (при этом каждый из двух каналов работает на скорости 100 Мбит/с). Применяется и звездно-кольцевая топология с концентраторами, включенными в кольцо (как в Token-Ring).

Основные технические характеристики сети FDDI.

· Максимальное количество абонентов сети – 1000.

· Максимальная протяженность кольца сети – 20 километров.

· Максимальное расстояние между абонентами сети – 2 километра.

· Среда передачи – многомодовый оптоволоконный кабель (возможно применение электрической витой пары).

· Метод доступа – маркерный.

· Скорость передачи информации – 100 Мбит/с (200 Мбит/с для дуплексного режима передачи).

Стандарт FDDI имеет значительные преимущества по сравнению со всеми рассмотренными ранее сетями. Например, сеть Fast Ethernet, имеющая такую же пропускную способность 100 Мбит/с, не может сравниться с FDDI по допустимым размерам сети. К тому же маркерный метод доступа FDDI обеспечивает в отличие от CSMA/CD гарантированное время доступа и отсутствие конфликтов при любом уровне нагрузки.

Ограничение на общую длину сети в 20 км связано не с затуханием сигналов в кабеле, а с необходимостью ограничения времени полного прохождения сигнала по кольцу для обеспечения предельно допустимого времени доступа. А вот максимальное расстояние между абонентами (2 км при многомодовом кабеле) определяется как раз затуханием сигналов в кабеле (оно не должно превышать 11 дБ). Предусмотрена также возможность применения одномодового кабеля, и в этом случае расстояние между абонентами может достигать 45 километров, а полная длина кольца – 200 километров.

Имеется также реализация FDDI на электрическом кабеле (CDDI – Copper Distributed Data Interface или TPDDI – Twisted Pair Distributed Data Interface). При этом используется кабель категории 5 с разъемами RJ-45. Максимальное расстояние между абонентами в этом случае должно быть не более 100 метров. Стоимость оборудования сети на электрическом кабеле в несколько раз меньше. Но эта версия сети уже не имеет столь очевидных преимуществ перед конкурентами, как изначальная оптоволоконная FDDI. Электрические версии FDDI стандартизованы гораздо хуже оптоволоконных, поэтому совместимость оборудования разных производителей не гарантируется.

Для передачи данных в FDDI применяется код 4В/5В, специально разработанный для этого стандарта.

Стандарт FDDI для достижения высокой гибкости сети предусматривает включение в кольцо абонентов двух типов:

· Абоненты (станции) класса А (абоненты двойного подключения, DAS – Dual-Attachment Stations) подключаются к обоим (внутреннему и внешнему) кольцам сети. При этом реализуется возможность обмена со скоростью до 200 Мбит/с или резервирования кабеля сети (при повреждении основного кабеля используется резервный). Аппаратура этого класса применяется в самых критичных с точки зрения быстродействия частях сети.

· Абоненты (станции) класса В (абоненты одинарного подключения, SAS – Single-Attachment Stations) подключаются только к одному (внешнему) кольцу сети. Они более простые и дешевые, по сравнению с адаптерами класса А, но не имеют их возможностей. В сеть они могут включаться только через концентратор или обходной коммутатор, отключающий их в случае аварии.

Кроме собственно абонентов (компьютеров, терминалов и т.д.) в сети используются связные концентраторы (Wiring Concentrators), включение которых позволяет собрать в одно место все точки подключения с целью контроля работы сети, диагностики неисправностей и упрощения реконфигурации. При применении кабелей разных типов (например, оптоволоконного кабеля и витой пары) концентратор выполняет также функцию преобразования электрических сигналов в оптические и наоборот. Концентраторы также бывают двойного подключения (DAC – Dual-Attachment Concentrator) и одинарного подключения (SAC – Single-Attachment Concentrator).

Пример конфигурации сети FDDI представлен на рис. 8.1. Принцип объединения устройств сети иллюстрируется на рис.8.2.

Рис. 8.1. Пример конфигурации сети FDDI.

В отличие от метода доступа, предлагаемого стандартом IEEE 802.5, в FDDI применяется так называемая множественная передача маркера. Если в случае сети Token-Ring новый (свободный) маркер передается абонентом только после возвращения к нему его пакета, то в FDDI новый маркер передается абонентом сразу же после окончания передачи им пакета (подобно тому, как это делается при методе ETR в сети Token-Ring).

В заключение следует отметить, что несмотря на очевидные преимущества FDDI данная сеть не получила широкого распространения, что связано главным образом с высокой стоимостью ее аппаратуры (порядка нескольких сот и даже тысяч долларов). Основная область применения FDDI сейчас – это базовые, опорные (Backbone) сети, объединяющие несколько сетей. Применяется FDDI также для соединения мощных рабочих станций или серверов, требующих высокоскоростного обмена. Предполагается, что сеть Fast Ethernet может потеснить FDDI, однако преимущества оптоволоконного кабеля, маркерного метода управления и рекордный допустимый размер сети ставят в настоящее время FDDI вне конкуренции. А в тех случаях, когда стоимость аппаратуры имеет решающее значение, можно на некритичных участках применять версию FDDI на основе витой пары (TPDDI). К тому же стоимость аппаратуры FDDI может сильно уменьшиться с ростом объема ее выпуска.


Сеть 100VG-AnyLAN

Сеть 100VG-AnyLAN – это одна из последних разработок высокоскоростных локальных сетей, недавно появившаяся на рынке. Она соответствует международному стандарту IEEE 802.12, так что уровень ее стандартизации достаточно высокий.

Главными достоинствами ее являются большая скорость обмена, сравнительно невысокая стоимость аппаратуры (примерно вдвое дороже оборудования наиболее популярной сети Ethernet 10BASE-T), централизованный метод управления обменом без конфликтов, а также совместимость на уровне форматов пакетов с сетями Ethernet и Token-Ring.

В названии сети 100VG-AnyLAN цифра 100 соответствует скорости 100 Мбит/с, буквы VG обозначают дешевую неэкранированную витую пару категории 3 (Voice Grade), а AnyLAN (любая сеть) обозначает то, что сеть совместима с двумя самыми распространенными сетями.

Основные технические характеристики сети 100VG-AnyLAN:

· Скорость передачи – 100 Мбит/с.

· Топология – звезда с возможностью наращивания (дерево). Количество уровней каскадирования концентраторов (хабов) – до 5.

· Метод доступа – централизованный, бесконфликтный (Demand Priority – с запросом приоритета).

· Среда передачи – счетверенная неэкранированная витая пара (кабели UTP категории 3, 4 или 5), сдвоенная витая пара (кабель UTP категории 5), сдвоенная экранированная витая пара (STP), а также оптоволоконный кабель. Сейчас в основном распространена счетверенная витая пара.

· Максимальная длина кабеля между концентратором и абонентом и между концентраторами – 100 метров (для UTP кабеля категории 3), 200 метров (для UTP кабеля категории 5 и экранированного кабеля), 2 километра (для оптоволоконного кабеля). Максимально возможный размер сети – 2 километра (определяется допустимыми задержками).

· Максимальное количество абонентов – 1024, рекомендуемое – до 250.

Таким образом, параметры сети 100VG-AnyLAN довольно близки к параметрам сети Fast Ethernet. Однако главное преимущество Fast Ethernet – это полная совместимость с наиболее распространенной сетью Ethernet (в случае 100VG-AnyLAN для этого требуется мост). В то же время, централизованное управление 100VG-AnyLAN, исключающее конфликты и гарантирующее предельную величину времени доступа (чего не предусмотрено в сети Ethernet), также нельзя сбрасывать со счетов.

Пример структуры сети 100VG-AnyLAN показан на рис. 8.8.

Сеть 100VG-AnyLAN состоит из центрального (основного, корневого) концентратора уровня 1, к которому могут подключаться как отдельные абоненты, так и концентраторы уровня 2, к которым в свою очередь подключаются абоненты и концентраторы уровня 3 и т.д. При этом сеть может иметь не более пяти таких уровней (в первоначальном варианте было не более трех). Максимальный размер сети может составлять 1000 метров для неэкранированной витой пары.

Рис. 8.8. Структура сети 100VG-AnyLAN.

В отличие от неинтеллектуальных концентраторов других сетей (например, Ethernet, Token-Ring, FDDI), концентраторы сети 100VG-AnyLAN – это интеллектуальные контроллеры, которые управляют доступом к сети. Для этого они непрерывно контролируют запросы, поступающие на все порты. Концентраторы принимают приходящие пакеты и отправляют их только тем абонентам, которым они адресованы. Однако никакой обработки информации они не производят, то есть в данном случае получается все-таки не активная, но и не пассивная звезда. Полноценными абонентами концентраторы назвать нельзя.

Каждый из концентраторов может быть настроен на работу с форматами пакетов Ethernet или Token-Ring. При этом концентраторы всей сети должны работать с пакетами только какого-нибудь одного формата. Для связи с сетями Ethernet и Token-Ring необходимы мосты, но мосты довольно простые.

Концентраторы имеют один порт верхнего уровня (для присоединения его к концентратору более высокого уровня) и несколько портов нижнего уровня (для присоединения абонентов). В качестве абонента может выступать компьютер (рабочая станция), сервер, мост, маршрутизатор, коммутатор. К порту нижнего уровня может также присоединяться другой концентратор.

Каждый порт концентратора может быть установлен в один из двух возможных режимов работы:

· Нормальный режим предполагает пересылку абоненту, присоединенному к порту, только пакетов, адресованных лично ему.

· Мониторный режим предполагает пересылку абоненту, присоединенному к порту, всех пакетов, приходящих на концентратор. Этот режим позволяет одному из абонентов контролировать работу всей сети в целом (выполнять функцию мониторинга).

Метод доступа к сети 100VG-AnyLAN типичен для сетей с топологией звезда.

При использовании счетверенной витой пары передача по каждой из четырех витых пар производится со скоростью 30 Мбит/с. Суммарная скорость передачи составляет 120 Мбит/с. Однако полезная информация вследствие использования кода 5В/6В передается всего лишь со скоростью 100 Мбит/с. Таким образом, пропускная способность кабеля должна быть не менее 15 МГц. Этому требованию удовлетворяет кабель с витыми парами категории 3 (полоса пропускания – 16 МГц).

Таким образом, сеть 100VG-AnyLAN представляет собой доступное решение для увеличения скорости передачи до 100 Мбит/с. Однако не обладает полной совместимостью ни с одной из стандартных сетей, поэтому ее дальнейшая судьба проблематична. К тому же, в отличие от сети FDDI, она не имеет никаких рекордных параметров. Скорее всего, 100VG-AnyLAN несмотря на поддержку солидных фирм и высокий уровень стандартизации останется всего лишь примером интересных технических решений.

Если говорить о наиболее распространенной 100-мегабитной сети Fast Ethernet, то 100VG-AnyLAN обеспечивает вдвое большую длину кабеля UTP категории 5 (до 200 метров), а также бесконфликтный метод управления обменом.

Ответы на экзаменационные вопросы интернет-курсов ИНТУИТ (INTUIT): 267. Основы локальных сетей

    В каких топологиях применяется метод управления CSMA/CD?

    В какой сети, использующей метод доступа CSMA/CD, при прочих равных условиях будет меньше коллизий?

    В каком случае методы модуляции перечислены правильно в порядке увеличения устойчивости к помехам?

    В каком случае перечисленные технологии правильно расставлены в порядке увеличения максимально достижимой скорости передачи?

    В чем основное отличие метода управления FDDI от метода управления Token-Ring?

    В чем основное преимущество сети FDDI перед остальными стандартными сетями?

    В чем отличие концентратора класса I от концентратора класса II?

    В чем состоит главный недостаток топологии кольцо?

    В чем состоит главный отличительный признак локальной сети?

    В чем состоит основное назначение локальной сети?

    В чем состоит основное преимущество использования выделенного сервера в сети?

    В чем состоит основное преимущество кабеля на основе витой пары UTP?

    В чем состоит основное преимущество сети Arcnet перед Ethernet?

    В чем состоит основной недостаток манчестерского кода?

    В чем состоит основной недостаток маркерного метода управления?

    В чем состоит основной недостаток оптоволоконного кабеля?

    В чем состоит принципиальное отличие детерминированных методов доступа от случайных?

    В чем состоят основные преимущества сертифицированных структурированных кабельных систем (СКС) по сравнению с кабельными системами, созданными "своими" силами?

    До какой частоты определены рабочие характеристики кабельных линий, поддерживающих приложения Класса D, согласно стандартам СКС?

    К какому уровню модели OSI относится формирование сетевых пакетов установленного вида?

    Кабель UTP какого типа обеспечивает максимальное затухание сигнала на заданной частоте?

    Как в модели 2 учитывается задержка сетевых адаптеров и концентраторов?

    Как в модели 2 учитывается затухание сигналов в кабелях?

    Как в сети Fast Ethernet учитывается сокращение межпакетного интервала (IPG)?

    Как изменится максимально возможная скорость передачи данных в дискретном канале при увеличении разрядности данных в 4 раза?

    Как изменяется задержка следующей передачи пакета после коллизии в методе доступа CSMA/CD?

    Как надо заземлять коаксиальный кабель?

    Как правильно расположить по уровню возрастания цен активное сетевое оборудование для указанных типов локальных сетей?

    Как распределяются функции витых пар в сегменте 100BASE-T4?

    Какая максимальная длина сети может быть реализована на сегментах 10BASE2 без использования репитеров?

    Какая максимальная номинальная скорость обеспечивается в линии типа ADSL?

    Какая международная организация является разработчиком стандарта СКС?

    Какая ошибка не регистрируется и не исправляется репитерными концентраторами?

    Какая сеть обеспечивает совместимость с сетью Ethernet на уровне формата пакета?

    Какая скорость передачи больше?

    Какая функция не выполняется сетевым адаптером?

    Какие величины необходимо рассчитывать при использовании модели 2 оценки топологии Ethernet?

    Какие из активных сетевых устройств преобладают количественно в составе сети предприятия?

    Какие из перечисленных ниже мер не относятся к комплексу мероприятий по защите информации?

    Какие из перечисленных технологий являются принципиально несимметричными (скорость передачи информации от пользователя к провайдеру и обратно разная)?

    Какие из современных технологий, перечисленных ниже, используются для передачи информации по аналоговым телефонным линиям?

    Какие методы модуляции используются в высокоскоростных модемах?

    Какие методы управления гарантируют величину времени доступа?

    Какие ошибки при организации кабельной системы влияют в первую очередь на скорость передачи информации?

    Какие подсистемы в соответствии со стандартами включает СКС?

    Какие разъемы используются для подключения кабелей в сети 10BASE-T?

    Какие сегменты Fast Ethernet используют одинаковую систему кодировки?

    Какие сетевые устройства не производят никакой обработки информации?

    Какие стандарты предполагают использование разных модемов у пользователя и провайдера?

    Какие устройства пропускают через себя не все пакеты?

    Какие факторы в первую очередь ограничивают скорость передачи по беспроводным (радио-) линиям?

    Какие характеристики кабелей имеют наибольшее значение для защиты передаваемой по нему информации от влияния внешнего электромагнитного излучения и снижения излучения самого кабеля?

    Какие цифровые элементы включает кодер и декодер циклического кода?

    Каков главный недостаток локальных сетей?

    Каков главный недостаток сегмента 10BASE-T?

    Каков основной недостаток несимметричных методов шифрования?

    Каков размер MAC-адреса абонентов в сети Ethernet?

    Какова длина ключа в стандартном методе шифрования ГОСТ28147-89?

    Какова длина пакета сети Ethernet/Fast Ethernet без преамбулы?

    Какова длина сигнала ПРОБКА, используемого в методе доступа CSMA/CD для увеличения вероятности обнаружения коллизий?

    Какова должна быть величина согласующего сопротивления по отношению к волновому сопротивлению кабеля?

    Какова максимально допустимая величина сокращения межпакетного интервала в Ethernet?

    Какова основная цель настройки параметров сетевых ОС?

    Какова типичная величина волнового сопротивления для коаксиального кабеля?

    Каково главное достоинство централизованных методов управления?

    Каково главное преимущество сети Wi-Fi перед сетью Ethernet/Fast Ethernet?

    Каково минимально допустимое расстояние между компьютерами в сегменте 10BASE2?

    Каково назначение концентратора в сети 100VG-AnyLAN?

    Каково основное преимущество WLAN?

    Каково основное преимущество сети Token-Ring по сравнению с Ethernet/Fast Ethernet?

    Каковы возможные режимы обмена в сети 10Gigabit Ethernet?

    Каковы основные достоинства сети Fast Ethernet?

    Каковы основные достоинства топологии шина?

    Каковы особенности одноранговой сети?

    Какое из приведенных определений показателя использования сети правильное?

    Какое из устройств, используемых для поиска неисправностей в работающей сети, является наиболее сложным в использовании?

    Какое максимальное количество сегментов может содержать путь между абонентами в сети Ethernet по правилам модели 1?

    Какое максимальное относительное число ошибок в принятых данных допускает стандарт ITU-T?

    Какое сетевое устройство анализирует содержимое поля данных пакета?

    Какое сетевое устройство не способно поддерживать обмен между сегментами с разными скоростями?

    Какое сетевое устройство обеспечивает минимальную задержку ретрансляции пакетов?

    Какой из "классических" методов шифрования приводит в общем случае к изменению состава алфавита в зашифрованном сообщении?

    Какой из видов аналоговой модуляции больше других подвержен действию помех и шумов?

    Какой из перечисленных кодов не является самосинхронизирующимся?

    Какой интерфейс компьютера больше других подходит для сети Fast Ethernet?

    Какой код используется в сегменте 100BASE-T4?

    Какой код требует минимальной полосы пропускания при заданной скорости передачи информации?

    Какой код является самосинхронизирующимся?

    Какой метод доступа используется в беспроводных сетях WLAN?

    Какой метод нельзя применять для преодоления ограничений на размер сети (зоны конфликта) Ethernet?

    Какой основной недостаток сети FDDI по сравнению с другими стандартными сетями?

    Какой параметр сетевого адаптера не влияет на интегральную скорость обмена информацией по сети?

    Какой параметр сетевого сервера важен менее других?

    Какой протокол не обеспечивает гарантированной доставки пакетов?

    Какой сегмент Ethernet/Fast Ethernet обеспечивает наибольшее расстояние между компьютерами сети?

    Какой спецификацией IEEE определяется локальная сеть Ethernet?

    Какой стандарт соответствует сети Ethernet на толстом коаксиальном кабеле?

    Какой стандартный сегмент обеспечивает максимальную длину на электрическом кабеле?

    Какой тип сегмента не распознается механизмом автосогласования (Auto-Negotiation)?

    Какой тип среды передачи не требует применения гальванической развязки?

    Какой тип среды передачи обеспечивает максимальную помехозащищенность и секретность передачи информации?

    Какой тип среды передачи обеспечивает максимальную скорость передачи информации?

    Какой тип телефонной линии предпочтителен для связи локальной сети с глобальной?

    Какой фактор меньше других влияет на производительность сети?

    Какую информацию содержит поле управления в пакете Ethernet/Fast Ethernet?

    Какую функцию выполняет кодер в составе модема?

    Какую функцию выполняет концентратор сети Token-Ring?

    Какую функцию выполняет эквалайзер в составе модема?

    Какую функцию не выполняет активный монитор сети Token-Ring?

    Когда необходимо использовать перекрестный кабель в сети 10BASE-T?

    Кто определяет физический адрес (MAC-адрес) абонентов сети Ethernet?

    Может ли скорость в символах в секунду (cps) быть получена из скорости в бит/с делением на 8?

    На каком уровне модели OSI производится проверка правильности передачи пакета?

    На каком уровне модели OSI работает коммутатор?

    На каком уровне модели OSI работают маршрутизаторы?

    Относится ли резервное копирование файлов к одному из методов защиты информации?

    Почему "классические" методы шифрования (подстановка, перестановка и гаммирование) не обеспечивают полной криптографической защиты информации?

    Применение каких устройств позволяет снять любые ограничения на размер сети?

    Протоколы какой сетевой системы точно соответствуют уровням модели OSI?

    Разъемы какого типа не используются в сегменте 10BASE-FL?

    Сколько концентраторов может присутствовать в сети (зоне конфликта) Fast Ethernet по правилам модели 1?

    Функции каких уровней модели OSI выполняет драйвер сетевого адаптера?

    Чего позволяет добиться выделенный сервер в сети?

    Чем в первую очередь определяется выбор топологии локальной сети?

    Чем отличается метод управления обменом в сети Arcnet от метода управления обменом в сети Token-Ring?

    Чем отличается сегмент 100BASE-TX от сегмента 10BASE-T кроме скорости передачи?

    Чему равен практический предел максимальной скорости передачи в обычной аналоговой телефонной линии?

    Чему равно максимально допустимое окно коллизий в сетях Ethernet / Fast Ethernet?

    Что не входит в задачу системного администратора сети?

    Что не является достоинством коаксиального кабеля?

    Что обеспечивает механизм автосогласования (Auto-Negotiation)?

    Что общего между сетью Ethernet и сетью Gigabit Ethernet?

    Что определяют уровни модели OSI?

    Что подразумевает операция статистического сжатия данных, автоматически выполняемая при модемной связи?

    Что предполагает метод дейтаграмм?

    Что происходит в сети Ethernet/Fast Ethernet, если количество передаваемых байт данных слишком мало?

    Что считается недостатком сетевых операционных систем NetWare?

    Что такое (или кто такой) системный администратор сети?

    Что такое voice - модем?

    Что такое анализатор протоколов?

    Что такое драйвер сетевого адаптера?

    Что такое инкапсуляция пакетов?

    Что такое клиент компьютерной сети?

    Что такое метод управления обменом в сети?

    Что такое минимальное кодовое расстояние?

    Что такое номер сети, входящий в IP-адрес?

    Что такое путь максимальной длины в сети Ethernet/Fast Ethernet?

    Что такое сервер компьютерной сети?

    Что такое топология пассивная звезда?

    Что является недостатком сети на основе сервера?

    Что является преимуществом 100BASE-FX по сравнению с 100BASE-TX?

    Что является преимуществом сегмента 10BASE2?

    Что является преимуществом сети Token-Ring перед сетями Ethernet и Arcnet?

Актуальная информация по учебным программам ИНТУИТ расположена по адресу: /.

Повышение квалификации

(программ: 450 )

Профессиональная переподготовка

(программ: 14 )

Лицензия на образовательную деятельность и приложение

Developer Project предлагает поддержку при сдаче экзаменов учебных курсов Интернет-университета информационных технологий INTUIT (ИНТУИТ). Мы ответили на экзаменационные вопросы 380 курсов INTUIT (ИНТУИТ) , всего 110 300 вопросов, 154 221 ответов (некоторые вопросы курсов INTUIT имеют несколько правильных ответов). Текущий каталог ответов на экзаменационные вопросы курсов ИНТУИТ опубликован на сайте объединения Developer Project по адресу: /

Подтверждения правильности ответов можно найти в разделе «ГАЛЕРЕЯ» , верхнее меню, там опубликованы результаты сдачи экзаменов по 100 курсам (удостоверения, сертификаты и приложения с оценками).

Более 21 000 вопросов по 70 курсам и ответы на них, опубликованы на сайте / , и доступны зарегистрированным пользователям. По остальным экзаменационным вопросам курсов ИНТУИТ мы оказываем платные услуги (см. вкладку верхнего меню «ЗАКАЗАТЬ УСЛУГУ» . Условия поддержки и помощи при сдаче экзаменов по учебным программам ИНТУИТ опубликованы по адресу: /

Примечани я:

- ошибки в текстах вопросов являются оригинальными (ошибки ИНТУИТ) и не исправляются нами по следующей причине - ответы легче подбирать на вопросы со специфическими ошибками в текстах;

- часть вопросов могла не войти в настоящий перечень, т.к. они представлены в графической форме. В перечне возможны неточности формулировок вопросов, что связано с дефектами распознавания графики, а так же коррекцией со стороны разработчиков курсов. ответов / М. ... курс английского языка: 1 курс ...

Локальная проводная сеть (LAN) является основой домашнего информационного пространства и мультимедиа.. Критерии построения LAN.. Беспроводное подключение - плюсы и минусы.. Технология Fast Ethernet.. Структурная схема LAN-сети.. Сетевая топология «звезда».. Выбор оборудования LAN-сети.. Маршрутизатор (роутер).. Настройка роутера.. Встроенный ADSL-модем.. WI-FI точка доступа.. Коммутатор или концентратор?.. Характеристики D-Link DSL-6740U.. Характеристики D-Link DIR-615/K1A.. Кабель UTP Cat 5e (сдвоенная витая пара).. Техническое задание.. Пример проекта локальной сети.. Схема расстановки оборудования.. Монтажная схема LAN-сети.

Сегодня невозможно представить себе дом, квартиру или офис без многочисленных сложных приборов и устройств, общение с которыми в наше время уже становится проблемой.
Человек добровольно попадает в зависимость от компьютеров, интернета, аудио и видео систем, пультов, систем безопасности и других электронных устройств, которые дают нам новые возможности и удобства, но отнимают все свободное время.
Чтобы справится с этой проблемой и сделать жизнь максимально удобной и комфортной, нужно ставить перед собой новые задачи, которые могут быть реализованы с помощью технологий «умного» дома.

Наиболее востребованными в современном доме являются следующие системы:

Проводная локальная сеть
Мультимедиа
Управление освещением
Управление отоплением и микроклиматом
Охранно-пожарная сигнализация
Видеонаблюдение
Домофон и контроль доступа.


Реализация систем «умного» дома может быть комплексной (в случае капитального ремонта или строительства нового дома) или частичной.
Все зависит от приоритетов выбора тех или иных систем и возможностей их реализации.
Сегодня рассмотрим проводную локальную сеть.

Проводная локальная сеть (LAN)


Проводная локальная сеть (Local Area Network) служит для централизованного подключения к интернету и связи компьютеров и различных периферийных устройств в доме между собой. По сути, локальная сеть является основой домашнего информационного пространства и мультимедиа.

Спроектировав и построив в своем доме компьютерную, телефонную и телевизионную сети , вы обеспечите необходимыми коммуникациями все мультимедийное и компьютерное оборудование в доме.
Всегда имеет смысл рассматривать и проектировать эти сети вместе.

Почему именно проводная .
Выбор всегда за вами. Я всего лишь подчеркиваю, что когда есть такая возможность , нужно выбирать проводные технологии.
При всяком удобном случае стараюсь обосновывать этот выбор.

Проводное и беспроводное подключение: плюсы и минусы

Из плюсов беспроводного оборудования можно отметить большое количество подключений, которое ограничивается лишь скоростью передачи на одного пользователя. Еще – возможность подключения мобильных устройств (смартфоны, коммуникаторы, планшеты), а также свобода передвижения внутри помещения. Пожалуй, и все.

Минусы: беспроводные технологии, как правило, более сложные в устройстве и, соответственно, менее надёжны, чем проводные. Для неквалифицированного пользователя это может обернуться сложностями в процессе эксплуатации, в частности, в диагностике и устранении неполадок. Это особенно актуально при увеличении количества устройств.

Беспроводное подключение будет и менее скоростным .
Никто не будет спорить, что технические показатели уровня сигнала по кабелю выше, чем радиосигнала. Скорость беспроводной связи уступает проводной почти в два раза как по объективным причинам (беспроводной протокол передачи данных более медленный), так и по причине внешних помех (металлическая арматура стен, помехи от домашней электроники и др.).
В доме всегда найдется техника, требовательная к скорости и качеству соединения – например, те же мультимедийные HD-медиаплееры, информация с которых может быть затребована от нескольких устройств (компьютеров, телевизоров и пр.) Если возникнет желание посмотреть фильм качества BluRay на проекторе высокого разрешения, тогда скорости Wi-Fi с использованием даже современного оборудования может быть недостаточно.

По стоимости беспроводное оборудование обойдется раза в полтора дороже своих проводных аналогов.

Электромагнитное «загрязнение» и взаимные помехи беспроводного оборудования также никто ещё не отменял.
Поэтому, прежде чем использовать подключение к сети по беспроводной технологии Wi-Fi, необходимо взвесить все «за» и «против» и убедиться, что обойтись без беспроводного оборудования никак нельзя.
По-возможности, лучше минимизировать вредные излучения в рабочем пространстве, где вы проводите значительную часть времени.

На практике домашняя локальная сеть чаще всего является комбинированной. Например, стационарные компьютеры могут быть подключены к сети с помощью проводов по технологии Ethernet, а различные мобильные устройства (ноутбуки, планшеты, смартфоны) – через беспроводный стандарт Wi-Fi.

Критерии построения LAN

При выборе сетевого стандарта и топологии сети решающим фактором является скорость передачи данных и возможность дальнейшего расширения системы. Этим условиям в полной мере отвечает проводная технология Ethernet.

Данный стандарт обеспечивает параллельную передачу данных. Это означает, что в Ethernet данные передаются не всем устройствам поочередно (как в RS-485), а непосредственно нужному устройству. Это существенно увеличивает скорость передачи информации. Кроме того, данный протокол обеспечивает совместимость с существующими сетевыми устройствами и будущими разработками. Используя протокол Ethernet , можно быть уверенным, что строящаяся локальная сеть сможет получить развитие в будущем.
В настоящее время существуют три спецификации, различающиеся скоростью передачи:

классический Ethernet (10 Мбит/c);
Fast Ethernet (100 Мбит/c);
Gigabit Ethernet (1 Гбит/c).

Для домашней информационной сети наиболее оптимальной по соотношению цена/ качество/сложность - является топология «звезда» и сетевой стандарт 802.3 100Base-TX. Это 100-мегабитный Ethernet на сдвоенной витой паре, который по соотношению цена/производительность пока вне конкуренции.

Основой сети является коммутатор , к которому сетевые устройства подключаются кабелями с максимальной длиной 100м.

Большой плюс топологии «звезда» – ее масштабируемость, то есть дальнейшее расширение, а именно это очень важно в домашних сетях. Достигается это тем, что каждый компьютер (или иное устройство) подключается к выделенному для него Ethernet-порту концентратора или коммутатора. Т. е. один порт коммутатора – один компьютер. Обычно количество Ethernet-портов коммутатора выбирается с запасом, поэтому всегда есть возможность подключения нового устройства к запасному порту. Соответственно, каждый компьютер должен быть снабжен сетевым адаптером с разъемом RJ-45.
Задача облегчается тем, что все современные компьютеры и ноутбуки уже имеют встроенный разъем Ethernet-порта.

Критерии выбора оборудования

Все домашние локальные сети устроены по одному принципу: компьютеры пользователей, оборудованные сетевыми адаптерами, соединяются между собой через специальные коммутационные устройства. В этом качестве могут выступать маршрутизаторы (роутеры), концентраторы (хабы), коммутаторы (свитчи), точки доступа и модемы.

Роутеры

Основным компонентом домашней локальной сети является маршрутизатор или роутер , который представляет собой многофункциональное устройство со встроенной операционной системой, имеющий не менее двух сетевых интерфейсов:

1. LAN (Local Area Network) – служит для создания внутренней (локальной) сети, которая состоит из ваших компьютерных устройств.
2. WAN (Wide Area Network) – служит для подключения локальной сети (LAN) к всемирной глобальной сети – Интернету.

Маршрутизаторы делятся на два класса по типу внешнего подключения: Ethernet или ADSL . Соответственно, они имеют WAN-порт или ADSL-порт для подключения кабеля провайдера и до четырех портов LAN для подсоединения сетевых устройств по технологии Ethernet.
Маршрутизатор для подключения к линии ADSL имеет встроенный ADSL-модем.

Беспроводные роутеры , кроме всего прочего, имеют встроенную Wi-Fi точку доступа для подключения беспроводных устройств. Количество оборудования, получающего одновременный доступ к сети с помощью технологии Wi-Fi, может, в принципе, исчисляться десятками. С учетом того, что полоса частот канала делится между всеми подключенными клиентами, пропускная способность канала связи уменьшается с увеличением их количества.

Когда количество подключаемых компьютеров не превышает четырех, роутер оказывается единственным компонентом, который необходим для построения локальной сети, так как в остальных попросту нет нужды.

При выборе роутера для домашней сети предпочтительнее роутер с использованием технологии IEEE 802.11n , которая обеспечивает лучшую производительность и покрытие сигнала. Кроме того, эти роутеры поддерживают режим VPN пользователя и имеют встроенный USВ-порт, который можно использовать для подключения флешки, принтера или внешнего жесткого диска (NAS).

Перед покупкой роутера нужно заранее уточнить у провайдера, какой тип подключения вы будете использовать, и какое дополнительное оборудование вам для этого понадобится. В комплект поставки маршрутизаторов должны входить внешний адаптер питания и кабель RJ-45, а для моделей с ADSL портом дополнительно кабель RJ-11 и сплиттер.

Полезно проконсультироваться с технической поддержкой провайдера на предмет технических требований к оборудованию клиента, в плане совместимости его с серверами провайдера. Получив профессиональную информацию, можно более осмысленно делать свой выбор из доступных в продаже моделей роутеров.

О количестве оборудования . Если вы проектируете локальную сеть для 2-х или 3-х этажного коттеджа, то одним Wi-Fi роутером вам не обойтись. Для обеспечения достаточного уровня беспроводного сигнала придется строить распределенную Wi-Fi сеть, состоящую из нескольких роутеров или точек доступа. Для снижения нагрузки на беспроводную сеть и увеличения скорости передачи данных можно Wi-Fi доступ оставить только для мобильных устройств, а компьютеры (возможно, и ноутбуки) организовать на проводном доступе.

Еще один момент : сегодня покупать роутер без поддержки Wi-Fi просто бессмысленно. Разница в стоимости хорошего проводного роутера и его беспроводного аналога совсем небольшая. Даже если вы в ближайшее время не планируете использовать модуль Wi-Fi в роутере, то его можно отключить. Когда же у вас возникнет такая потребность (например, дома появится устройство с Wi-Fi связью), вы всегда сможете включить в роутере Wi-Fi модуль и начать пользоваться беспроводным интернетом.

О настройке роутера

В интернете достаточно много рекомендаций по настройке роутеров, включая и подробные инструкции по конкретным моделям. Здесь хочу отметить следующее:

Учитывая интересы пользователей , разработчики уже давно облегчили настройку параметров маршрутизаторов с помощью встроенного ПО для пошаговой настройки, сделав ее доступной даже для новичков.

В большинстве случаев, во время первого входа в меню роутера , происходит запуск мастера, который предлагает быструю пошаговую настройку его основных параметров. Это избавляет начинающих пользователей от поисков нужных опций среди многочисленных разделов меню.
При необходимости мастер установки можно запустить и вручную с помощью пункта меню в разных вариантах: Quick Setup (Быстрая настройка), Setup Wizard (Мастер установки) и т. д.

Следует только учесть , что в определённых ситуациях подключение к интернету может требовать особых настроек, возможность ввода которых попросту отсутствует в режиме мастера. В этих случаях придется обратиться к ручному режиму установки параметров.

Коммутаторы

Если требуется построить более разветвленную проводную сеть , то четырех LAN–портов роутера будет недостаточно. В этом случае к одному из портов роутера подключается дополнительное коммутационное устройство – концентратор (hub) или коммутатор (switch).

В отличие от роутера , свитчи и хабы имеют только один сетевой интерфейс – LAN и используются только для масштабирования (расширения) локальных сетей.

Для создания проводной сети Ethernet лучше использовать коммутатор (свитч), а не концентратор (хаб). Коммутатор анализирует исходящий от компьютеров трафик и направляет его только тому, кому он предназначен. Концентратор же просто повторяет любой трафик на все порты. В итоге производительность сети Ethernet на концентраторах сильно зависит от общей загруженности. Сеть на коммутаторе свободна от этого недостатка.
Раньше приходилось выбирать: или цена, или производительность, поскольку концентраторы стоили существенно дешевле, чем коммутаторы. Сейчас оба вида устройств практически сравнялись в цене, поэтому выбор в пользу коммутатора не вызывает сомнений.

Какой коммутатор выбрать?
В настоящее время существует множество моделей и типов сетевых коммутаторов, их цена и функции очень различаются. При выборе необходимо исходить из минимальной стоимости устройства, которое будет отвечать вашим требованиям к скорости передачи данных и количеству портов. Также определенное значение могут иметь габариты коммутатора.

Скорость работы
Для домашней локальной сети по соотношению цена/производительность оптимальным пока остается Fast Ethernet (100 Мбит/c).

Количество портов
Этот показатель характеризует количество сетевых устройств, которые можно к данному коммутатору подключить. Во многом данный параметр определяет и цену устройства.
Выбор зависит от количества пользователей вашей будущей сети. К количеству пользователей необходимо прибавить 1-2 порта про запас.
В моделях, ориентированных на домашнее использование, количество Ethernet-портов обычно равняется 5 или 8. Если в какой-то момент для подключения всех устройств количества портов коммутатора перестанет хватать, к нему можно подсоединить еще один свитч. Таким образом, можно расширять домашнюю сеть сколько угодно.

Кабели

В качестве среды передачи 100Base-TX (Fast Ethernet) применяется неэкранированный кабель UTP Cat 5e (сдвоенная витая пара), причем одна пара используется для передачи данных, а вторая — для их приема. Возможно применение кабеля Cat 5e типа 100BASE-T4 (счетверенная витая пара): две резервные пары можно в дальнейшем использовать для модернизации сети до уровня 1000 Мбит/с (Gigabit Ethernet).

Экранированные кабели (FTP, STP, SFTP) применяются при прокладке магистральных линий и в производственных помещениях с большими электромагнитными полями. В домашних локальных сетях, как правило, используется неэкранированный кабель UTP.

Для телефонной сети применяется кабель UTP Cat 3 (сдвоенная витая пара).

Можно ли использовать для разводки телефона в целях экономии одну из пар четырехпарного кабеля, применяемого для компьютерных сетей?
Можно, но вряд ли нужно. Зачем создавать себе дополнительные проблемы с монтажом. Лучше всего применять отдельную не экранированную проводку витой парой, так как это существенно повышает помехозащищенность телефонной связи. Кроме того, резервная витая пара кабеля Cat 3 в будущем может пригодиться для ремонта поврежденной пары или для подключения дополнительного аппарата.

Жилы витых пар в кабелях бывают двух видов , из одиночного проводника и многожильные. Диаметр жил в одножильных витых парах составляет 0,51 мм. Кабели с одножильными проводниками применяют для монтажа сетей в коробах, кабель-каналах и по стенам. С многожильными проводниками кабель применяют только там, где он может подвергаться частым изгибам, например, для соединения компьютера с розеткой RJ45 (патч-корд).

В соответствии с топологией «звезда» все кабели от сетевых устройств сходятся к коммутатору, а на противоположных концах кабелей устанавливаются розетки с гнездами RJ45. Как кабели, так и розетки должны быть категорий 5е или 6.
Все отрезки кабеля должны быть не более 100 метров — только в этом случае гарантируется устойчивая работа сети. Необходимо учитывать тот факт, что требование к максимальной длине сегмента кабеля в 100 м включает в себя всю длину кабеля, соединяющего компьютер с коммутатором. Если кабельная разводка заканчивается на стороне компьютера настенной розеткой, а на стороне коммутатора — кросс-панелью, то в длину сегмента необходимо включить коммутационные кабели, соединяющие компьютер с розеткой и кросс-панель с коммутатором.
Рекомендуется брать максимальную длину для сегмента кабеля внутренней разводки, равной 90 м, оставляя 10 м для коммутационных кабелей.
Разумеется, все кабели должны быть цельными, не допускается никаких «скруток».

Пример проекта локальной сети

Основой создания любого проекта является техническое задание (ТЗ).
В идеале, развернутое техническое задание на проектирование должен предоставлять заказчик. На практике, особенно для частных домовладений, проектировщику по факту приходится участвовать в сборе исходных данных и разработке ТЗ, поскольку без полного понимания особенностей объекта и консультаций с заказчиком невозможно выполнить проект.

Примерная последовательность действий проектировщика при составлении технического задания на проектирование «умного» дома была подробно рассмотрена в статье .

Рассмотрим действия проектировщика
на основании согласованного с заказчиком ТЗ на проектирование локальной сети для двухэтажного загородного дома площадью 200м2.
Как отмечалось, компьютерная, телефонная и телевизионная сети объединены в одном проекте.

Исходные данные

1. Имеется поэтажный план дома.
2. Скоростной доступ в интернет – по выделенной линии ADSL
3. Режим доступа к городской АТС – импульсный
4. Количество Ethernet розеток – 6
5. Количество телефонных розеток – 1
6. Должны быть также предусмотрены:
WI-FI точки доступа для подключения беспроводных устройств.
Запасной порт для дополнительного проводного подключения 1 компьютера.
7. Телевидение: эфирное + спутниковое ТВ
8. Количество телевизионных розеток ТВ+SAT – 6

Расстановка оборудования

Хотя речь идет об относительно небольшой локальной сети , но с учетом оборудования телефонной и телевизионной сетей и двух уровней (этажей), имеет смысл использовать монтажные слаботочные шкафы, а для подключения сетевых устройств – соответствующие розетки. Сетевую розетку удобно использовать потому, что при изменении места расположения компьютера (или телевизора) не нужно удлинять весь кабельный сегмент – достаточно просто создать новый патч-корд, соединяющий устройство с розеткой.
На плане дома определяются места предполагаемого размещения монтажных шкафов, компьютеров, телефонов и телевизионных приемников.

Размещение оборудования на плане 1-го этажа показано на рис.1 .

Рис.1


Выбор оборудования

Подключение к интернету будет осуществляться по выделенному ADSL-каналу в телефонной линии, ведущей от АТС к дому. Это означает, что при выборе оборудования нам необходимо предусмотреть наличие в его составе ADSL- модема.
Для беспроводных устройств нужны, как минимум, две WI-FI точки доступа (2 этажа). Задача облегчается тем, что количество Net-розеток на каждом этаже не превышает трех. Это позволяет минимизировать количество оборудования, необходимого для построения локальной сети.
Домашняя LAN-сеть для двухэтажного дома площадью 200м2 может быть выполнена на ADSL-маршрутизаторе и Ethernet-коммутаторе.
Структурная схема сети показана на рис.2 .

Рис.2 .

Основные характеристики применяемых устройств:

D-Link DSL-6740U

Тип устройства: DSL модем, маршрутизатор, Wi-Fi точка доступа
Поддержка: VDSL2, ADSL2
Стандарт беспроводной связи: 802.11b/g/n, частота 2.4 ГГц
Макс. скорость беспроводного соединения: до 300 Мбит/с (802.11n)
Технология шифрования WPA/WPA2
Коммутатор: 4хLAN
Скорость портов: 100 Мбит/сек
Размеры (ШxГхВ): 228x175x40 мм
Вес: 460 г
Комплектность: Маршрутизатор, адаптер питания, кабель RJ-45, кабель RJ-11, сплиттер, диск с ПО.

D-Link DIR-615/K1A


Тип устройства: Wi-Fi точка доступа, Коммутатор
Макс. скорость беспроводного соединения, Мбит/с - 300
Стандарт беспроводной связи: 802.11n, частота 2.4 ГГц
Шифрование данных: WPA, WPA2
Количество Ethernet портов - 4
Скорость портов: 100 Мбит/сек
Размеры (ГхШxВ): 117x193х31 мм
Вес: 940 г
Комплектность: Маршрутизатор, сетевой адаптер, кабель RJ-45, 2 внешние антенны, диск с ПО.

Схема сетей

Монтажный (слаботочный) шкаф лучше всего размещать в таком месте, куда удобнее всего подвести кабели из всех комнат и обеспечивается надежное покрытие WI-FI точки доступа. В данном проекте – в холле первого этажа. Туда же нужно будет провести кабель от провайдера.
Второй монтажный шкаф установлен в холле второго этажа. В монтажных шкафах также предусматриваются электрические розетки для питания роутеров.

От слаботочного шкафа «звездообразно» расходятся кабели отдельно для Ethernet-сети, телефона и телевидения. На концах этих кабелей устанавливаются отдельные розетки для каждой системы: телефонная и компьютерная (симметричные) и телевизионная (коаксиальная). В гостиной установлена сдвоенная розетка (телефонная + компьютерная).

Таким образом, в здании формируется три кабельные системы и три вида розеток. Такая схема более надежна и удобна для монтажа – каждую кабельную систему можно монтировать практически независимо.
Схема разводки телефонной, телевизионной и Ethernet-сетей показана на рис.3.

Рис.3

Монтаж оборудования

Установка и подключение маршрутизаторов не вызывает никаких трудностей. Главное – определить место в монтажном шкафу, где он будет расположен, и хорошо его закрепить. Для крепления в вертикальном положении в днище роутера имеются специальные фигурные пазы, за которые он подвешивается и фиксируется в шкафу или на стене. Некоторые модели комплектуются специальными подставками или панельками для вертикального расположения.

Если статья Вам понравилась и Вы цените вложенные в этот проект усилия у Вас есть возможность внести посильный вклад в развитие сайта на странице . Он посвящен основам электротехники и электричества с акцентом на домашние электрические установки и происходящие в них процессы.

Fast Ethernet

Fast Ethernet - спецификация IEЕЕ 802.3 u официально принятая 26 октября 1995 года определяет стандарт протокола канального уровня для сетей работающих при использовании как медного, так и волоконно-оптического кабеля со скоростью 100Мб/с. Новая спецификация является наследницей стандарта Ethernet IEЕЕ 802.3, используя такой же формат кадра, механизм доступа к среде CSMA/CD и топологию звезда. Эволюция коснулась нескольких элементов конфигурации средств физического уровня, что позволило увеличить пропускную способность, включая типы применяемого кабеля, длину сегментов и количество концентраторов.

Структура Fast Ethernet

Чтобы лучше понять работу и разобраться во взаимодействии элементов Fast Ethernet обратимся к рисунку 1.

Рисунок 1. Система Fast Ethernet

Подуровень управления логической связью (LLC)

В спецификации IEEE 802.3 u функции канального уровня разбиты на два подуровня: управления логической связью (LLC) и уровня доступа к среде (MAC), который будет рассмотрен ниже. LLC, функции которого определены стандартом IEEE 802.2, фактически обеспечивает взаимосвязь с протоколами более высокого уровня, (например, с IP или IPX), предоставляя различные коммуникационные услуги:

  • Сервис без установления соединения и подтверждений приема. Простой сервис, который не обеспечивает управления потоком данных или контроля ошибок, а также не гарантирует правильную доставку данных.
  • Сервис с установлением соединения. Абсолютно надежный сервис, который гарантирует правильную доставку данных за счет установления соединения с системой-приемником до начала передачи данных и использования механизмов контроля ошибок и управления потоком данных.
  • Сервис без установления соединения с подтверждениями приема. Средний по сложности сервис, который использует сообщения подтверждения приема для обеспечения гарантированной доставки, но не устанавливает соединения до передачи данных.

На передающей системе данные, переданные вниз от протокола Сетевого уровня, вначале инкапсулируются подуровнем LLC. Стандарт называет их Protocol Data Unit (PDU, протокольный блок данных). Когда PDU передается вниз подуровню MAC, где снова обрамляется заголовком и постинформацией, с этого момента технически его можно назвать кадром. Для пакета Ethernet это означает, что кадр 802.3 помимо данных Сетевого уровня содержит трехбайтовый заголовок LLC. Таким образом, максимально допустимая длина данных в каждом пакете уменьшается с 1500 до 1497 байтов.

Заголовок LLC состоит из трех полей:

В некоторых случаях кадры LLC играют незначительную роль в процессе сетевого обмена данными. Например, в сети, использующей TCP/IP наряду с другими протоколами, единственная функция LLC может заключаться в предоставлении возможности кадрам 802.3 содержать заголовок SNAP, подобно Ethertype указывающий протокол Сетевого уровня, которому должен быть передан кадр. В этом случае все PDU LLC задействуют ненумерованный информационный формат. Однако другие высокоуровневые протоколы требуют от LLC более расширенного сервиса. Например, сессии NetBIOS и несколько протоколов NetWare используют сервисы LLC с установлением соединения более широко.

Заголовок SNAP

Принимающей системе необходимо определить, какой из протоколов Сетевого уровня должен получить входящие данные. В пакетах 802.3 в рамках PDU LLC применяется еще один протокол, называемый Sub - Network Access Protocol (SNAP, протокол доступа к подсетям).

Заголовок SNAP имеет длину 5 байт и располагается непосредственно после заголовка LLC в поле данных кадра 802.3, как показано на рисунке. Заголовок содержит два поля.

Код организации. Идентификатор организации или производителя - это 3-байтовое поле, которое принимает такое же значение, как первые 3 байта МАС-адреса отправителя в заголовке 802.3.

Локальный код. Локальный код - это поле длиной 2 байта, которое функционально эквивалентно полю Ethertype в заголовке Ethernet II.

Подуровень согласования

Как было сказано ранее Fast Ethernet это эволюционировавший стандарт. MAC рассчитанный на интерфейс AUI, необходимо преобразовать для интерфейса MII, используемого в Fast Ethernet, для чего и предназначен этот подуровень.

Управление доступом к среде ( MAC)

Каждый узел в сети Fast Ethernet имеет контроллер доступа к среде (Media Access Controller - MAC). MAC имеет ключевое значение в Fast Ethernet и имеет три назначения:

Самым важным из трех назначений MAC является первое. Для любой сетевой технологии, которая использует общую среду, правила доступа к среде, определяющие, когда узел может передавать, являются ее основной характеристикой. Разработкой правил доступа к среде занимаются несколько комитетов IЕЕЕ. Комитет 802.3, часто именуемый комитетом Ethernet, определяет стандарты на ЛВС, в которых используются правила под названием CSMA/ CD (Carrier Sense Multiple Access with Collision Detection - множественный доступ с контролем несущей и обнаружением конфликтов).

CSMS/ CD являются правилами доступа к среде как для Ethernet, так и для Fast Ethernet. Именно в этой области две технологии полностью совпадают.

Поскольку все узлы в Fast Ethernet совместно используют одну и ту же среду, передавать они могут лишь тогда, когда наступает их очередь. Определяют эту очередь правила CSMA/ CD.

CSMA/ CD

Контроллер MAC Fast Ethernet, прежде чем приступить к передаче, прослушивает несущую. Несущая существует лишь тогда, когда другой узел ведет передачу. Уровень PHY определяет наличие несущей и генерирует сообщение для MAC. Наличие несущей говорит о том, что среда занята и слушающий узел (или узлы) должны уступить передающему.

MAC, имеющий кадр для передачи, прежде чем передать его, должен подождать некоторый минимальный промежуток времени после окончания предыдущего кадра. Это время называется межпакетной щелью (IPG, interpacket gap) и продолжается 0,96 микросекунды, то есть десятую часть от времени передачи пакета обычной Ethernet со скоростью 10 Мбит/с (IPG - единственный интервал времени, всегда определяемый в микросекундах, а не во времени бита) рисунок 2.


Рисунок 2. Межпакетная щель

После окончания пакета 1 все узлы ЛВС обязаны подождать в течение времени IPG, прежде чем смогут передавать. Временной интервал между пакетами 1 и 2, 2 и 3 на рис. 2 - это время IPG. После завершения передачи пакета 3 ни один узел не имел материала для обработки, поэтому временной интервал между пакетами 3 и 4 длиннее, чем IPG.

Все узлы сети должны соблюдать эти правила. Даже если на узле имеется много кадров для передачи и данный узел является единственным передающим, то после пересылки каждого пакета он должен выждать в течение, по крайней мере, времени IPG.

Именно в этом заключается часть CSMA правил доступа к среде Fast Ethernet. Короче говоря, многие узлы имеют доступ к среде и используют несущую для контроля ее занятости.

В ранних экспериментальных сетях применялись именно эти правила, и такие сети работали очень хорошо. Тем не менее, использование лишь CSMA привело к возникновению проблемы. Часто два узла, имея пакет для передачи и прождав время IPG, начинали передавать одновременно, что приводило к искажению данных с обеих сторон. Такая ситуация называется коллизией (collision) или конфликтом.

Для преодоления этого препятствия ранние протоколы использовали достаточно простой механизм. Пакеты делились на две категории: команды и реакции. Каждая команда, переданная узлом, требовала реакции. Если в течение некоторого времени (называемого периодом тайм-аута) после передачи команды реакция на нее не была получена, то исходная команда подавалась вновь. Это могло происходить по нескольку раз (предельное количество тайм-аутов), прежде чем передающий узел фиксировал ошибку.

Эта схема могла прекрасно работать, но лишь до определенного момента. Возникновение конфликтов приводило к резкому снижению производительности (измеряемой обычно в байтах в секунду), потому что узлы часто простаивали в ожидании ответов на команды, никогда не достигающие пункта назначения. Перегрузка сети, увеличение количества узлов напрямую связаны с ростом числа конфликтов и, следовательно, со снижением производительности сети.

Проектировщики ранних сетей быстро нашли решение этой проблемы: каждый узел должен устанавливать факт потери переданного пакета путем обнаружения конфликта (а не ожидать реакции, которая никогда не последует). Это означает, что потерянные в связи с конфликтом пакеты должны быть немедленно переданы вновь до окончания времени тайм-аута. Если узел передал последний бит пакета без возникновения конфликта, значит, пакет передан успешно.

Метод контроля несущей хорошо сочетать с функцией обнаружения коллизий. Коллизии все еще продолжают происходить, но на производительности сети это не отражается, так как узлы быстро избавляются от них. Группа DIX, разработав правила доступа к среде CSMA/CD для Ethernet, оформила их в виде простого алгоритма - рисунок 3.


Рисунок 3. Алгоритм работы CSMA/CD

Устройство физического уровня ( PHY)

Поскольку Fast Ethernet может использовать различный тип кабеля, то для каждой среды требуется уникальное предварительное преобразование сигнала. Преобразование также требуется для эффективной передачи данных: сделать передаваемый код устойчивым к помехам, возможным потерям, либо искажениям отдельных его элементов (бодов), для обеспечения эффективной синхронизации тактовых генераторов на передающей или приемной стороне.

Подуровень кодирования ( PCS)

Кодирует/декодирует данные поступающие от/к уровня MAC с использованием алгоритмов или .

Подуровни физического присоединения и зависимости от физической среды ( PMА и PMD)

Подуровни РМА и PMD осуществляют связь между подуровнем PSC и интерфейсом MDI, обеспечивая формирование в соответствии с методом физического кодирования: или .

Подуровень автопереговоров (AUTONEG)

Подуровень автопереговоров позволяет двум взаимодействующим портам автоматически выбирать наиболее эффективный режим работы: дуплексный или полудуплексный 10 или 100 Мб/с. Физический уровень

Стандарт Fast Ethernet определяет три типа среды передачи сигналов Ethernet со скоростью 100 Мбит/с.

  • 100Base-TX - две витые пары проводов. Передача осуществляется в соответствии со стандартом передачи данных в витой физической среде, разработанным ANSI (American National Standards Institute - Американский национальный институт стандартов). Витой кабель для передачи данных может быть экранированным, либо неэкранированным. Использует алгоритм кодирования данных 4В/5В и метод физического кодирования MLT-3.
  • 100Base-FX - две жилы, волоконно-оптического кабеля. Передача также осуществляется в соответствии со стандартом передачи данных в волоконно-оптической среде, которой разработан ANSI. Использует алгоритм кодирования данных 4В/5В и метод физического кодирования NRZI.

Спецификации 100Base-TX и 100Base-FX известны также как 100Base-X

  • 100Base-T4 - это особая спецификация, разработанная комитетом IEEE 802.3u . Согласно этой спецификации, передача данных осуществляется по четырем витым парам телефонного кабеля, который называют кабелем UTP категории 3. Использует алгоритм кодирования данных 8В/6Т и метод физического кодирования NRZI.

Дополнительно стандарт Fast Ethernet включает рекомендации по использованию кабеля экранированной витой пары категории 1, который является стандартным кабелем, традиционно использующимся в сетях Token Ring. Организация поддержки и рекомендации по использованию кабеля STP в сети Fast Ethernet предоставляют способ перехода на Fast Ethernet для покупателей, имеющих кабельную разводку STP.

Спецификация Fast Ethernet включает также механизм автосогласования, позволяющий порту узла автоматически настраиваться на скорость передачи данных - 10 или 100 Мбит/с. Этот механизм основан на обмене рядом пакетов с портом концентратора или переключателя.

Среда 100Base-TX

В качестве среды передачи 100Base-TX применяются две витые пары, причем одна пара используется для передачи данных, а вторая - для их приема. Поскольку спецификация ANSI TP - PMD содержит описания как экранированных, так и неэкранированных витых пар, то спецификация 100Base-TX включает поддержку как неэкранированных, так и экранированных витых пар типа 1 и 7.

Разъем MDI (Medium Dependent Interface)

Интерфейс канала 100Base-TX, зависящий от среды, может быть одного из двух типов. Для кабеля на неэкранированных витых парах в качестве разъема MDI следует использовать восьмиконтактный разъем RJ 45 категории 5. Этот же разъем применяется и в сети 10Base-T, что обеспечивает обратную совместимость с существующими кабельными разводками категории 5. Для экранированных витых пар в качестве разъема MDI необходимо использовать разъем STP IBM типа 1, который является экранированным разъемом DB9. Такой разъем обычно применяется в сетях Token Ring.

Кабель UTP категории 5(e)

В интерфейсе среды UTP 100Base-TX применяются две пары проводов. Для минимизации перекрестных наводок и возможного искажения сигнала оставшиеся четыре провода не должны использоваться с целью передачи каких-либо сигналов. Сигналы передачи и приема для каждой пары являются поляризованными, причем один провод передает положительный (+), а второй - отрицательный (-) сигнал. Цветовая маркировка проводов кабеля и номера контактов разъема для сети 100Base-TX приведены в табл. 1. Хотя уровень PHY 100Base-TX разрабатывался после принятия стандарта ANSI TP-PMD, однако номера контактов разъема RJ 45 были изменены для согласования со схемой разводки, уже использующейся в стандарте 10Base-T. В стандарте ANSI TP-PMD контакты 7 и 9 применяются для приема данных, в то время как в стандартах 100Base-TX и 10Base-T для этого предназначены контакты 3 и 6. Такая разводка обеспечивает возможность использования адаптеров 100Base-TX вместо адаптеров 10 Base - T и их подключения к тем же кабелям категории 5 без изменений разводки. В разъеме RJ 45 используемые пары проводов подключаются к контактам 1, 2 и 3, 6. Для правильного подключения проводов следует руководствоваться их цветовой маркировкой.

Таблица 1. Назначение контактов разъема MDI кабеля UTP 100Base-TX

Узлы взаимодействуют друг с другом путем обмена кадрами (frames). В Fast Ethernet кадр является базовой единицей обмена по сети - любая информация, передаваемая между узлами, помещается в поле данных одного или нескольких кадров. Пересылка кадров от одного узла к другому возможна лишь при наличии способа однозначной идентификации всех узлов сети. Поэтому каждый узел в ЛВС имеет адрес, который называется его МАС-адресом. Этот адрес уникален: никакие два узла локальной сети не могут иметь один и тот же МАС-адрес. Более того, ни в одной из технологий ЛВС (за исключением ARCNet) никакие два узла в мире не могут иметь одинаковый МАС-адрес. Любой кадр содержит, по крайней мере, три основные порции информации: адрес получателя, адрес отправителя и данные. Некоторые кадры имеют и другие поля, но обязательными являются лишь три перечисленные. На рисунке 4 отражена структура кадра Fast Ethernet.

Рисунок 4. Структура кадра Fast Ethernet

  • адрес получателя - указывается адрес узла, получающего данные;
  • адрес отправителя - указывается адрес узла, пославшего данные;
  • длина/Тип (L/T - Length/Type) - содержится информация о типе передаваемых данных;
  • контрольная сумма кадра (PCS - Frame Check Sequence) - предназначена для проверки корректности полученного принимающим узлом кадра.

Минимальный объем кадра составляет 64 октета, или 512 битов (термины октет и байт - синонимы). Максимальный объем кадра равен 1518 октетам, или 12144 битам.

Адресация кадров

Каждый узел в сети Fast Ethernet имеет уникальный номер, который называется МАС-адресом (MAC address) или адресом узла. Этот номер состоит из 48 битов (6 байтов), присваивается сетевому интерфейсу во время изготовления устройства и программируется в процессе инициализации. Поэтому сетевые интерфейсы всех ЛВС, за исключением ARCNet, которая использует 8-битовые адреса, присваиваемые сетевым администратором, имеют встроенный уникальный МАС-адрес, отличающийся от всех остальных МАС-адресов на Земле и присваиваемый производителем по согласованию с IEEE.

Чтобы облегчить процесс управления сетевыми интерфейсами, IEEE было предложено разделить 48-битовое поле адреса на четыре части, как показано на рисунке 5. Первые два бита адреса (биты 0 и 1) являются флажками типа адреса. Значение флажков определяет способ интерпретации адресной части (биты 2 - 47).


Рисунок 5. Формат МАС-адреса

Бит I/G называется флажком индивидуального/группового адреса и показывает, каким (индивидуальным или групповым) является адрес. Индивидуальный адрес присваивается только одному интерфейсу (или узлу) в сети. Адреса, у которых бит I/G установлен в 0 - это МАС-адреса или адреса узла. Если бит I/O установлен в 1, то адрес относится к групповым и обычно называется многопунктовым адресом (multicast address) или функциональным адресом (functional address). Групповой адрес может быть присвоен одному или нескольким сетевым интерфейсам ЛВС. Кадры, посланные по групповому адресу, получают или копируют все обладающие им сетевые интерфейсы ЛВС. Многопунктовые адреса позволяют послать кадр подмножеству узлов локальной сети. Если бит I/O установлен в 1, то биты от 46 до 0 трактуются как многопунктовый адрес, а не как поля U/ L, OUI и OUA обычного адреса. Бит U/L называется флажком универсального/местного управления и определяет, как был присвоен адрес сетевому интерфейсу. Если оба бита, I/O и U/ L, установлены в 0, то адрес является уникальным 48-битовым идентификатором, описанным ранее.

OUI (organizationally unique identifier - организационно уникальный идентификатор). IEEE присваивает один или несколько OUI каждому производителю сетевых адаптеров и интерфейсов. Каждый производитель отвечает за правильность присвоения OUA (organizationally unique address - организационно уникальный адрес), который должно иметь любое созданное им устройство.

При установке бита U/L адрес является локально управляемым. Это означает, что он задается не производителем сетевого интерфейса. Любая организация может создать свой МАС-адрес сетевого интерфейса путем установки бита U/ L в 1, а битов со 2-го по 47-й в какое-нибудь выбранное значение. Сетевой интерфейс, получив кадр, первым делом декодирует адрес получателя. При установлении в адресе бита I/O уровень MAC получит этот кадр лишь в том случае, если адрес получателя находится в списке, который хранится на узле. Этот прием позволяет одному узлу отправить кадр многим узлам.

Существует специальный многопунктовый адрес, называемый широковещательным адресом. В 48-битовом широковещательном IEEE-адресе все биты установлены в 1. Если кадр передается с широковещательным адресом получателя, то все узлы сети получат и обработают его.

Поле Длина/Тип

Поле L/T (Length/Type - Длина/Тип) применяется в двух различных целях:

  • для определения длины поля данных кадра, исключая любое дополнение пробелами;
  • для обозначения типа данных в поле данных.

Значение поля L/T, находящееся в интервале между 0 и 1500, является длиной поля данных кадра; более высокое значение указывает на тип протокола.

Вообще поле L/T является историческим осадком стандартизации Ethernet в IEEE, породившим ряд проблем с совместимостью оборудования выпущенного до 1983. Сейчас Ethernet и Fast Ethernet никогда не использует поля L/T. Указанное поле служит лишь для согласования с программным обеспечением, обрабатывающим кадры (то есть с протоколами). Но единственным подлинно стандартным предназначением поля L/T является использование его в качестве поля длины - в спецификации 802.3 даже не упоминается о возможном его применении как поля типа данных. Стандарт гласит: "Кадры со значением поля длины, превышающим определенное в пункте 4.4.2, могут быть проигнорированы, отброшены или использованы частным образом. Использование данных кадров выходит за пределы этого стандарта".

Подводя итог сказанному, заметим, что поле L/T является первичным механизмом, по которому определяется тип кадра. Кадры Fast Ethernet и Ethernet, в которых значением поля L/T задается длина (значение L/T 802.3, кадры, в которых значением этого же поля устанавливается тип данных (значение L/T > 1500), называются кадрами Ethernet - II или DIX .

Поле данных

В поле данных содержится информация, которую один узел пересылает другому. В отличие от других полей, хранящих весьма специфические сведения, поле данных может содержать почти любую информацию, лишь бы ее объем составлял не менее 46 и не более 1500 байтов. Как форматируется и интерпретируется содержимое поля данных, определяют протоколы.

Если необходимо переслать данные длиной менее 46 байтов, уровень LLC добавляет в их конец байты с неизвестным значением, называемые незначащими данными (pad data). В результате длина поля становится равной 46 байтам.

Если кадр имеет тип 802.3, то в поле L/T указывается значение объема действительных данных. Например, если пересылается 12-байтовое сообщение, то поле L/T хранит значение 12, а в поле данных находятся и 34 добавочных незначащих байта. Добавление незначащих байтов инициирует уровень LLC Fast Ethernet, и обычно реализуется аппаратно.

Средства уровня MAC не задают содержимое поля L/T - это делает программное обеспечение. Установка значения этого поля почти всегда производится драйвером сетевого интерфейса.

Контрольная сумма кадра

Контрольная сумма кадра (PCS - Frame Check Sequence) позволяет убедиться в том, что полученные кадры не повреждены. При формировании передаваемого кадра на уровне MAC используется специальная математическая формула CRC (Cyclic Redundancy Check - циклический избыточный код), предназначенная для вычисления 32-разрядного значения. Полученное значение помещается в поле FCS кадра. На вход элемента уровня MAC, вычисляющего CRC, подаются значения всех байтов кадра. Поле FCS является первичным и наиболее важным механизмом обнаружения и исправления ошибок в Fast Ethernet. Начиная с первого байта адреса получателя и заканчивая последним байтом поля данных.

Значения полей DSAP и SSAP

Значения DSAP/SSAP

Описание

Indiv LLC Sublayer Mgt

Group LLC Sublayer Mgt

SNA Path Control

Reserved (DOD IP)

ISO CLNS IS 8473

Алгоритм кодирования 8В6Т преобразует восьмибитовый октет данных (8B) в шестибитовый тернарный символ (6T). Кодовые группы 6Т предназначены для передачи параллельно по трем витым парам кабеля, поэтому эффективная скорость передачи данных по каждой витой паре составляет одну треть от 100 Мбит/с, то есть 33,33 Мбит/с. Скорость передачи тернарных символов по каждой витой паре составляет 6/8 от 33,3 Мбит/с, что соответствует тактовой частоте 25 МГц. Именно с такой частотой работает таймер интерфейса МП. В отличие от бинарных сигналов, которые имеют два уровня, тернарные сигналы, передаваемые по каждой паре, могут иметь три уровня.

Таблица кодировки символов

Линейный код

Символ

MLT-3 Multi Level Transmission - 3 (многоуровневая передача) - немного схож с кодом NRZ, но в отличии от последнего имеет три уровня сигнала.

Единице соответствует переход с одного уровня сигнала на другой, причем изменение уровня сигнала происходит последовательно с учетом предыдущего перехода. При передаче “нуля” сигнал не меняется.

Этот код, так же как и NRZ нуждается в предварительном кодировании.

Составлено по материалам:

  1. Лаем Куин, Ричард Рассел "Fast Ethernet";
  2. К. Заклер "Компьютерные сети";
  3. В.Г. и Н.А. Олифер "Компьютерные сети";

Fast Ethernet как развитие технологии Ethernet

Стандарт 10Base-F

Использует в качестве кабеля оптоволокно. Рекомендуется использование недорогого оптоволокна с длиной кабеля 1км, но возможна протяженность до 2 км..

Функционально сеть состоит из тех же элементов, что и в стандарте 10Base-T – сетевых адаптеров, концентраторов и сегментов кабеля, соединяющих адаптер с портом концентратора. Для соединения сетевого адаптера и концентратора используется два оптоволокна (объединенных в один кабель).

К достоинствам стандарта следует отнести значительное увеличение расстояния от узла сети до концентратора. К недостаткам относится высокая стоимость кабеля и сложность его монтажа.

Классический 10-мегабитный Ethernet устраивал большинство пользователей на протяжении около 15 лет. Однако в начале 90-х годов начала ощущаться его недостаточная пропускная способность. Назрела необходимость в разработке «нового» Ethernet, то есть технологии, которая была бы такой же эффективной по соотношению цена/качество при производительности 100 Мбит/с. В результате поисков и исследований специалисты разделились на два лагеря, что в конце концов привело к появлению новой технологии - Fast Ethernet.

В Fast Ethernet сохранен метод CSMA/CD и только увеличена скорость до 100 Мбит/с.

В ней используются три варианта кабельных систем:

· волоконно-оптический многомодовый кабель, используются два волокна;

Коаксиальный кабель, давший миру первую сеть Ethernet, в число разрешенных сред передачи данных новой технологии Fast Ethernet не попал. Это общая тенденция многих новых технологий, поскольку на небольших расстояниях витая пара категории 5 позволяет передавать данные с той же скоростью, что и коаксиальный кабель, но сеть получается более дешевой и удобной в эксплуатации. На больших расстояниях оптическое волокно обладает гораздо более широкой полосой пропускания, чем коаксиал, а стоимость сети получается ненамного выше, особенно если учесть высокие затраты на поиск и устранение неисправностей в крупной кабельной коаксиальной системе

При использовании коммутаторов протокол Fast Ethernet может работать в полнодуплексном режиме, в котором нет ограничений на общую длину сети, а остаются только ограничения на длину физических сегментов, соединяющих соседние устройства (адаптер - коммутатор или коммутатор - коммутатор)

· 100Base-TX для двухпарного кабеля на неэкранированной витой паре UTP категории 5 или экранированной витой паре STP Type 1;

· 100Base-T4 для четырехпарного кабеля на неэкранированной витой паре UTP категории 3, 4 или 5;



· 100Base-FX для многомодового оптоволоконного кабеля, используются два волокна.

Таблица 2. Общие характеристики стандартов FastEthernet

100Base-FX - многомодовое оптоволокно, два волокна, работа в полудуплексном и полнодуплексном режимах на основе схемы кодирования - 4В/5В.

100Base-TX - витая пара5 категории.

Всего в настоящее время определено 5 различных режимов работы, которые могут поддерживать устройства l00Base-TX или 100Base-T4 на витых парах;

100Base-T4 - витая пара UTP Cat 3, четыре пары

100Base-T4 была разработана для того, чтобы можно было использовать для высокоскоростного Ethernet имеющуюся проводку на витой паре категории 3. Ее самое главное преимущество состояло не столько в стоимости, а в том, что она была уже проложена в подавляющем числе зданий. Эта спецификация позволяет повысить общую пропускную способность за счет одновременной передачи потоков бит по всем 4 парам кабеля.

Четвертая пара всегда используется для прослушивания несущей частоты в целях обнаружения коллизии. Скорость передачи данных по каждой из трех передающих пар равна 33,3 Мбит/с, поэтому общая скорость протокола 100Base-T4 составляет 100 Мбит/с.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: