Структура транспортных сетей нового поколения. Системы передачи для транспортной сети. Анализ требований к опорной сети

Транспортная сеть связи – это сеть, обеспечивающая перенос разных видов информации с использованием различных протоколов передачи.

Транспортные сети можно разделить на три уровня . Сети первого уровня – локальные или местные. Они организуются в городских или сельских местностях. Сети второго уровня – региональные или внутризоновые . Третий уровень – глобальная (магистральная) сеть. При построении транспортных сетей разных уровней сохраняется единообразие в способах транспортировки информации, методах управления сетями и организации синхронизации. Различия в сетях разного уровня состоят лишь в иерархии используемых скоростей, архитектуре сетей (кольцевая, звездообразная, линейная и др.), мощности узлов кросс-коммутации. В качестве линии передачи в транспортных сетях используются волоконно-оптические линии передачи, радиорелейные и спутниковые стволы, коаксиальные кабели.

На рисунке 2.8 показана структура местной (города) транспортной сети на базе технологии SDH.

Рис. 2.8 Структура транспортной сети города на базе технологии SDH

Для построения современных транспортных и корпоративных сетей любого уровня наибольшее применение находят сетевые технологии ПЦИ/ PDH, СЦИ/SDH и ATM. Технология ATM , в отличие от технологий PDH и SDH, охватывает не только уровень первичной или транспортной сети, но и объединяет уровни вторичных сетей и сетей доступа с первичной сетью. В последние годы получили развитие такие технологии как DWDM, IP поверх ATM и IP поверх SDH. В настоящее время наибольший прогресс достигнут в создании магистральных сетей на основе вышеназванных технологий. Появились новые технологии передачи IP-трафика с унифицированными соединениями IP-маршрутизаторов, использующими в качестве канальной среды такие технологии, как WDM, DWDM, SDH и ОВ в виде «темных волокон». В транспортных сетях используется иерархия скоростей передачи в соответствии с международными рекомендациями ITU-T и получившим наибольшее распространение, европейским стандартом, который применяют на сетях связи России. Технология PDH поддерживает следующие уровни иерархии цифровых каналов: абонентский или основной канал Е0 (64 кбит/с) и пользовательские каналы уровней Е1 (2,048 Мбит/с), Е2 (8,448 Мбит/с), Е3 (34,368 Мбит/с), Е4 (139,264 Мбит/с). Уровень цифрового канала Е5 (564,992 Мбит/с) определен в рекомендациях ITU-T, но на практике его обычно не используют. Цифровые каналы PDH являются входными (полезной нагрузкой) для пользовательских интерфейсов сетей SDH.

Современная цифровая первичная или транспортная сеть, как правило, строится на основе совокупности аппаратуры PDH и SDH. Цифровые каналы транспортной сети с пропускной способностью (скоростью передачи) от 64 кбит/с до 39813,12 Мбит/с создаются на основе технологий PDH и SDH (табл.8.4.1, табл.8.4.2). Технологии PDH и SDH взаимодействуют друг с другом через процедуры мультиплексирования и демультиплексирования цифровых потоков Е1, Е3 и Е4 PDH в аппаратуре SDH. В табл.8.4.1 приведены общие характеристики основного цифрового канала Е0 и сетевых трактов Е1, Е2, Е3 и Е4 PDH.

Технология SDH по сравнению с PDH имеет следующие особенности и преимущества:

 предусматривает синхронную передачу и мультиплексирование, что приводит к необходимости построения систем синхронизации сети;

 предусматривает прямое мультиплексирование и прямое демультиплексирование (ввод-вывод) цифровых потоков PDH;

 основана на стандартных оптических и электрических интерфейсах, что обеспечивает совместимость аппаратуры различных производителей;

 позволяет объединить системы PDH европейской и американской иерархии;

 обеспечивает полную совместимость с аппаратурой PDH, ATM и IP;

 обеспечивает многоуровневое управление и самодиагностику транспортной сети.

Технология ATM , основанная на статистическом мультиплексировании различных входных сигналов, разрабатывалась сначала как часть широкополосной технологии B-ISDN. Она предназначена для высоко-скоростной передачи разнородного трафика: голоса, данных, видео и мультмедиа, и ориентирована на использование физического уровня высокоскоростных сетевых технологий, таких как SDH, FDDI и др. В технологии ATM базовые значения скоростей передачи для интерфейсов доступа (пользовательских интерфейсов) соответствуют цифровым каналам Е1 (2 Мбит/с), Е3 (34 Мбит/с), Е4 (140 Мбит/с) PDH, ATM (25 Мбит/с), Fast Ethernet, FDDI (100 Мбит/с) и некоторым другим. Базовые скорости линейных интерфейсов передачи соответствуют скоростям передачи цифровых каналов STM-N (N=1, 4, 16, 64 (табл.2)) системы SDH.

Технология ATM была первой технологией, на основе которой вместо стандартных и многочисленных сетей (телефонной, телеграфной, факсимильной связи и сетей передачи данных) предполагалось построить единую цифровую сеть на базе широкого использования ВОЛС. Однако из-за высокой стоимости аппаратуры ATM и широкого проникновения протокола IP в сети глобальных масштабов, не способствовали осуществлению этих планов в полной мере. Технология IP является основой сети Интернет и представляет собой набор протоколов, называемый стеком протоколов TCP/IP, а протокол управления передачей IP – протоколом сети Интернет. Именно он реализует межсетевой обмен. Главным достоинством является то, что стек протоколов TCP/IP обеспечивает надежную связь между сетевым оборудованием различных производителей. Протоколы стека TCP/IP описывают формат сообщений и указывают, каким образом следует обрабатывать ошибки, предоставляют механизм передачи сообщений в сети независимо от типа применяемого оборудования. Однако за время существования стека протоколов TCP/IP выявились слабости и недостатки архитектуры протоколов TCP/IP. Во многих случаях IP-технология не может удовлетворить требованиям новых приложений. Прежде всего, она должна обеспечивать более высокую пропускную способность. Однако этого не достаточно. Требуется дополнить IP-технологию средствами управления пропускной способностью, которые бы гарантировали приложениям нужное им качество обслуживания QoS.

Развитие инфотелекоммуникационных технологий постоянно стимулируется поиском возможностей и технологий, способных наиболее эффективно объединять сети, превращая их в мультисервисные широкополосные и сверхширокополосные. В настоящее время наибольший прогресс достигнут в создании глобальных магистральных сетей на основе технологий IP поверх ATM и IP поверх SDH. Появились новые технологии передачи IP-трафика, предусматривающие унифицированные соединения маршрутизаторов через системы и среды, такие как WDM, DWDM, «темное волокно». Примером такой технологии может быть предложенный в 1999г. компанией Cisco Systems протокол SRP (Spatial Reuse Protocol)который впоследствии стал называться DPT (Dynamic Packet Transport). В технологии DPT воплотились лучшие качества таких технологий как SDH, FDDI и др. Технология DPT позволяет избежать промежуточных протоколов других сетевых технологий, например, SDH и ATM при передаче трафика IP по волокну. К основным преимуществам технологии DPT можно отнести следующие. Применение формата SDH (уровня STM-1) позволяет передавать трафик DPT по сетям SDH, благодаря чему обеспечивается их совместимость. При этом магистральные тракты занимают полосу пропускания лишь между точками передачи и приема сигналов, что позволяет более эффективно использовать пропускную способность кольцевой топологии сети DPT. Технологии DPT присущи развитые возможности резервирования трафика за счет реализации механизмов восстановления в кольцевой топологии сети. Применение протокола IP позволяет реализовать сквозной мониторинг всей сети DPT, начиная от магистральной (транспортной) и заканчивая сетями доступа.

Классификация транспортных сетей. Обзор технологий для транспортной сети (ТС)

Сначала было слово. Слово содержало некую информацию, предназначенную для передачи от человека к человеку. И уж потом постепенно у людей сформировалось осознание того, что для нормального информационного обмена необходимы коммуникации - от голубиной почты и верблюжьих караванов до телефонов, компьютеров и волоконно-оптических магистралей. То, что произошло в мире телекоммуникаций сегодня, можно квалифицировать, скорее, как революцию, чем как эволюцию, настолько велико различие между тем, что представлял собою телефон вчера, и тем, как возросло распространение информации и влияние сети Интернет сегодня. Существующая сегодня телефонная сеть общего пользования (ТфОП) и, вместе с ней, сама технология коммутации каналов на стадии вымирания. Её место занимает сеть с коммутацией пакетов, которая будет обслуживать передачу речи, видеоинформации и данных. Процесс информатизации набирает обороты во всем мире. В современном глобальном мире уровень информатизации обеспечивает конкурентоспособность и безопасность страны.

Еще 10 лет назад любая технология связи могла бы просуществовать 20-30 лет. Теперь многие технологии «умирают» за 1-2 года, потому что оборудование связи очень сильно подвергается моральному износу (т.е. оборудование еще может функционировать, но оно уже не будет отвечать современным тенденциям и требованиям). А новое оборудование, устанавливаемое на станциях, нуждается в квалифицированных работниках, поэтому специалистам, работающим с новыми технологиями, требуется непрерывно повышать свои знания и улучшать навыки.

Грядущий переход Интернета на более эффективный протокол IPv6 поможет реализовать более сложные алгоритмы обслуживания абонентов и даже построить "интернет вещей", когда выход в сеть будут иметь и зубные щетки, и холодильники, и автомобили, а множество датчиков и сенсоров будут объединяться в самоорганизующиеся сети. А количество "пользователей" по линии "machine-tomachine" (или М2М) будет насчитывать десятки миллиардов устройств.

Связистам надо двигаться от потребителя и стараться сгенерировать действительно очень важные для него услуги, пусть даже и с его участием. И будет всем нам счастье. Ведь счастье подобно бабочке - чем усерднее ловишь его, тем успешнее оно ускользает. Но если вы перенесете свое внимание на другие вещи, оно придет и тихонько сядет вам на плечо.

Это было лирическое отступление. А теперь посмотрим на обложку данного учебного пособия, где приведён рисунок, иллюстрирующий понятия: «транспортной сети» и «сети доступа».

Транспортная сеть – это совокупность сетевых элементов, которые обеспечивают передачу трафика. Транспортной является та часть сети связи, которая вы­полняет функции переноса (транспортировки) потоков сообщений от их источниковиз одной сети доступа к полу­чателям сообщений другой сети доступа .

Сеть доступа – это совокупность сетевых элементов, обеспечивающих доступ абонентов к ресурсам транспортной сети с целью получения услуг. Сеть доступа связывает источник (приемник) сообщений с узлом досту­па, являющимся граничным между сетью доступа и транс­портной сетью.

Из рисунка на обложке пособия видно, что основными технологиями современной транспортной сети являются: WDM, NGSDH (SDH нового поколения), MPLS и, конечно, 10GE.

В современной сети доступа в настоящее время применяется громадное количество различных технологий, например: различные виды DSL (ADSL, HDSL, VDSL); различные виды оптического доступа (FTTH – оптика в квартиру, FTTB – оптика в здание, FTTC – оптика в уличный шкаф); различные виды радиодоступа (Wi-Fi, WiMAX, LTE), MetroEthernet, GPON и т. д.

По типу присоединяемых абонентских терминалов сети ВСС разделяются на:

сети фиксированной связи , обеспечивающие присоеди­нение стационарных абонентских терминалов;

сети подвижной связи , обеспечивающие присоедине­ние подвижных (перевозимых или переносимых) абонент­ских терминалов.

Кроме того, по способу организации каналов сети традиционно разделяются на первичные и вторич­ные (рисунок 1.1).

Первичная сеть представляет собой совокупность кана­лов и трактов передачи, образованных оборудованием узлов и линий передачи (или физических цепей), соединяю­щих эти узлы. Первичная сеть предоставляет каналы пере­дачи (физические цепи) для вторичных сетей для образования каналов связи.

Вторичная сеть представляет собой совокупность ка­налов связи, образуемых на базе первичной сети путем их маршрутизации и коммутации в узлах коммутации и орга­низации связи между абонентскими устройствами пользо­вателей.

Рисунок 1.1 – Структура системы электросвязи

В основе построения классической системы электросвязи лежит первичная сеть, включающая в себя среду распространения сигналов и аппаратуру передачи сигнала, обеспечивающую создание типовых каналов и трактов первичной сети. Первичная сеть может быть построена на основе аналоговых систем передачи (АСП) или на основе цифровых систем передачи (PDH, SDH).

Типовые каналы и тракты первичной сети используются различными вторичными сетями: сетями телефонии, передачи данных, радиосвязи, телевидения, сетями сотой связи.

Очень важно понимать классификацию сетей связи по территориальному делению :

магистральная – это сеть, связывающая между со­бой узлы центров субъектов Российской Федерации. Магистральная сеть обес­печивает транзит потоков сообщений между зоновыми се­тями;

зоновые (или региональные) – это сети связи, образу­емые в пределах территории одного или нескольких субъ­ектов Российской Федерации (регионов);

местные – это сети связи, образуемые в пределах ад­мини­стра­тивной или определенной по иному принципу тер­ритории и не относящиеся к региональным сетям связи. Местные сети подразделяются на городские и сельские;

международная – это сеть общего пользования, присоединенная к сетям связи иностранных государств.

IP-телефония

Аббревиатура VoIP (Voice Over Internet Protocol) означает передачу голоса через интернет-протокол. Истоки технологии VoIP находятся в далеком 1876 году, когда американец Александр Белл осуществил первый телефонный звонок и запатентовал изобретенный им «говорящий телеграф» Это устройство не имело звонка, а вызов абонента производился через трубку при помощи свистка. Появление VoIP датируется 1995 годом, когда маленькая израильская компания VocalTec выпустила первую программу для интернет-телефонии. Программа называлась Internet Phone и была предназначена для звонков с домашнего компьютера.



В сетях на основе протокола IP все данные - голос, текст, видео передаются в виде пакетов. Любой компьютер и терминал такой сети имеет свой уникальный IP-адрес, и передаваемые пакеты маршрутизируются к получателю в соответствии с этим адресом, указываемом в заголовке. Данные могут передаваться одновременно между многими пользователями по одной и той же линии . При возникновении проблем IP-сети могут изменять маршрут для обхода неисправных участков. При этом протокол IP не требует выделенного канала для сигнализации.

Рисунок 2.1 – Соединение в сети с коммутацией пакетов

Аналоговый сигнал от абонента поступает в шлюз IP-телефонии .

В шлюзе происходит следующее : на первом этапе осуществляется оцифровка голоса. Затем оцифрованные данные анализируются и обрабатываются с целью уменьшения физического объема данных, передаваемых получателю. Как правило, на этом этапе происходит подавление ненужных пауз и фонового шума, а также компрессирование. На следующем этапе полученная последовательность данных разбивается на пакеты и к ней добавляется протокольная информация - адрес получателя, порядковый номер пакета на случай, если они будут доставлены не последовательно, и дополнительные данные для коррекции ошибок. При этом происходит временное накопление необходимого количества данных для образования пакета до его непосредственной отправки в сеть.

Извлечение переданной голосовой информации из полученных пакетов происходит в приёмном шлюзе также в несколько этапов. Сначала проверяется их порядковая последовательность. Поскольку IP-сети не гарантируют время доставки, то пакеты со старшими порядковыми номерами могут прийти раньше, более того, интервал времени получения также может колебаться.

Для восстановления исходной последовательности и синхронизации происходит временное накопление пакетов. Однако некоторые пакеты могут быть вообще потеряны при доставке, либо задержка их доставки превышает допустимый разброс. В обычных условиях приемный терминал запрашивает повторную передачу ошибочных или потерянных данных. Но передача голоса слишком критична ко времени доставки, поэтому в этом случае либо включается алгоритм аппроксимации, позволяющий на основе полученных пакетов приблизительно восстановить потерянные, либо эти потери просто игнорируются, а пропуски заполняются данными случайным образом.

Полученная таким образом последовательность данных декомпрессируется и преобразуется непосредственно в аудио-сигнал, несущий голосовую информацию получателю.

Таким образом, с большой степенью вероятности, полученная информация не соответствует исходной (искажена) и задержана (обработка на передающей и приемной сторонах требует промежуточного накопления). Однако в некоторых пределах избыточность голосовой информации позволяет мириться с такими потерями.

В настоящей время в IP-телефонии существует два основных способа передачи голосовых пакетов по IP-сети.


13.1. Взаимоувязанная сеть связи РФ - национальная транспортная магистральная сеть

Для организации информационного обмена между отдельными локальными и глобальными сетями развертывается транспортная сеть (ТС) реализующая сервисы транспортировки информационных потоков между отдельными абонентами, а так же предоставление информационных сервисов (таких как: радио, ТВ, факсимильная связь и др.) потребителям.

Транспортная сеть связи (backhaul ) - это совокупность ресурсов, выполняющих функции транспортирования в телекоммуникационных сетях. Она включает не только системы передачи, но и относящиеся к ним средства контроля, оперативного переключения, резервирования, управления.

Рисунок 13.1 - Телекоммуникационная сеть состоящая из магистральной транспортной сети и абонентов, подключенных к ней через сети доступа

Как правило, транспортные сети разворачиваются в национальном масштабе. В РФ такой транспортной системой является взаимоувязанная сеть связи РФ (ВСС).

Взаимоувязанная сеть связи России сегодня представляет собой совокупность сетей (рис. 13.2):

Сети общего пользования,

Ведомственных сетей и сети связи в интересах управления, обороны, безопасности и охраны правопорядка.

При этом главная составляющая ВСС - сети связи общего пользования, открытые для всех физических и юридических лиц на территории России.

Рисунок 13.2 - Структура ВСС РФ

Организационно ВСС - это совокупность взаимоувязанных сетей электросвязи, находящихся в ведении различных операторов связи как юридических лиц, имеющих право предоставлять услуги электросвязи. Архитектура ВСС РФ приведена на рис. 13.3.

Взаимоувязанная сеть связи, как система связи, представляет собой иерархическую трехуровневую систему:

Первый уровень - первичная сеть передачи, представляющая типовые каналы и групповые тракты передачи для вторичных сетей;

Второй уровень - вторичные сети, т. е. коммутируемые и некоммутируемые сети связи (телефонные, документальной электросвязи и др.),

Достоверность сообщений (соответствие принятого сообщения переданному);

Надежность и устойчивость связи, т.е. способность сети выполнить транспортную функцию с заданными эксплуатационными характеристиками в повседневных условиях,

При воздействии внешних дестабилизирующих факторов.

Системы связи могут обеспечить защиту информации от ряда угроз ее безопасности (блокирование, несанкционированный доступ на отдельных элементах сети и др.). Ответственность за общее решение вопросов безопасности информации (обеспечение свойств конфиденциальности, целостности и доступности) возлагается на пользователя (собственника информации).

Устойчивость сети связи - это ее способность сохранять работоспособность в условиях воздействия различных дестабилизирующих факторов. Она определяется надежностью, живучестью и помехоустойчивостью сети.

Для повышения устойчивости сетей ВСС используются различные меры:

Оптимизация топологии сетей связи для упрощения их адаптации к условиям, возникающим в результате воздействия различных дестабилизирующих факторов, включая геополитические;

Рациональное размещение сооружений связи на местности с учетом зон возможных разрушений, наводнений, пожаров;

Применение специальных мер защиты сетей и их элементов от влияния источников помех различного характера;

Развитие систем резервирования;

Внедрение автоматизированных систем управления, организующих работу по перестройке и восстановлению сетей, поддержанию их работоспособности в различных условиях и др.

13.6. Этапы развития технологий транспортных и телекоммуникационных сетей

Телекоммуникационные системы в своем развитии прошли несколько этапов (рис. 13.9). На рис. 13.9, чем ниже лежит слой, соответствующей технологии , тем более высокоскоростной она является, а следовательно может обеспечивать передачу видов информации вышележащих технологий. Передача информации между вторичными сетями, построенными на базе различных телекоммуникационных технологий, осуществляется с использованием переходных элементов, называемых шлюзами, которые располагаются на их границах.

На первом этапе первичная сеть строилась на основе типовых каналов и трактов АСП.

Второй этап характеризовался созданием цифровых систем передачи на основе иерархии плезиохронных цифровых систем, которые образовывали первичную цифровую сеть. При этом на обоих этапах развития жестко закреплялся соответствующий ресурс первичной сети в виде типовых каналов и трактов за соответствующими вторичными сетями. Такой подход, основанный на жестком закреплении ресурсов первичной сети за вторичными сетями связи, не позволял осуществлять динамическое перераспределение ресурсов первичной сети в условиях нестационарной нагрузи различных видов информации, характеризовался использованием разнотипного каналообразующего и коммутационного оборудования и являлся не эффективным в экономическом плане. Наличие взаимного существования АСП и ЦСП вызвало необходимость решения задачи сопряжения между собой аналоговых каналов и трактов с цифровыми, что также приводило к дополнительному усложнению и повышению стоимости связи (модемы, АЦП-ЦАП, TMUX - трансмультиплексоры).

Рисунок 13.9 - Этапы развития телекоммуникационных технологий

Вторичные сети связи на этих этапах использовали, как правило, кроссовую коммутацию, традиционную коммутацию каналов аналоговых и цифровых, в телеграфных сетях связи применялась как коммутация каналов, так и коммутация сообщений, передача данных осуществлялась по некоммутируемым и коммутируемым каналам связи , а также с использованием метода коммутации пакетов. Видео и телевизионная информация передавалась по выделенным для этих целей широкополосных аналоговых или высокоскоростных цифровых трактах передачи АСП и ЦСП соответственно.

Третий этап развития телекоммуникационных систем связан с появлением новых технологий передачи информации, как при построении первичной сети, так и использовании новых технологий интегрального типа для построения вторичных сетей.

На этом этапе вторичные сети обеспечивают в едином цифровом виде совместную передачу различных видов информации, осуществляя динамическое перераспределение имеющегося ресурса между сообщениями различных видов информации. При этом в рамках каждой технологии вторичной сети используется однотипное коммутационное оборудование.

Основу первичной сети третьего этапа составляют цифровые системы передачи плезиохронной и синхронной иерархий, которые обеспечивают функционирование всех вторичных сетей, использующих различные методы оперативной коммутации: быструю коммутацию каналов, быструю коммутацию пакетов, коммутацию кадров, пакетов и ячеек.

В последнее время при развитии телекоммуникационных систем получила развитие концепция сетей связи следующего/нового поколения NGN (Next/New Generation Network). Концепция NGN предусматривает создание новой мультисервисной сети, при этом с ней осуществляется интеграция существующих служб путем использования распределенной программной коммутации (soft-switches).

Эволюция корпоративных сетей от аналого-цифрового варианта к NGN-архитектуре иллюстрируется рис. 13.10.

Рисунок 13.10 - Эволюция архитектуры телекоммуникационных сетей

Сети следующего поколения (NGN) представляют собой новую концепцию сети, комбинирующую в себе голосовые функции, качество обслуживания (QoS) и коммутируемые сети с преимуществами и эффективностью пакетной сети. Сети NGN означают эволюцию существующих телекоммуникационных сетей, отражающуюся в слиянии сетей и технологий. Благодаря этому обеспечивается широкий набор услуг начиная с классических услуг телефонии и кончая различными услугами передачи данных или их комбинацией.

Концепция NGN – концепция построения сетей связи следующего/нового поколения (Next/NewGeneration Network ), обеспечивающих предоставление неограниченного набора услуг с гибкими настройками по их:

- управлению,

- персонализации,

- созданию новых услуг за счет унификации сетевых решений,

Мультисервисная сеть – сеть связи, которая построена в соответствии с концепцией NGN и обеспечивает предоставление неограниченного набора инфокоммуникационных услуг (VoIP, Интернет, VPN, IPTV, VoD и др. ).

Сеть NGN – сеть с пакетной коммутацией, пригодная для предоставления услуг электросвязи и для использования нескольких широкополосных технологий транспортировки с включенной функцией QoS, в которой связанные с обслуживанием функции не зависят от примененных технологий , обеспечивающих транспортировку .

Возможности сети NGN:

- реализация универсальной транспортной сети с распределенной коммутацией,

- вынесение функций предоставления услуг в оконечные сетевые узлы,

- интеграция с традиционными сетями связи.

Сеть NGN должна обладать широким спектром возможностей – предоставлять возможности (инфраструктуру, протоколы) для целей создания, развертывания и управления всеми возможными видами услуг (известными или пока не известными). В данное понятие входят услуги, использующие данные различных типов (например, голосовые, видео, текстовые данные их различные комбинации и сочетания с другими типами данных).

Передача может осуществляться со всеми типами схем кодирования и технологий передачи данных, например диалоговые передачи, с адресацией конкретному устройству, групповой адресацией и вещанием, услуги передачи сообщений, простой передачи данных в реальном масштабе времени и в автономном режиме, с регулированием задержки и устойчивые к задержке услуги. Услуги, предъявляющие различные требованиями к ширине полосе, с гарантированной полосой или без нее, должны поддерживаться с учетом технических возможностей используемой технологии передачи данных.

Особое внимание в сетях NGN уделяется гибкости реализации услуг в стремлении к наиболее полному удовлетворению всех требований заказчика. В некоторых случаях возможно также предоставление пользователю возможности настройки используемых им услуг. NGN должна поддерживать открытые интерфейсы программирования приложений, чтобы поддерживать создание, предоставление и управление услугами.

Обобщая вышеизложенное, можно сказать, что современное развитие телекоммуникационных сетей связи происходит через интеграцию всех функциональных возможностей, заложенных в модели транспортных сетей. Интеграция привела к созданию универсальных мультисервисных транспортных платформ с электрическими и оптическими интерфейсами , с электрической и оптической коммутацией каналов и пакетов (кадров и ячеек), с предоставлением любых видов транспортных услуг, включая услуги автоматически коммутируемых оптических сетей c сигнальными протоколами, основанными на обобщённом протоколе коммутации по меткам GMPLS (Generalized Multi-Protocol Label Switching).

На рис. 13.11 представлена обобщенная архитектура транспортной платформы, в которой указаны возможные источники информационной нагрузки, протоколы согласования и транспортные технологии по информации из работы .

Рисунок 13.11 - Обобщенная архитектура оптической мультисервисной транспортной платформы

Обозначения на рис. 13.11 :

PDH, Plesiochronous Digital Hierarchy - плезиохронная цифровая иерархия (скорости 2, 8, 34 и 140 Мбит/с);

N-ISDN, Narrowband Integrated Services Digital Network - узкополосная цифровая сеть с интеграцией служб (У-ЦСИС);

IP, Internet Protocol - межсетевой протокол;

IPX, Internet Packet eXchange - межсетевой обмен пакетами;

MPLS, Multi-Protocol Label Switching - многопротокольная коммутация по меткам;

GMPLS, Generalised MPLS - протокол обобщенной коммутации по меткам;

SANs, Storage Area Networks - сети хранения данных (серверы услуг, базы данных);

ISCSI, internet Small Computer System Interface - протокол для установления взаимодействия и управления системами хранения данных, серверами и клиентами;

HDTV, High-Definition Television - телевидение высокой четкости;

ESCON, Enterprise Systems Connection - соединение учрежденческих систем (с базами данных, серверами);

FICON, Fiber Connection - волоконное соединение для передачи данных;

PPP, Point-to-Point Protocol - протокол «точка-точка»;

RPR, Resilient Packet Ring - протокол пакетного кольца с самовосстановлением;

HDLC, High-level Data Link Control - протокол управления каналом высокого уровня;

GFP, Generic Framing Procedure - процедура формирования общего кадра.

Протоколы PPP, RPR, HDLC, GFP в транспортных сетях выполняют функции согласования информационных данных от источников нагрузки с транспортными структурами с целью повышения эффективности использования ресурсов этих структур , например, виртуальных контейнеров высокого и низкого порядков в сети SDH или оптических каналов в сети OTN, или физических ресурсов кадров передачи сети Ethernet .

Рубрика: .

Транспортная телекоммуникационная сеть - это основная часть инфраструктуры сети любого оператора, будь то оператор традиционной телефонии, сотовый оператор, провайдер проводного или беспроводного доступа в Интернет.

Современные транспортные телекоммуникационные сети должны быть универсальны, т.е. способны эффективно поддерживать как эксплуатируемые сегодня системы 2G и 2,5G, ориентированные на передачу трафика в режиме TDM, так и сети следующего поколения - 3G и даже 4G . От качества транспортной телекоммуникационной сети полностью зависит качество предоставляемых услуг. Именно поэтому при выборе технологии и образования для построения этого участка инфраструктуры, операторы особо тщательны, внимательны и придирчивы. Например, если системы UMTS Release 99 ориентированы на транспорт, основанный на технологии АТМ, то последующие разработки UMTS Revision 5/6 - на IP-решения с использованием сетей Ethernet и технологии MPLS. Поэтому оборудование транспортных телекоммуникационных сетей должно обеспечивать эффективную передачу всех типов трафика - TDM, ATM, IP.

Основными способами организации транспортных телекоммуникационных сетей являются волоконно-оптические, спутниковые и беспроводные системы связи. К последним относятся радиорелейные системы, которые широко используются в транспортных телекоммуникационных сетях операторов сотовой связи и широкополосного доступа.

Транспортная телекоммуникационная сеть оператора мобильной связи состоит из двух основных сегментов (рис.1):

Распределительной сети (backhaul), связывающей базовые станции с контроллерами и центрами коммутации подвижной связи (Mobile Switching Center (MSC));
магистральной сети (backbone), обеспечивающей высокоскоростной транспорт между центрами коммутации подвижной связи.

Традиционно распределительная сеть строилась по топологии «звезда»: в центре - MSC, к нему выделенным каналом (как правило, E1 или NE1) подключались системы радиодоступа (контроллер и базовые станции). Если базовые станции находятся в труднодоступных районах, то для их подключения часто используют радиорелейные линии связи или спутниковые каналы.

Операторы сотовой связи далеко не всегда имеют собственные каналы между базовыми станциями, контроллерами и MSC, чаще арендуют их. Поэтому понятно их стремление максимально загружать арендуемые емкости. Однако при этом необходимо учитывать и возможные пиковые нагрузки. Возникает задача поиска компромисса между стоимостью аренды каналов и качеством обслуживания абонентов в периоды пиковых нагрузок. Ее трудно решить при использовании традиционных технологий с коммутацией каналов (TDM) .

Одни технологии мобильной связи изначально обеспечивают эффективное использование канальных ресурсов, другие - нет. Например, при передаче обычного трафика GSM дополнительные процедуры сжатия могут принести выгоду, а вот трафик систем CDMA на интерфейсах E1 Frame Relay между контроллерами базовых станций и центром MSC уже достаточно плотно «упакован».

Строящиеся транспортные сети должны быть универсальными, т. с. способными эффективно поддерживать как эксплуатируемые сегодня системы 2G и 2.5G, ориентированные на передачу трафика в режиме TDM, так и сети следующего поколения.

Оптимальная транспортная телекоммуникационная сеть операторов мобильной связи должна соответствовать ряду критериев:
обеспечению безболезненного внедрения новых систем мобильной связи;
соответствию требованиям архитектур сетей следующего поколении, в частности, IMS;
сохранению вложенных инвестиций;
наличию эффективных средств управления трафиком;
гарантии того, что качество услуг связи не будет снижаться, лучше - повышаться;
предоставлению удобных средств технического обслуживания и эксплуатации.

Один из способов построения эффективной распределительной сети - установить в узлах радиосети (базовые станции и контроллеры) и в центре MSC мультисервисные граничные устройства, упаковывающие трафик в пакеты, оптимизирующие его для дальнейшей передачи по сети. Такой подход позволит на базе единой конвергентной транспортной сети поддерживать различное оборудование радиосегментов: GSM (TDM), GPRS (TDM), CDMA 1 x EV-DO, UMTS (ATM) и пр. Вместо множества частично заполненных потоков Е1 оператор получит относительно небольшое число каналов, «плотно» заполненных пакетами, при этим механизмы QoS гарантируют высокое качество голосовой связи. Более того, за счет эффективного использования канальных ресурсов операторы смогут подключать новые базовые станции по имеющимся каналам связи.

Если в непосредственной близости с узлами, где находятся базовые станции, контроллеры и центры MSC, имеются ВОЛС, то потоки Е1 можно мультиплексировать для передачи по сети SDH. Преимущества таких сетей связаны в первую очередь с высокой надежностью, обеспечиваемой кольцевыми схемами защиты и развитыми средствами поддержки эксплуатации. Наибольшая экономия обеспечивается, когда оборудование сетей мобильной связи подключается к уже существующей сети SDH, по которой могут передаваться самые разные типы нагрузки: трафик мобильной телефонии, сетей фиксированной связи, видеоинформация, ТВ-каналы и пр.

Транспортная сеть мобильной связи обеспечивает соединения между базовой станцией мобильной связи (RBS) и сотовым коммутатором по границе транспортной сети. Крупные операторы мобильной связи делят архитектуру транспортного канала на две составляющие (рис. 2) - низовую сеть радиодоступа (LRAN) и сеть радиодоступа высокого уровня (HRAN).

При установке радиооборудования с интерфейсами Ethernet оно также может быть подключено к сети SDH. Для этого существуют специальные технические решения Ethernet over SDH, реализованные, в частности, в SDH - оборудовании Metropolis компании Lucent-Alcatel. Для повышения эффективности передачи трафика Ethernet через сети SDH в настоящее время разработан и стандартизован целый ряд технологий: универсальная схема фрейминга (General Framing Concatenation, G.707), алгоритмы подстройки емкости линии связи (Link Capactivy Adjustment Scheme, G.7024). Оборудование с поддержкой упомянутых технологий оптимизировано для построения мультисервисных сетей и его относят к системам SDH следующего поколения (NG-SDH).

Транспортные сети, формирующие проводные каналы связи между удален­ными беспроводными сетями, представляют собой совокупность (рис. 1.5):

– проводных линий связи (links), по которым передаются цифровые электриче­ские или оптические сигналы;

– сетевых узлов (network nodes), осуществляющих ретрансляцию сигналов (включая их мультиплексирование/ демультиплексирование) из одних прово­дных линий в другие посредством коммутаторов (на рис. 1.5 показана струк­тура транспортной сети, содержащая 9 коммутаторов, соединенных между собой 15-ю линиями связи).

Современные транспортные сети представляют собой смежные техниче­ские системы, детальные сведения о которых составляют отдельную область знаний . Краткие сведения о характеристиках этих сетей, связанные с после­дующим изложением сведений о BWN, сводятся к следующему (рис. 1.6).

1. Иерархический уровень реализации сетей служит основанием для их раз­деления на две разновидности – первичные и наложенные сети.

Первичные сети (transmission system) обеспечивают физический перенос электрических сигналов от исходного до конечного узла транспортной сети. Одна из важных функций первичных сетей заключается в мультиплексирова­нии/ демультиплексировании сигналов различных источников. Цифровой форме сигнала, которая используется в современных транспортных сетях, соответству­ет мультиплексирование с временным разделением (Time Division Multiplexing –

TDM). По способу синхронизации мультиплексируемых сигналов различают следующие разновидности первичных сетей:

– сети с плезиохронной цифровой иерархией (Plesiochronous Digital Hierarchy – PDH), в которых мультиплексируемые сигналы близки к синхронным, но не строго синхронны; такие сети обеспечивают скорость передачи цифровых сигналов до 150 Мбит/с;

– сети с синхронной цифровой иерархией (Synchronous Digital Hierarchy – SDH) в которых обеспечивается синхронность мультиплексируемых сигналов- та­кие сети обеспечивают скорость передачи цифровых сигналов до 10 Гбит/с.

Рис. 1.5. Структура транспортной сети

Очевидно, что скорости передачи информационных потоков в сетях обеих разновидностей позволяют создавать на их основе транспортную инфраструк­туру, удовлетворяющую потребностям развертывания современных BWN.

Наложенные сети (Overlay Network) на основе первичных сетей обеспе­чивают формирование каналов проводной связи и перенос сообщений между входными и выходными узлами. Наложенные сети дополняют первичные сети всеми ресурсами, необходимыми для обеспечения проводного транспорта сиг­налов. Наиболее распространенные разновидности наложенных сетей: – коммутируемая телефонная сеть общего пользования (Public Switche Telephone Network – PSTN), рассчитанная на предоставление каналов со ско­ростью передачи цифровых потоков до 64 кбит/с; такие каналы называют ба­зовыми цифровыми каналами (Digital Signal 0 – DS0 или Bearer channel – channel);

– цифровая сеть с интеграцией услуг (Integrated Services Digital Network), рас­считанная на предоставление 23 базовых цифровых каналов в США, и 30 – в Европе (суммарные значения скоростей передачи данных соответственно равны 1.544 Мбит/с и 2.048 Мбит/с);

коммутируемая сеть передачи данных (Public Switched Data Network – PSDN) предназначенная для реализации пакетной передачи данных; примером такой сети является Internet.

Рис. 1.6. Критерии классификации транспортных сетей

2. Способ передачи сообщений. По способу передачи сообщений, все транс­портные сети классифицируются по двум признакам: форма представления со­общений во временной области и способ взаимосвязи абонентов в процессе ин­формационного обмена.

По форме представления во времени сообщение может быть непрерыв­ным (circuit mode) или пакетным (packet mode). Непрерывная форма харак­теризуется неделимостью сообщения на протяжении сеанса связи, пакетная, напротив, его разделением на части, каждая из которых передается отдельно (с последующим восстановлением целостности сообщения посредством объ­единения всех частей в надлежащем порядке узлом получателя). Непрерыв­ность сообщения эквивалентна установлению между исходным и конечным узлами транспортной сети замкнутой линии электрической связи (circuit),

что поясняет происхождение англоязычного термина для обозначения непп рывной передачи. Пакетирование сообщения сочетается с двумя способами передачи пакетов – либо по единой электрической линии, неизменной для всех пакетов сообщения, либо посредством независимой передачи транс­портной сетью каждого пакета, которые в этом случае именуются дейта граммами (datagram).

Форма взаимосвязи абонентов при транспорте сообщений определяется по наличию/отсутствию предварительной договоренности контактирующих сто­рон об обмене сообщениями. Различают две разновидности взаимосвязи або­нентов:

– связь с установлением соединения (connection oriented), соответствующая транспорту сообщений по пути, неизменному на протяжении сеанса связи- установление пути предшествует передаче сообщения (например, по линиям’, связывающим узлы 1 – 4 – 5 – 9 на рис. 1.5);

– связь без установления соединения (connectionless oriented), при которой транспорт сообщений сетью осуществляется без предварительного уста­новления маршрута его передачи; подразумевается возможность прохож­дения различных пакетов/частей сообщения различными путями (напри­мер, в сети, показанной на рис. 1.5, при передаче сообщения между узлами 1-9 возможна передача одного пакета через узлы 4-5, другого – через узлы 7-8, третьего – через узлы 2-3).

Передача без установления соединения может осуществляться только в пакетной (дейтаграммной) форме; непрерывная передача сообщений – только при установлении в транспортной сети соединения; пакетная фор­ма сообщений может подразумевать возможность установления соедине­ния, однако осуществляться без такового. Примером пакетной передачи с установлением соединения является передача IP-пакетов по сетям PSTN и ISDN.

3. Каналы связи транспортной сети принято классифицировать, исходя из формы реализации соединения между конечными узлами линии и пропускной способности каналов.

Реализация соединения между узлами может быть как «физической», так и виртуальной.

Физическое соединение осуществляется путем формирования составной линии, включающей ряд межузловых линий типа «точка-точка» и соединяю­щие их коммутаторы с фиксированным направлением коммутации от входящей к исходящей межузловой линии. Например, физическое соединение узлов 3 и 7 на рис. 1.5 образуется путем создания составной линии, включающей узлы 3, 5, 6, 7 и три межузловых отрезка. Типовым примером транспортных сетей с физической реализацией соединения (circuit mode) могут служить сети PSTN и ISDN.

Виртуальная реализация соединения заключается в пакетной передаче со­общений при неизменном маршруте их следования в транспортной сети (т.е. при неизменном перечне узлов и соединительных линий). Постоянство марш­рута обеспечивается запоминанием направления передачи пакетов (packet switching) в коммутаторах сети. Запоминание осуществляется либо только на время передачи сообщения, чему соответствуют понятие коммутируемого виртуального канала (switched virtual circuit), либо на длительное время, чему соответствуют понятие постоянного виртуального канала (permanent virtual channel).

Создание коммутируемых каналов осуществляется по запросу источника сообщения автоматически, создание постоянных каналов – администратором сети. Примерами виртуальных сетей являются сети PSDN.

Пропускная способность канала, под которой подразумевают возмож­ности последнего по переносу информации за определенный промежуток времени, определяется разновидностью используемых кабельных линий и особенностями мультиплексирования сигналов в коммутаторах. В совре­менных транспортных сетях используют кабели с двумя типами направ­ляющих сред (проводные медные и оптоволоконные) и два упоминавшихся выше способа мультиплексирования – плезиохронный (PDH) и синхрон­ный (SDH). Типовым (но не обязательным) является сочетание использо­вания проводных медных линий с применением PDH и оптоволоконных линий с применением SDH. Первому сочетанию соответствует пропускная способность до 150 Мбит/с, второму – до 10 Гбит/с. Технология синхрон­ного мультиплексирования допускает «надстройку» последнего над пле- зиохронным: таким образом, менее скоростные линии с плезиохронными цифровыми потоками могут подключаться к более скоростным линиям с синхронными потоками.

Цифровые потоки технологии плезиохронных сетей стандартизированы в трех вариантах стандартов: Европейском (Ех), Американском (Тх) и Японском (Jx). Несмотря на общие принципы, в каждом из них использованы различные коэффициенты мультиплексирования на разных уровнях иерархий. Каждый из стандартов охватывает несколько уровней цифровой иерархии и имеет несколь­ко символьных обозначений, описывающих технические характеристики интер­фейса и соответствующую скорость передачи данных:

– стандарты Ех, в соответствии со значениями обеспечиваемых скоростей передачи данных, обозначаемые символами Е0, El, Е2, ЕЗ, Е4, Е5;

– стандарты Тх, обозначаемые Tl, Т2, ТЗ, Т4 и Т5 (приняты в США, Японии и Корее);

– стандарты Jx, обозначаемые Jl, J2, J3, J4, J5, хотя чаще встречается другое обозначение: DS1, DS2, DS3, DS4, DS5, появившееся в результате согласова­ния японской и американской версий стандартов ввиду близости их характе­ристик (фактическая схожесть имеет место для первых двух иерархических уровней).

Базовым цифровым потокам обоих стандартов – Е0 и DS0 – соответствуют одинаковые значения скоростей передачи данных – 64 кбит/с. Иерархия скоро­стей цифровых потоков Е- и Т-версий приведена в табл. 1.1. На практике наи­большее распространение получили цифровые линии El, Т1 и ЕЗ, ТЗ,

Системы SDH, соответствующие международным стандартам синхрс ных первичных транспортных сетей, и системы SONET (Synchronous Opti< Network), отвечающие стандартам США, обеспечивают мультиплексирован цифровых потоков со скоростями порядка сотен и тысяч Мбит/с, что на один-j порядка превышает значения скоростей в плезиохронных системах. Частичн перекрытие стандартизированных значений скорости цифровых потоков дв разновидностей соответствует верхним иерархическим уровням PDH и нижн иерархическим уровням SDH. Базовому значению STM-0 скорости синхроны транспортных систем (Synchronous Transport Mode – STM) соответствует ci рость битового потока 48,96 Мбит/с. Сведения о скоростях передачи данн более высоких уровней (STM-x) представлены в табл. 1.2.

Оптоволоконные кабели обеспечивают передачу информационных noroi со скоростями до 10 Гбит/с, что соответствует стандарту STM-64 (5-го уроЕ иерархии скоростей). Различия скоростей передачи полезной нагрузки (paylo; и общей скорости потока в линиях (line rate) связана с «накладными расходам] обусловленными необходимостью сопровождения полезной информации разнс рода служебными сообщениями, обеспечивающими синхронную передачу }

Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: