Сравнение процессоров intel kaby lake. Семь фактов о Kaby Lake. Тестируем новое поколение процессоров Intel

  • Лазеры ,
  • We say that we will put the sun into a box. The idea is pretty. The problem is we don"t know how to make the box.

    Pierre-Gilles de Gennes
    Французский нобелевский лауреат

    Всем электронным устройствам и машинам нужна энергия и человечество потребляет её очень много. Но ископаемое топливо заканчивается, а альтернативная энергетика пока что недостаточно эффективна.
    Есть способ получения энергии, идеально подходящий всем требованиям - Термоядерный синтез. Реакция термоядерного синтеза (превращение водорода в гелий и выделение энергии) постоянно происходит на солнце и этот процесс дает планете энергию в виде солнечных лучей. Нужно только имитировать его на Земле, в меньшем масштабе. Достаточно обеспечить высокое давление и очень высокую температуру (в 10 раз выше, чем на Солнце) и реакция синтеза будет запущена. Чтобы создать такие условия, нужно построить термоядерный реактор. Он будет использовать более распространенные на земле ресурсы, будет безопасным и более мощным чем обычные атомные станции. Уже больше 40 лет предпринимаются попытки его строительства и ведутся эксперименты. В последние годы на одном из прототипов даже удалось получить больше энергии чем было затрачено . Наиболее амбициозные проекты в этой сфере представлены ниже:

    Государственные проекты

    Наибольшее внимание общественности последнее время достаётся другой конструкции термоядерного реактора - стелларатору Wendelstein 7-X (стелларатор сложнее по внутреннему устройству чем ITER, который является токамаком). Потратив чуть более 1 млрд. долларов немецкие ученые за 9 лет соорудили к 2015 году уменьшенную, демонстрационную модель реактора. Если он будет показывать хорошие результаты будет построена более масштабная версия.

    MegaJoule Laser во Франции будет самым мощным в мире лазером и будет пытаться продвинуть метод строительства термоядерного реактора, основанный на использовании лазеров. Ввод французской установки в строй ожидается в 2018 году.

    NIF (National ignition facility) было построено в США за 12 лет и 4 млрд. долларов к 2012. Они рассчитывали протестировать технологию и после сразу строить реактор, но оказалось, что, как сообщает википедия - considerable work is required if the system is ever to reach ignition. В результате грандиозные планы были отменены и ученые занялись постепенным совершенствованием лазера. Последняя задача - поднять эффективность передачи энергии с 7% до 15%. Иначе финансирование от конгресса этого метода достижения синтеза может прекратится.

    В конце 2015 года в Сарове началось строительство здания для самой мощной в мире лазерной установки. Она будет мощнее текущей американской и будущей французской и позволит провести эксперименты необходимые для строительства «лазерной» версии реактора. Завершение строительства в 2020 году.

    Расположенный в США лазер - MagLIF fusion признается темной лошадкой среди методов достижения термоядерного синтеза. Недавно этод метод показал результаты лучше ожидаемых, но мощность всё ещё нужно увеличить в 1000 раз. Сейчас лазер проходит апгрейд, и к 2018 учёные надеются получить столько же энергии, сколько потратили. В случае успеха будет построена увеличенная версия.

    В российском ИЯФ упорно проводили эксперименты над методом «открытых ловушек» от которого отказались США в 90е. В результате были получены показатели, считавшиеся невозможными для этого метода. Учёные ИЯФ полагают, что их установка сейчас находится на уровне немецкой Wendelstein 7-X (Q=0.1), но дешевле. Сейчас за 3 млрд. рублей они строят новую установку

    Руководитель Курчатовского института постоянно напоминает о планах построить в России небольшой термоядерный реактор - Игнитор. По плану, он должен быть также эффективен как ITER, хоть и меньше. Строительство его должно было начаться ещё 3 года назад, но такая ситуация типична для крупных научных проектов.

    Китайский токамак EAST начале 2016 года сумел получить температуру в 50 млн. градусов и продержать её 102 секунды. До начала постройки огромных реакторов и лазеров все новости про термоядерный синтез были такими. Можно было подумать, что это просто соревнование среди ученых - кто дольше удержит всё более высокую температуру. Чем выше температура плазмы и чем дольше её удается удерживать - тем мы ближе к началу реакции синтеза. Таких установок в мире десятки, ещё несколько () () строится так что скоро рекорд EAST будет побит. В сущности, эти небольшие реакторы, это просто тестирование оборудования перед отправкой в ITER.

    Lockheed Martin объявил в 2015м о прорыве в термоядерной энергетики, который позволит им построить небольшой и мобильный термоядерный реактор за 10 лет. Учитывая, что даже очень большие и совсем не мобильные коммерческие реакторы ожидались не ранее 2040 года, заявление корпорации было встречено скептически. Но компания располагает большими ресурсами так что кто знает. Прототип ожидается в 2020 году.

    Популярный в кремниевой долине стартап Helion Energy имеет свой уникальный план по достижению термоядерного синтеза. Компания привлекла больше 10 млн долларов и рассчитывает создать прототип к 2019.

    Держащийся в тени стартап Tri Alpha Energy недавно добился впечатляющих результатов в продвижении своего метода термоядерного синтеза (теоретиками было разработано >100 теоретических способов добиться синтеза, токамак просто самый простой и популярный). Компания также привлекла более 100 млн долларов средств инвесторов.

    Проект реактора от Канадского стартапа General Fusion ещё больше не похож на остальные, но разработчики в нем уверены и привлекли за 10 лет больше 100 млн. долларов, чтобы построить реактор к 2020 году.

    Стартап из Соединенного королевства - First light имеет самый доступный для понимания сайт, образовался в 2014 году, и объявил о планах использовать последние научные данные для менее затратного получения термоядерного синтеза.

    Ученые из MIT написали статью с описанием компактного термоядерного реактора. Они уповают на новые технологии, появившиеся уже после начала строительства гигантских токамаков и обещают осуществить проект за 10 лет. Пока неизвестно будет ли им дан зеленый свет на начало строительства. Даже в случае одобрения, статья в журнале, это ещё более ранняя стадия чем стартап

    Термоядерный синтез - это, пожалуй, наименее подходящая для краудфандинга индустрия. Но именно с его помощью и также с финансированием НАСА, компания Lawrenceville Plasma Physics собирается построить прототип своего реактора. Из всех реализуемых проектов, этот больше всего похож на мошенничество, но кто знает, может, что-то полезное они привнесут в эту грандиозную работу.

    ITER будет только прототипом для постройки полноценной установки DEMO - первого коммерческого термоядерного реактора. Его запуск сейчас запланирован на 2044 год и это ещё оптимистичный прогноз.

    Но есть планы и на следующий этап. Гибридный термоядерный реактор будет получать энергию и от распада атома (как обычная атомная станция) и от синтеза. В такой конфигурации энергии может быть в 10 раз больше, но безопасность ниже. Китай рассчитывает построить прототип к 2030, но эксперты говорят, что это всё равно что пытаться собрать гибридные автомобили до изобретения двигателя внутреннего сгорания.

    Итог

    Нет недостатка в желающих принести в мир новый источник энергии. Наибольшие шансы есть у проекта ITER, учитывая его масштаб и финансирование, но другие методы, а также частные проекты не стоит сбрасывать со счетов. Ученые десятки лет трудились над запуском реакции синтеза без особых успехов. Но сейчас проектов по достижению термоядерной реакции больше чем когда-либо. Даже если каждый из них провалится, новые попытки будут предприняты. Вряд ли мы успокоимся, пока не зажжем миниатюрную версию Солнца, здесь, на Земле.

    Теги:

    • термоядерный реактор
    • энергетика
    • проекты будущего
    Добавить метки

    ITER (ИТЭР) − проект международного экспериментального термоядерного реактора. Задача ИТЭР заключается в демонстрации возможности коммерческого использования термоядерного реактора и решении физических и технологических проблем, которые могут встретиться на этом пути.
     Проектирование реактора полностью закончено и выбрано место для его строительства − исследовательский центр Кадараш (фр. Cadarache) на юге Франции, в 60 км от Марселя. В настоящее время (по состоянию на март 2012 г. ) близятся к завершению работы по созданию железобетонного фундамента под реактор и возведению стен в котловане.

    Стройку, стоимость которой первоначально оценивалась в 5 миллиардов евро , первоначально планировалось закончить в 2016 году, однако постепенно предполагаемая сумма расходов выросла вдвое, и затем срок начала экспериментов сдвинулся к 2020 году.
     Первоначально название «ITER» было образовано как сокращение англ. International Thermonuclear Experimental Reactor, но в настоящее время оно официально не считается аббревиатурой, а связывается со словом лат. iter − путь.

    Страны-участницы:

    • Страны ЕС (выступают как единое целое)
    • Индия
    • Китай
    • Республика Корея
    • Россия
    • Япония

    Наибольшую роль в реализации российской доли обязанностей по проекту ИТЭР играют Курчатовский институт, госкорпорация Росатом, НИИ ЭФА им. Д. В. Ефремова, НИКИЭТ, Институт прикладной физики РАН, ТРИНИТИ, ФТИ им. А. Ф. Иоффе, ВНИИНМ, ВНИИКП, управляющая компания «Наука и инновации».

    Строительство:

    • 2010 г. − начало откопки котлована под фундамент.
    • 2013 г. − начало строительства комплекса.
    • 2014 г. − прибытие первых деталей.
    • 2015 г. − начало сборки.
    • 2019 г. − конец сборки.
    • 2020 г. − начало экспериментов с плазмой.
    • 2027 г. − эксперименты с дейтериево-тритиевой плазмой.

    Подготовка площадки

    Сооружения ITER будут располагаться в общей сложности на 180 га земли коммуны Сен-Поль-ле-Дюранс (Прованс-Альпы-Лазурный Берег, регион южной Франции), которая уже стала домом для французского ядерного научно-исследовательского центра СЕА (Commissariat à l"énergie atomique, Комиссариат атомной энергетики).

    Наиболее важная часть ITER − сам токамак и все служебные помещения − будут располагаться на площадке в 1 км длиной и 400 м шириной. Предполагается, что строительство продлится до 2017 года. Основная работа на этом этапе выполняется под руководством французского агентства ITER, а в сущности CEA.

    В целом сооружения ITER будут представлять собой 60-метровый колосс массой 23 тыс. тонн.

    Технические данные

    ITER относится к термоядерным реакторам типа «токамак» . Два ядра: дейтерия и трития сливаются, с образованием ядра гелия (альфа-частица) и высокоэнергетического нейтрона.

    Проектные характеристики:

    • Общий радиус конструкции − 10,7 м
    • Высота − 30 м
    • Большой радиус плазмы − 6,2 м
    • Малый радиус плазмы − 2,0 м
    • Объём плазмы − 837 м 3
    • Магнитное поле − 5,3 Тл
    • Максимальный ток в плазменном шнуре − 15 МА
    • Мощность внешнего нагрева плазмы − 40 МВт
    • Термоядерная мощность − 500 МВт
    • Коэффициент усиления мощности − 10x
    • Средняя температура − 100 МК
    • Продолжительность импульса − 400 c

    Радиационная безопасность

    Термоядерный реактор намного безопасней ядерного реактора в радиационном отношении. Прежде всего, количество находящихся в нем радиоактивных веществ сравнительно невелико. Энергия, которая может выделиться в результате какой-либо аварии, тоже мала и не может привести к разрушению реактора. При этом в конструкции реактора есть несколько естественных барьеров, препятствующих распространению радиоактивных веществ. Например, вакуумная камера и оболочка криостата должны быть герметичными, иначе реактор просто не сможет работать. Тем не менее, при проектировании ITER большое внимание уделялось радиационной безопасности, как при нормальной эксплуатации, так и во время возможных аварий.

    Есть несколько источников возможного радиоактивного загрязнения:

    1. радиоактивный изотоп водорода − тритий;
    2. наведённая радиоактивность в материалах установки в результате облучения нейтронами;
    3. радиоактивная пыль, образующаяся в результате воздействия плазмы на первую стенку;
    4. радиоактивные продукты коррозии, которые могут образовываться в системе охлаждения.

    Для того, чтобы предотвратить распространение трития и пыли, если они выйдут за пределы вакуумной камеры и криостата, специальная система вентиляции будет поддерживать в здании реактора пониженное давление. Поэтому из здания не будет утечек воздуха, кроме как через фильтры вентиляции.

    ИТЭР — международный термоядерный реактор (ITER)

    Потребление энергии человечеством растет с каждым годом, что подталкивает сферу энергетики к активному развитию. Так с возникновением атомных станций количество вырабатываемой энергии по всему миру значительно возросло, что позволило благополучно расходовать энергию на все потребности человечества. К примеру, 72,3 % от вырабатываемой электроэнергии во Франции приходится на атомные станции, в Украине — 52,3 %, в Швеции — 40,0 %, в Великобритании — 20,4 %, в России — 17,1 %. Однако, технологии не стоят на месте, и чтобы угодить дальнейшим энергетическим потребностям стран будущего, ученые работают над рядом инновационных проектов, одним из которых является ИТЭР — международный термоядерный реактор (ITER, International Thermonuclear Experimental Reactor).

    Хотя рентабельность данной установки еще находится под вопросом, согласно работам многих исследователей – создание и последующее развитие технологии управляемого термоядерного синтеза может в результате дать мощный и безопасный источник энергии. Рассмотрим некоторые положительные стороны подобной установки:

    • Основным топливом термоядерного реактора является водород, а это означает – практически неисчерпаемые запасы ядерного топлива.
    • Добыча водорода может происходить посредством переработки морской воды, которая доступна большинству стран. Из этого следует невозможность возникновения монополии топливных ресурсов.
    • Вероятность аварийного взрыва в процессе работы термоядерного реактора значительно меньше, чем в процессе работы ядерного реактора. Согласно оценкам исследователей, даже в случае аварии выбросы радиации не будут представлять опасности для населения, а значит отпадает и надобность в эвакуации.
    • В отличие от ядерных реакторов, термоядерные реакторы вырабатывают радиоактивные отходы, которые имеют короткий период полураспада, то есть быстрее распадаются. Также в термоядерных реакторах отсутствуют продукты сгорания.
    • Для работы термоядерного реактора не требуются материалы, которые используются также для ядерного оружия. Это позволяет исключить возможность прикрытия производства ядерного оружия путем оформления материалов для нужд ядерного реактора.

    Термоядерный реактор — вид изнутри

    Однако, существует также ряд технических недоработок, с которыми постоянно сталкиваются исследователи.

    Например, нынешний вариант топлива, представленный в виде смеси дейтерия и трития, требует разработки новых технологий. Например, по окончанию первой серии тестов на крупнейшем на сегодняшней день термоядерном реакторе ДЖЕТ, реактор стал настолько радиоактивным, что далее потребовалась разработка специальной роботизированной системы обслуживания для завершения эксперимента. Другим неутешительным фактором работы термоядерного реактора является его КПД – 20%, в то время как КПД АЭС – 33-34%, а ТЭС — 40%.

    Создание проекта ИТЭР и запуск реактора

    Проект ITER берет свое начало в 1985-м году, когда Советский Союз предложил совместное создание токамака — тороидальной камеры с магнитными катушками, которая способно удерживать плазму при помощи магнитов, тем самым создавая условия, требуемые для протекания реакции термоядерного синтеза. В 1992-м году было подписано четырехстороннее соглашение о разработке ИТЕР, сторонами которого выступили ЕС, США, Россия и Япония. В 1994-м году к проекту присоединилась Республика Казахстан, в 2001-м – Канада, в 2003-м – Южная Корея и Китай, в 2005-м — Индия. В 2005-м году было определено место для постройки реактора – исследовательский центр ядерной энергетики Кадараш, Франция.

    Строительство реактора началось с подготовки котлована для фундамента. Так параметры котлована составили 130 х 90 х 17 метров. Весь комплекс с токамаком будет весить 360 000 тонн, из которых 23 000 тонн приходится на сам токамак.

    Различные элементы комплекса ИТЕР будут разрабатываться и доставляться на место строительства со всех уголков мира. Так в 2016-м году в России была разработана часть проводников для полоидальных катушек, которые далее отправились в Китай, который будет производить сами катушки.

    Очевидно, столь масштабную работу совсем непросто организовать, ряд стран неоднократно не поспевали за поставленным графиком проекта, в результате чего запуск реактора постоянно переносился. Так, согласно прошлогоднему (2016 г.) июньскому сообщению: «получение первой плазмы запланировано на декабрь 2025-го года».

    Механизм работы токамака ITER

    Термин «токамак» происходит из русского акронима, который обозначает «тороидальная камера с магнитными катушками».

    Сердцем токамака является его вакуумная камера в форме тора. Внутри, под воздействием экстремальной температуры и давления, газообразное водородное топливо становится плазмой — горячим электрически заряженным газом. Как известно, звездное вещество представлено плазмой, а термоядерные реакции в ядре Солнца протекают как раз в условиях повышенной температуры и давления. Подобные условия для формирования, удержания, сжатия и разогрева плазмы создаются посредством массивных магнитных катушек, которые расположены вокруг вакуумного сосуда. Воздействие магнитов позволит ограничить горячую плазму от стен сосуда.

    Перед началом процесса воздух и примеси удаляются из вакуумной камеры. Затем заряжаются магнитные системы, которые помогут контролировать плазму, и вводится газообразное топливо. Когда через сосуд проходит мощный электрический ток, газ электрически расщепляется и становится ионизированным (то есть электроны покидают атомы) и образует плазму.

    По мере того, как частицы плазмы активируются и сталкиваются, они также начинают нагреваться. Вспомогательные методы нагрева помогают привести плазму к температурам плавления (от 150 до 300 миллионов ° C). Частицы, «возбужденные» до такой степени, могут преодолеть свое естественное электромагнитное отталкивание при столкновении, в результате таких столкновений высвобождается огромное количество энергии.

    Конструкция токамака состоит из таких элементов:

    Вакуумный сосуд

    («пончик») – тороидальная камера, выполненная из нержавеющей стали. Ее большой диаметр составляет 19 м, малый – 6 м, а высота – 11 м. Объем камеры составляет 1 400 м 3 , а масса – более 5 000 т. Стенки вакуумного сосуда двойные, между стенками будет циркулировать теплоноситель, в роли которого выступит дистиллированная вода. Во избежание загрязнения воды, внутренняя стенка камеры защищена от радиоактивного излучения при помощи бланкета.

    Бланкет

    («одеяло») – состоит из 440 фрагментов, укрывающих внутреннюю поверхность камеры. Общая площадь банкета составляет 700м 2 . Каждый фрагмент представляет собой нечто вроде кассеты, корпус которой сделан из меди, а передняя стенка является съемной и сделана из бериллия. Параметры кассет 1х1,5 м, а масса — не более 4,6 т. Подобные бериллиевые кассеты будут замедлять высокоэнергетические нейтроны, образованные в процессе реакции. Во время замедления нейтронов будет выделяться тепло, отводимое системой охлаждения. Следует отметить, что бериллиевая пыль, образуемая в результате работы реактора, может вызвать тяжелое заболевание под названием бериллиоз, также несет канцерогенное воздействие. По этой причине в комплексе разрабатываются строгие меры безопасности.

    Токамак в разрезе. Желтым — соленоид, оранжевым — магниты тороидального поля (TF) и полоидального поля (PF), синим — бланкет, светло-синим — VV — вакуумный сосуд, фиолетовым — дивертор

    («пепельница») полоидального типа – устройство, основной задачей которого является «очищение» плазмы от грязи, возникающей в результате нагрева и взаимодействия с ней стенок камеры, покрытых бланкетом. При попадании подобных загрязнений в плазму, они начинают интенсивно излучать, вследствие чего возникают дополнительные радиационные потери. Располагается в нижней части токомака и при помощи магнитов направляет верхние слои плазмы (которые являются наиболее загрязненными) в охлаждающую камеру. Здесь плазма охлаждается и превращается в газ, после чего откачивается из камеры обратно. Бериллиевая пыль, после попадания в камеру – практически неспособна вернуться обратно в плазму. Таким образом загрязнение плазмы остается лишь на поверхности и не проникает вглубь.

    Криостат

    – крупнейший компонент токомака, который представляет собой оболочку из нержавеющей стали объемом 16 000 м 2 (29,3 х 28,6 м) и массой 3 850 т. Внутри криостата будут располагаться прочие элементы системы, а сам он служит барьером между токамаком и внешней средой. На его внутренних стенках будут расположены тепловые экраны, охлаждаемые циркулирующим азотом при температуре 80 К (-193,15 °C).

    Магнитная система

    – комплекс элементов, служащих для удержания и контроля плазмы внутри вакуумного сосуда. Представляет собой набор из 48 элементов:

    • Катушки тороидального поля – находятся снаружи вакуумной камеры и внутри криостата. Представлены в количестве 18-ти штук, каждая из которых размером 15 х 9 м и весит примерно 300 т. Вместе эти катушки генерируют вокруг плазменного тора магнитное поле напряженностью 11,8 Тл и запасают энергию в 41 ГДж.
    • Катушки полоидального поля – находятся поверх катушек тороидального поля и внутри криостата. Данные катушки отвечают за формирование магнитного поля, отделяющего массу плазмы от стенок камеры и сжимающего плазму для адиабатического нагрева. Количество таких катушек составляет 6. Две из катушек имеют диаметр 24 м, а массу – 400 т. Остальные четыре – несколько меньше.
    • Центральный соленоид – находится во внутренней части тороидальной камеры, вернее в «дырке бублика». Принцип его работы схож с трансформатором, а основная задача – возбуждение индуктивного тока в плазме.
    • Корректирующие катушки – находятся внутри вакуумного сосуда, между бланкетом и стенкой камеры. Их задача состоит в сохранении формы плазмы, способной локально «выпучиваться» и даже прикасаться к стенкам сосуда. Позволяет понизить уровень взаимодействия стенок камеры с плазмой, а следовательно – уровень ее загрязнения, а также понижает износ самой камеры.

    Структура комплекса ИТЕР

    Вышеописанная «в двух словах» конструкция токамака представляет собой сложнейший инновационный механизм, собираемый усилиями нескольких стран. Однако, для ее полноценной работы требуется целый комплекс построек, расположенных вблизи токамака. В их числе:

    • Система управления, связи и доступа к данным (Control, Data Access and Communication) – CODAC. Находится в ряде зданий комплекса ИТЕР.
    • Хранилища топлива и топливная система – служит для доставки топлива в токамак.
    • Вакуумная система – состоит из более чем четырехсот вакуумных насосов, задача которых – выкачка продуктов термоядерной реакции, а также различных загрязнений из вакуумной камеры.
    • Криогенная система – представлена азотным и гелиевым контуром. Гелиевый контур будет нормализировать температуру в токамаке, работа (а значит и температура) которого протекает не непрерывно, а импульсно. Азотный контур будет охлаждать тепловые экраны криостата и сам гелиевый контур. Также будет присутствовать водяная система охлаждения, которая направлена на понижение температуры стенок бланкета.
    • Электропитание. Токамаку потребуется примерно 110 МВт энергии для постоянной работы. Для этого будут проведены линии электропередач в километр, которые будут подключены к французской промышленной сети. Стоит напомнить, что экспериментальная установка ИТЭР – не предусматривает выработку энергии, а работает лишь в научных интересах.

    Финансирование ИТЭР

    Международный термоядерный реактор ITER – достаточно дорогое мероприятие, которое изначально оценивалось в 12 миллиардов долларов, где на Россию, США, Корею, Китай и Индию приходится в 1/11 части суммы, на Японию – 2/11, а на ЕС — 4/11. Позже эта сумма возросла до 15 миллиардов долларов. Примечательно, что финансирование происходит посредством поставки требуемого для комплекса оборудования, которое развито в каждой из стран. Так, Россия поставляет бланкеты, устройства нагрева плазмы и сверхпроводящие магниты.

    Перспектива проекта

    В данный момент происходит постройка комплекса ИТЭР и производство всех требуемых компонентов для токамака. После запланированного запуска токамака в 2025-м году начнется проведение ряда экспериментов, на основе результатов которых будут отмечены аспекты, требующие доработки. После успешного ввода в строй ИТЭР планируется постройка электростанции на основе термоядерного синтеза под названием DEMO (DEMOnstration Power Plant). Задача DEMo состоит в демонстрации так называемой «коммерческой привлекательности» термоядерной энергетики. Если ITER способен вырабатывать всего 500 МВт энергии, то DEMO позволит непрерывно генерировать энергию в 2 ГВт.

    Однако, следует иметь ввиду, что экспериментальная установка ИТЭР не будет вырабатывать энергию, а ее предназначение состоит в получении чисто научной выгоды. А как известно, тот или иной физический эксперимент может не только оправдать ожидания, но также и принести человечеству новые знания и опыт.

    Самая грандиозная научная стройка современности. Как во Франции строят термоядерный реактор ITER

    Управляемый термоядерный синтез - голубая мечта физиков и энергетических компаний, которую они лелеют не одно десятилетие. Заключить искусственное Солнце в клетку - прекрасная идея. «Но проблема в том, что мы не знаем, как создать такую коробку», - говорил нобелевский лауреат Пьер Жиль де Жен в 1991 году. Однако к середине 2018 года мы уже знаем как. И даже строим. Лучшие умы мира трудятся над проектом международного экспериментального термоядерного реактора ITER - самого амбициозного и дорогого эксперимента современной науки.

    Такой реактор стоит в пять раз больше, чем Большой адронный коллайдер. Над проектом работают сотни ученых по всему миру. Его финансирование запросто может перевалить за 19 млрд евро, а первую плазму по реактору пустят только в декабре 2025 года. И несмотря на постоянные задержки, технологические трудности, недостаточное финансирование со стороны отдельных стран-участниц, самый большой в мире термоядерный «вечный двигатель» строится. Преимуществ у него куда больше, чем недостатков. Каких? Рассказ о самой грандиозной научной стройке современности начинаем с теории.

    Что такое токамак?

    Под действием огромных температур и гравитации в глубинах нашего Солнца и других звезд происходит термоядерный синтез. Ядра водорода сталкиваются, образуют более тяжелые атомы гелия, а заодно высвобождают нейтроны и огромное количество энергии.

    Современная наука пришла к выводу, что при наименьшей исходной температуре наибольшее количество энергии производит реакция между изотопами водорода - дейтерием и тритием. Но для этого важны три условия: высокая температура (порядка 150 млн градусов по Цельсию), высокая плотность плазмы и высокое время ее удержания.

    Дело в том, что создать такую колоссальную плотность, как у Солнца, нам не удастся. Остается только нагревать газ до состояния плазмы посредством сверхвысоких температур. Но ни один материал не способен вынести соприкосновения со столь горячей плазмой. Для этого академик Андрей Сахаров (с подачи Олега Лаврентьева) в 1950-е годы предложил использовать тороидальные (в виде пустотелого бублика) камеры с магнитным полем, которое удерживало бы плазму. Позже и термин придумали - токамак.

    Современные электростанции, сжигая ископаемое топливо, конвертируют механическую мощность (кручения турбин, например) в электричество. Токамаки будут использовать энергию синтеза, абсорбируемую в виде тепла стенками устройства, для нагрева и производства пара, который и будет крутить турбины.

    Первый токамак в мире. Советский Т-1. 1954 год

    Небольшие экспериментальные токамаки строились по всему миру. И они успешно доказали, что человек может создать высокотемпературную плазму и удерживать ее некоторое время в стабильном состоянии. Но до промышленных образцов еще далеко.

    Монтаж Т-15. 1980-е годы

    Преимущества и недостатки термоядерных реакторов

    Типичные ядерные реакторы работают на десятках тонн радиоактивного топлива (которые со временем превращаются в десятки тонн радиоактивных отходов), тогда как термоядерному реактору необходимы лишь сотни грамм трития и дейтерия. Первый можно вырабатывать на самом реакторе: высвобождающиеся во время синтеза нейтроны будут воздействовать на стенки реактора с примесями лития, из которого и появляется тритий. Запасов лития хватит на тысячи лет. В дейтерии тоже недостатка не будет - его в мире производят десятками тысяч тонн в год.

    Термоядерный реактор не производит выбросов парниковых газов, что характерно для ископаемого топлива. А побочный продукт в виде гелия-4 - это безвредный инертный газ.

    К тому же термоядерные реакторы безопасны. При любой катастрофе термоядерная реакция попросту прекратится без каких-либо серьезных последствий для окружающей среды или персонала, так как нечему будет поддерживать реакцию синтеза: уж слишком тепличные условия ей необходимы.

    Однако есть у термоядерных реакторов и недостатки. Прежде всего это банальная сложность запуска самоподдерживающейся реакции. Ей нужен глубокий вакуум. Сложные системы магнитного удержания требуют огромных сверхпроводящих магнитных катушек.

    И не стоит забывать о радиации. Несмотря на некоторые стереотипы о безвредности термоядерных реакторов, бомбардировку их окружения нейтронами, образующимися во время синтеза, не отменить. Эта бомбардировка приводит к радиации. А потому обслуживание реактора необходимо проводить удаленно. Забегая вперед, скажем, что после запуска непосредственным обслуживанием токамака ITER будут заниматься роботы.

    К тому же радиоактивный тритий может быть опасен при попадании в организм. Правда, достаточно будет позаботиться о его правильном хранении и создать барьеры безопасности на всех возможных путях его распространения в случае аварии. К тому же период полураспада трития - 12 лет.

    Когда необходимый минимальный фундамент теории заложен, можно перейти и к герою статьи.

    Самый амбициозный проект современности

    В 1985 году в Женеве состоялась первая за долгие годы личная встреча глав СССР и США. До этого холодная война достигла своего пика: сверхдержавы бойкотировали Олимпиады, наращивали ядерный потенциал и на какие-либо переговоры идти не собирались. Этот саммит двух стран на нейтральной территории примечателен и другим важным обстоятельством. Во время него генсек ЦК КПСС Михаил Горбачев предложил реализовать совместный международный проект по развитию термоядерной энергетики в мирных целях.

    Спустя год между американскими, советскими, европейскими и японскими учеными было достигнуто соглашение по проекту, началась проработка концептуального дизайна крупного термоядерного комплекса ITER. Проработка инженерных деталей затянулась, США то выходили, то возвращались в проект, к нему со временем присоединились Китай, Южная Корея и Индия. Участники разделяли обязанности по финансированию и непосредственным работам, а в 2010 году наконец стартовала подготовка котлована под фундамент будущего комплекса. Его решили строить на юге Франции возле города Экс-ан-Прованс.

    Так что же такое ITER? Это огромный научный эксперимент и амбициозный энергетический проект по строительству самого большого токамака в мире. Сооружение должно доказать возможность коммерческого использования термоядерного реактора, а также решить возникающие физические и технологические проблемы на этом пути.

    Из чего состоит реактор ITER?

    Токамак - это тороидальная вакуумная камера с магнитными катушками и криостатом массой в 23 тыс. тонн. Как уже понятно из определения, у нас есть камера. Глубокая вакуумная камера. В случае с ITER это будет 850 кубометров свободного объема камеры, в котором на старте будет всего 0,1 грамма смеси дейтерия и трития.

    1. Вакуумная камера, где и обитает плазма. 2. Инжектор нейтрального луча и радиочастотный нагрев плазмы до 150 млн градусов. 3. Сверхпроводящие магниты, которые обуздают плазму. 4. Бланкеты, защищающие камеру и магниты от бомбардировки нейтронами и нагрева. 5. Дивертор, который отводит тепло и продукты термоядерной реакции. 6. Инструменты диагностики для изучения физики плазмы. Включают манометры и нейтронные камеры. 7. Криостат - огромный термос с глубоким вакуумом, который защищает от нагрева магниты и вакуумную камеру

    А вот так выглядит «маленькая» вакуумная камера с моделями работников внутри. Она 11,4 метра в высоту, а вместе с бланкетами и дивертором будет весить 8,5 тыс. тонн

    На внутренних стенках камеры расположены специальные модули, которые называют бланкетами. Внутри них циркулирует вода. Вырывающиеся из плазмы свободные нейтроны попадают в эти бланкеты и тормозятся водой. Из-за чего она нагревается. Сами бланкеты защищают всю остальную махину от теплового, рентгеновского и уже упомянутого нейтронного излучения плазмы.

    Такая система необходима для того, чтобы продлить срок работы реактора. Каждый бланкет весит порядка 4,5 тонны, их будет менять роботизированная рука примерно раз в 5-10 лет, так как этот первый ряд обороны будет подвержен испарению и нейтронному излучению.

    Но это далеко не все. К камере присоединяется внутрикамерное оборудование, термопары, акселерометры, уже упомянутые 440 блоков бланкетной системы, системы охлаждения, экранирующий блок, дивертор, магнитная система из 48 элементов, высокочастотные нагреватели плазмы, инжектор нейтральных атомов и т. д. И все это находится внутри огромного криостата высотой 30 метров, имеющего такой же диаметр и объем 16 тыс. кубометров. Криостат гарантирует глубокий вакуум и ультрахолодную температуру для камеры токамака и сверхпроводящих магнитов, которые охлаждаются жидким гелием до температуры –269 градусов по Цельсию.

    Днище. Одна третья часть основания криостата. Всего этот «термос» будет состоять из 54 элементов

    А так выглядит криостат на рендере. Его производство поручено Индии. Внутри «термоса» соберут реактор

    Криостат уже собирают. Тут, например, вы можете видеть окошко, через которое в реактор будут забрасывать частицы для нагрева плазмы

    Производство всего этого оборудования разделено между странами-участницами. Например, над частью бланкетов работают в России, над корпусом криостата - в Индии, над сегментами вакуумной камеры - в Европе и Корее.

    Но это отнюдь не быстрый процесс. К тому же права на ошибку у конструкторов нет. Команда ITER сперва моделирует нагрузки и требования к элементам конструкции, их испытывают на стендах (например, под воздействием плазменных пушек, как дивертор), улучшают и дорабатывают, собирают прототипы и опять тестируют перед тем, как выдать финальный элемент.

    Первый корпус тороидальной катушки. Первый из 18 гигантских магнитов. Одну половину сделали в Японии, другую - в Корее

    18 гигантских магнитов D-образной формы, расставленные по кругу так, чтобы образовать непроницаемую магнитную стену. Внутри каждого из них заключены 134 витка сверхпроводящего кабеля

    Каждая такая катушка весит примерно 310 тонн

    Но одно дело собрать. И совсем другое - все это обслуживать. Из-за высокого уровня радиации доступ к реактору заказан. Для его обслуживания разработано целое семейство роботизированных систем. Часть будет менять бланкеты и кассеты дивертора (весом под 10 тонн), часть - управляться удаленно для устранения аварий, часть - базироваться в карманах вакуумной камеры с HD-камерами и лазерными сканерами для быстрой инспекции. И все это необходимо делать в вакууме, в узком пространстве, с высокой точностью и в четком взаимодействии со всеми системами. Задачка посложнее ремонта МКС.Токамак ITER станет первым термоядерным реактором, который будет вырабатывать больше энергии, чем необходимо для нагрева самой плазмы. К тому же он сможет поддерживать ее в стабильном состоянии намного дольше ныне существующих установок. Ученые утверждают, что именно для этого и нужен столь масштабный проект.

    С помощью такого реактора специалисты собираются преодолеть разрыв между нынешними небольшими экспериментальными установками и термоядерными электростанциями будущего. Например, рекорд по термоядерной мощности был установлен в 1997 году на токамаке в Британии - 16 МВт при затраченных 24 МВт, тогда как ITER конструировали с прицелом на 500 МВт термоядерной мощности от 50 МВт вводимой тепловой энергии.

    На токамаке будут испытаны технологии нагрева, контроля, диагностики, криогеники и дистанционного обслуживания, то есть все методики, необходимые для промышленного образца термоядерного реактора.

    Объемов мирового производства трития будет недостаточно для электростанций будущего. А потому на ITER отработают также технологию размножающегося бланкета, содержащего литий. Из него под действием термоядерных нейтронов и будут синтезировать тритий.

    Однако не стоит забывать, что это пускай и дорогой, но эксперимент. Токамак не будет оборудован турбинами или другими системами конвертации тепла в электричество. То есть коммерческого выхлопа в виде непосредственной генерации энергии не будет. Почему? Потому что это только усложнило бы проект с инженерной точки зрения и сделало бы его еще более дорогим.

    Схема финансирования довольно запутанная. На стадии строительства, создания реактора и прочих систем комплекса примерно 45% расходов несут страны Евросоюза, остальные участники - по 9%. Однако бóльшая часть взносов - это «натура». Большинство компонентов поставляются в ITER напрямую от стран-участниц.

    Они прибывают во Францию по морю, а из порта к стройплощадке доставляются по дороге, специально переделанной французским правительством. На 104 км «Пути ITER» страна потратила 110 млн евро и 4 года работы. Трасса была расширена и усилена. Дело в том, что до 2021 года по ней пройдут 250 конвоев с огромными грузами. Самые тяжелые детали достигают 900 тонн, самые высокие - 10 метров, самые длинные - 33 метра.

    Пока ITER не ввели в эксплуатацию. Однако уже существует проект электростанции DEMO на термоядерном синтезе, задача которой как раз и продемонстрировать привлекательность коммерческого использования технологии. Этот комплекс должен будет непрерывно (а не импульсно, как ITER) генерировать 2 ГВт энергии.

    Сроки реализации нового глобального проекта зависят от успехов ITER, но по плану 2012 года первый пуск DEMO произойдет не раньше 2044 года.



    Есть вопросы?

    Сообщить об опечатке

    Текст, который будет отправлен нашим редакторам: