Оптический кабель как передается информация. От понятия «свет» до оптической передачи информации - lionzage. Элементы волоконно-оптической линии

Волоко́нно-опти́ческая связь - способ передачи информации, использующий в качестве носителя информационного сигнала электромагнитное излучение оптического (ближнего инфракрасного) диапазона, а в качестве направляющих систем - волоконно-оптические кабели. Благодаря высокой несущей частоте и широким возможностям мультиплексирования пропускная способность волоконно-оптических линий многократно превышает пропускную способность всех других систем связи и может измеряться Терабитами в секунду. Малое затухание света в оптическом волокне позволяет применять волоконно-оптическую связь на значительных расстояниях без использования усилителей. Волоконно-оптическая связь свободна от электромагнитных помех и труднодоступна для несанкционированного использования: незаметно перехватить сигнал, передаваемый по оптическому кабелю, технически крайне сложно.

Физическая основа

В основе волоконно-оптической связи лежит явление полного внутреннего отражения электромагнитных волн на границе раздела диэлектриков с разными показателями преломления. Оптическое волокно состоит из двух элементов - сердцевины, являющейся непосредственным световодом, и оболочки. Показатель преломления сердцевины несколько больше показателя преломления оболочки, благодаря чему луч света, испытывая многократные переотражения на границе сердцевина-оболочка, распространяется в сердцевине, не покидая её.

Применение

Волоконно-оптическая связь находит всё более широкое применение во всех областях - от компьютеров и бортовых космических, самолётных и корабельных систем, до систем передачи информации на большие расстояния, например, в настоящее время успешно используется волоконно-оптическая линия связи Западная Европа - Япония, большая часть которой проходит по территории России. Кроме того, увеличивается суммарная протяжённость подводных волоконно-оптических линий связи между континентами.

Волокно в каждый дом (англ. Fiber to the premises, FTTP или Fiber to the home, FTTH ) - термин, используемый телекоммуникационными интернет-провайдерами, для обозначения широкополосных телекоммуникационных систем, базирующихся на проведении волоконного канала и его завершения на территории конечного пользователя путём установки терминального оптического оборудования для предоставления комплекса телекоммуникационных услуг, включающего:

  • высокоскоростной доступ в Интернет;
  • услуги телефонной связи;
  • услуги телевизионного приёма.

Стоимость использования волоконно-оптической технологии уменьшается, что делает данную услугу конкурентоспособной по сравнению с традиционными услугами.

История

Историю систем передачи данных на большие расстояния следует начинать с древности, когда люди использовали дымовые сигналы. С того времени эти системы кардинально улучшились, появились сначала телеграф, затем - коаксиальный кабель. В своем развитии эти системы рано или поздно упирались в фундаментальные ограничения: для электрических систем это явление затухания сигнала на определённом расстоянии, для сверхвысокочастотных (СВЧ) систем - несущая частота. Поэтому продолжались поиски принципиально новых систем, и во второй половине XX века решение было найдено - оказалось, что передача сигнала с помощью света гораздо эффективнее как электрического, так и СВЧ-сигнала.

В 1966 году Као и Хокам из STC Laboratory (STL) представили оптические нити из обычного стекла, которые имели затухание в 1000 дБ/км (в то время как затухание в коаксиальном кабеле составляло всего 5-10 дБ/км) из-за примесей, которые в них содержались и которые, в принципе, можно было удалить.

Существовало две глобальных проблемы при разработке оптических систем передачи данных: источник света и носитель сигнала. Первая разрешилась с изобретением лазеров в 1960 году, вторая - с появлением высококачественных оптических кабелей в 1970 году. Это была разработка Corning Incorporated (англ. ) . Затухание в таких кабелях составляло около 20 дБ/км, что было вполне приемлемым для передачи сигнала в телекоммуникационных системах. В то же время были разработаны достаточно компактные полупроводниковые GaAs-лазеры.

После интенсивных исследований в период с 1975 по 1980 год появилась первая коммерческая волоконно-оптическая система, оперировавшая светом с длиной волны 0,8 мкм и использовавшая полупроводниковый лазер на основе арсенида галлия (GaAs). Битрейт систем первого поколения составлял 45 Мбит/с, расстояние между повторителями - 10 км.

22 апреля 1977 года в Лонг-Бич, штат Калифорния, компания General Telephone and Electronics впервые использовала оптический канал для передачи телефонного трафика на скорости 6 Мбит/с.

Второе поколение волоконно-оптических систем было разработано для коммерческого использования в начале 1980-х. Они оперировали светом с длиной волны 1,3 мкм от InGaAsP-лазеров. Однако такие системы всё ещё были ограниченны из-за рассеивания, возникающего в канале. Однако уже в 1987 году эти системы работали на скорости до 1,7 Гбит/с при расстоянии между повторителями 50 км.

Основные определения

Оптоволокно – это стеклянная или пластиковая нить, используемая для переноса света внутри себя посредством полного внутреннего отражения.

Структура оптоволоконного кабеля очень проста и похожа на структуру коаксиального электрического кабеля , только вместо центрального медного провода здесь используется тонкое (диаметром порядка 1-10 мкм) стекловолокно, а вместо внутренней изоляции – стеклянная или пластиковая оболочка, не позволяющая свету выходить за пределы стекловолокна. Мы имеем дело с режимом, так называемого полного внутреннего отражения света от границы двух веществ с разными коэффициентами преломления (у стеклянной оболочки коэффициент преломления значительно ниже, чем у центрального волокна). Металлическая оплетка кабеля обычно отсутствует, так как экранирование от внешних электромагнитных помех здесь не требуется, однако иногда ее все-таки применяют для механической защиты от окружающей среды (такой кабель иногда называют броневым, он может объединять под одной оболочкой несколько оптоволоконных кабелей).

Волоконная оптика – раздел прикладной науки и машиностроения, описывающий такие волокна. Оптоволокна используются в оптоволоконной связи, которая позволяет передавать цифровую информацию на большие расстояния и с более высокой скоростью передачи данных, чем в электронных средствах связи. В ряде случаев они также используются при создании датчиков.

Оптоволоконная связь – связь, построенная на базе оптоволоконных кабелей. Широко применяется также сокращение ВОЛС (волоконно-оптическая линия связи). Используется в различных сферах человеческой деятельности, начиная от вычислительных систем и заканчивая структурами для связи на больших расстояниях. Является сегодня наиболее популярным и эффективным методом для обеспечения телекоммуникационных услуг.

Материалы

Стеклянные оптические волокна делаются из кварцевого стекла, но для дальнего инфракрасного диапазона могут использоваться другие материалы, такие как флуоро-цирконат, флуоро-алюминат и халькогенидные стекла. Как и другие стекла, эти имеют показатель преломления около 1,5.

В настоящее время развивается применение пластиковых оптических волокон (Plastic optical fibers).

В качестве источников излучения света в волоконно-оптических кабелях применяются:

  1. светодиоды, или светоизлучающие диоды (Light Emmited Diode, LED);
  2. полупроводниковые лазеры, или лазерные диоды (Laser Diode).

Для одномодовых кабелей применяются только лазерные диоды, так как при таком малом диаметре оптического волокна световой поток, создаваемый светодиодом, невозможно без больших потерь направить в волокно – он имеет чересчур широкую диаграмму направленности излучения, в то время как лазерный диод – узкую. Поэтому более дешевые светодиодные излучатели используются только для многомодовых кабелей.

Волоконная оптика хоть и является повсеместно используемым и популярным средством обеспечения связи, сама технология проста и разработана достаточно давно. Эксперимент с переменой направления светового пучка путем преломления был продемонстрирован Даниелем Колладоном (Daniel Colladon) и Жаком Бабинеттом (Jacques Babinet) еще в 1840 году. Спустя несколько лет Джон Тиндалл (John Tyndall) использовал этот эксперимент на своих публичных лекциях в Лондоне, и уже в 1870 году выпустил труд, посвященный природе света. Практическое применение технологии нашлось лишь в ХХ веке. В 20-х годах прошлого столетия экспериментаторами Кларенсом Хаснеллом (Clarence Hasnell) и Джоном Бердом (John Berd) была продемонстрирована возможность передачи изображения через оптические трубки. Этот принцип использовался Генрихом Ламмом (Heinrich Lamm) для медицинского обследования пациентов. Только в 1952 году индийский физик Нариндер Сингх Капани (Narinder Singh Kapany) провел серию собственных экспериментов, которые и привели к изобретению оптоволокна. Фактически им был создан тот самый жгут из стеклянных нитей, причем оболочка и сердцевина были сделаны из волокон с разными показателями преломления. Оболочка фактически служила зеркалом, а сердцевина была более прозрачной – так удалось решить проблему быстрого рассеивания. Если ранее луч не доходил да конца оптической нити, и невозможно было использовать такое средство передачи на длительных расстояниях, то теперь проблема была решена. Нариндер Капани к 1956 году усовершенствовал технологию. Связка гибких стеклянных прутов передавала изображение практически без потерь и искажений.

Изобретение в 1970 году специалистами компании Corning оптоволокна, позволившего без ретрансляторов продублировать на то же расстояние систему передачи данных телефонного сигнала по медному проводу , принято считать переломным моментом в истории развития оптоволоконных технологий. Разработчикам удалось создать проводник, который способен сохранять не менее одного процента мощности оптического сигнала на расстоянии одного километра. По нынешним меркам это достаточно скромное достижение, а тогда – необходимое условие для того, чтобы развивать новый вид проводной связи.

Первоначально оптоволокно было многофазным, то есть могло передавать сразу сотни световых фаз. Причём повышенный диаметр сердцевины волокна позволял использовать недорогие оптические передатчики и коннекторы. Значительно позже стали применять волокно большей производительности, по которому можно было транслировать в оптической среде лишь одну фазу. С внедрением однофазного волокна целостность сигнала могла сохраняться на большем расстоянии, что способствовало передаче немалых объёмов информации.

Самым востребованным сегодня является однофазное волокно с нулевым смещением длины волны. Начиная с 1983 года оно занимает ведущее положение среди продуктов оптоволоконной индустрии, доказав свою работоспособность на десятках миллионов километров.

Классификация

Выделяют несколько классов оптоволокон по особенностям структуры и принципу действия:

  1. Одномодовые оптоволокна
  2. Многомодовые оптоволокна
  3. Оптоволокна с градиентным показателем преломления

Оптоволокна со ступенчатым профилем распределения показателей преломления.

Профиль показателя преломления различных типов оптических волокон: многомодовое волокно со ступенчаты изменением показателя преломления (а); многомодовое волокно с плавным изменением показателя преломления (6); одномодовое волокно (в).

Все оптические волокна делятся на две основные группы: многомодовые MMF (multi mode fiber) и одномодовые SMF (single mode fiber).

Понятие «мода», описывает режим распространения световых лучей во внутреннем сердечнике кабеля. В одномодовом кабеле используется центральный проводник очень малого диаметра, соизмеримого c длиной волны света – от 5 до 10 мкм. При этом практически все лучи света распространяются вдоль оптической оси световода, не отражаясь от внешнего проводника. Изготовление сверхтонких качественных волокон для одномодового кабеля представляет сложный технологический процесс, что делает одномодовый кабель достаточно дорогим. Кроме того, в волокно такого маленького диаметра достаточно сложно направить пучок света, не потерян при этом значительную часть его энергии. В многомодовых кабелях используются более широкие внутренние сердечники, которые легче изготовить технологически. В стандартах определены два наиболее употребительных многомодовых кабеля: 62,5/125 мкм и 50/125 мкм, где 62,5 мкм или 50 мкм – диаметр центрального проводника, а 125 мкм – диаметр внешнего проводника.

Многомодовые волокна

Многомодовые волокна подразделяются на ступенчатые (step index multi mode fiber) и градиентные(graded index multi mode fiber).

В многомодовом кабеле траектории световых лучей имеют заметный разброс, в результате чего форма сигнала на приемном конце кабеля искажается. Центральное волокно имеет диаметр 62,5 мкм, а диаметр внешней оболочки – 125 мкм (это иногда обозначается как 62,5/125). Для передачи используется обычный (не лазерный) светодиод, что снижает стоимость и увеличивает срок службы приемопередатчиков по сравнению с одномодовым кабелем. Длина волны света в многомодовом кабеле равна 0,85 мкм. Допустимая длина кабеля достигает 2-5 км. В настоящее время многомодовый кабель – основной тип оптоволоконного кабеля, так как он дешевле и доступнее.

Многомодовые волокна со ступенчатым профилем

Первые волокна для передачи данных были многомодовыми со ступенчатым профилем показателя преломления. Для распространения света благодаря полному внутреннему отражению, необходимо иметь показатель преломления стекла сердцевины n1 , немного большим, чем показатель преломления стекла оболочки n2 . На границе раздела двух стеклянных сред должно выполняться условие: n1 > n2 . Если показатель преломления сердцевины оптического волокна n1 одинаков по всему поперечному сечению, то тогда говорят, что волокно имеет ступенчатый профиль. Такой волоконный световод является многомодовым. Импульс света, распространяющийся в нем, состоит из многих составляющих, направляемых в отдельных модах световода. Каждая из этих мод возбуждается на входе волокна под своим определённым углом ввода в световод и направляется по нему вдоль сердцевины, проходя с различными траекториями движения луча. Каждая мода проходит разное расстояние оптического пути и поэтому проходит всю длину световода за разное время. При этом, если мы подадим на вход световода короткий (прямоугольный) импульс света, то на выходе многомодового световода получим «размытый» по времени импульс. Эти искажения, обусловленные дисперсией времени задержки отдельных мод, называются модовой дисперсией.

Многомодовые волокна с градиентным профилем

В многомодовом оптическом волокне со ступенчатом профилем, моды распространяются по оптическим путям разной длины и поэтому приходят к концу световода в разное время. Эта дисперсия может быть значительно уменьшена, если показатель преломления стекла сердцевины уменьшается параболически от максимальной величины n1 у оси световода, до величины показателя преломления n2 на поверхности границы раздела с оболочкой. Оптический волновод с таким профилем, (когда показатель преломления плавно изменяется) называется градиентным волоконным световодом. Лучи света проходят по такому волокну по волно- или винтообразным спиралям. Чем дальше отклоняется луч света от оси световода, тем сильнее он заворачивается обратно к оси. При этом, так как показатель преломления от оси к краю сердцевины уменьшается, то увеличивается скорость распространения света в среде. Благодаря этому более «длинные» оптические пути компенсируются меньшим временем прохождения. В результате различие временных задержек различных лучей почти полностью исчезает.

Одномодовые волокна

Одномодовые волокна подразделяются на ступенчатые одномодовые волокна (step index single mode fiber) или стандартные волокна SF (standard fiber), на волокна со смещенной дисперсией DSF (dispersion-shifted single mode fiber), и на волокна с ненулевой смещенной дисперсией NZDSF (non-zero dispersion-shifted single mode fiber).

В одномодовом кабеле практически все лучи проходят один и тот же путь, в результате чего все они достигают приемника одновременно, и форма сигнала практически не искажается. Одномодовый кабель имеет диаметр центрального волокна около 1,3 мкм и передает свет только с такой же длиной волны (1,3 мкм). Дисперсия и потери сигнала при этом очень незначительны, что позволяет передавать сигналы на значительно большее расстояние, чем в случае применения многомодового кабеля. Для одномодового кабеля применяются лазерные приемопередатчики, использующие свет исключительно с требуемой длиной волны. Такие приемопередатчики пока еще сравнительно дороги и не слишком долговечны. Однако в перспективе одномодовый кабель должен стать основным благодаря своим прекрасным характеристикам.

Волокна со ступенчатым профилем

Модовая дисперсия в оптическом волокне может быть исключена, если структурные параметры ступенчатого световода подобрать таким образом, что в нём будет направляться только одна мода, а именно – фундаментальная (основная) мода. Однако и основная мода также уширяется во времени по мере её прохождения по такому световоду. Это явление называется хроматической дисперсией. Она является свойством материала, поэтому как правило, имеет место в любом оптическом световоде, но в диапазоне длин волн от 1200 до 1600 нм она относительно мала или отсутствует. Для изготовления ступенчатого волоконного световода с малым затуханием, который направляет только фундаментальную моду в диапазоне длин волн более 1200 нм диаметр поля моды должен быть уменьшен до 8-10 мкм. Такой ступенчатый волоконный световод называется стандартным одномодовым оптическим волокном.

Волокна с многоступенчатым профилем

Профиль показателя преломления обычного одномодового световода имеет ступенчатый профиль. Для такой структуры профиля сумма дисперсии материала в волноводной дисперсии при длине волны около 1300 нм равна нулю. Для современных устройств передачи данных по оптическому волокну, использующих длины волн 1550 нм или одновременную передачу сигналов на нескольких длинах волн, желательно иметь нулевую дисперсию и при других длинах волн. А для этого необходимо изменить волновую дисперсию и, следовательно, структуру профиля преломления волоконного световода. Это приводит к многоступенчатому или сегментному профилям показателя преломления. Используя эти профили, можно производить волоконные световоды, у которых длина волны с нулевой дисперсией сдвинута до 1550 нм (волокно со смещённой дисперсией) или величины дисперсии очень малы во всём диапазоне волн от 1300 нм до 1550 нм (волокно со сглаженной или компенсированной дисперсией).

Диаметр сердцевины одномодовых волокон 7-9 микрон. Благодаря малому диаметру достигается передача по волокну лишь одной моды электромагнитного излучения, за счёт чего исключается влияние дисперсионных искажений. В настоящее время практически все производимые волокна являются одномодовыми.

Элементы волоконно-оптической линии

  1. Оптический приёмник

Оптические приёмники обнаруживают сигналы, передаваемые по волоконно-оптическому кабелю, и преобразовывают его в электрические сигналы, которые затем усиливают и далее восстанавливают их форму, а также синхросигналы. В зависимости от скорости передачи и системной специфики устройства, поток данных может быть преобразован из последовательного вида в параллельный.

  1. Оптический передатчик

Оптический передатчик в волоконно-оптической системе преобразовывает электрическую последовательность данных, поставляемых компонентами системы, в оптический поток данных.

  1. Предусилитель

Усилитель преобразовывает асимметричный ток от фотодиодного датчика в асимметричное напряжение, которое усиливается и преобразуется в дифференциальный сигнал.

  1. Микросхема синхронизации и восстановления данных

Эта микросхема должна восстанавливать синхросигналы от полученного потока данных и их тактирование. Схема фазовой автоподстройки частоты, необходимая для восстановления синхроимпульсов, также полностью интегрирована в микросхему синхронизации и не требует внешних контрольных синхроимпульсов.

  1. Оптический кабель , состоящий из оптических волокон, находящихся под общей защитной оболочкой.

Волоконно-оптические приёмопередатчики

Чтобы передать данные через оптические каналы, сигналы должны быть преобразованы из электрического вида в оптический, переданы по линии связи и затем в приёмнике преобразованы обратно в электрический вид . Эти преобразования происходят в устройстве приёмопередатчика, который содержит электронные блоки наряду с оптическими компонентами.

Широко используемый в технике передач мультиплексор с разделением времени позволяет увеличить скорость передачи до 10 Гб/сек. Современные быстродействующие волоконно-оптические системы предлагают следующие стандарты скорости передач.

Стандарт SONET

Стандарт SDH

Скорость передачи

51,84 Мб/сек

155,52 Мб/сек

622,08 Мб/сек

2,4883 Гб/сек

9,9533 Гб/сек

Новые методы мультиплексного разделения длины волны или спектральное уплотнение дают возможность увеличить плотность передачи данных. Для этого многочисленные мультиплексные потоки информации посылаются по одному оптоволоконному каналу с использованием передачи каждого потока на разных длинах волны. Электронные компоненты в WDM-приемнике и передатчике отличаются по сравнению с теми, которые используются в системе с временным разделением.

Преимущества оптоволоконного типа связи

  1. Широкополосность оптических сигналов, обусловленная чрезвычайно высокой частотой несущей. Это означает, что по оптоволоконной линии можно передавать информацию со скоростью порядка 1 Тбит/с;
  2. Очень малое затухание светового сигнала в волокне, что позволяет строить волоконно-оптические линии связи длиной до 100 км и более без регенерации сигналов;
  3. Устойчивость к электромагнитным помехам со стороны окружающих медных кабельных систем, (линии электропередачи, электродвигательные установки, т.д.) и погодных условий;
  4. Защита от несанкционированного доступа. Информацию, передающуюся по волоконно-оптическим линиям связи, практически нельзя перехватить неразрушающим кабель способом;
  5. Электробезопасность. Являясь, по сути, диэлектриком, оптическое волокно повышает взрыво- и пожаробезопасность сети, что особенно актуально на химических, нефтеперерабатывающих предприятиях, при обслуживании технологических процессов повышенного риска;
  6. Долговечность ВОЛС – срок службы волоконно-оптических линий связи составляет не менее 25 лет.

Недостатки оптоволоконного типа связи

  1. Относительно высокая стоимость активных элементов линии, преобразующих электрические сигналы в свет и свет в электрические сигналы;
  2. Относительно высокая стоимость сварки оптического волокна. Для этого требуется прецизионное, а потому дорогое, технологическое оборудование. Как следствие, при обрыве оптического кабеля затраты на восстановление ВОЛС выше, чем при работе с медными кабелями.

Применение линий оптоволоконной связи

Оптоволокно активно применяется для построения городских, региональных и федеральных сетей связи, а также для устройства соединительных линий между городскими АТС. Это связано с быстротой, надёжностью и высокой пропускной способностью волоконных сетей. Также посредством применения оптоволоконных каналов существуют кабельное телевидение, удалённое видеонаблюдение, видеоконференции и видеотрансляции, телеметрические и другие информационные системы . В перспективе в оптоволоконных сетях предполагается использовать преобразование речевых сигналов в оптические.

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

Санкт-Петербургский национальный исследовательский университет

информационных технологий , механики и оптики

Факультет ИКВО Кафедра МИПиУ

Направление (специальность) 090900 «Информационная безопасность» Группа 2750

Квалификация (степень) бакалавр

По курсу «Концепции современного естествознания»

Волоконно-оптическая связь.

Выполнил:

Студент 2-го курса

Богопольская Е.А.

к.т.н., доцент каф.ПБКС

Комарова И.Э.

Г.С-Петербург

1. Основные понятия………………………………1

2.Материалы………………………………..............2

3.История…………………………………………...2

4.Классификация…………………………………...3

5.Элементы волоконно-оптических линий………7

6.Преимущества оптоволоконного типа связи…...9

7.Недостатки оптоволоконного типа связи...…….9

8.Применение линий оптоволоконной связи…….9



Оптическая связь

связь посредством электромагнитных колебаний оптического диапазона (как правило, 10 13 -10 15 гц ). Использование света для простейших (малоинформативных) систем связи имеет давнюю историю (см., например, Оптический телеграф). С появлением Лазер ов возникла возможность перенести в оптический диапазон разнообразные средства и принципы получения, обработки и передачи информации, разработанные для радиодиапазона. Огромный рост объёмов передаваемой информации и вместе с тем практически полное исчерпание ёмкости радиодиапазона придали проблеме освоения оптического диапазона в целях связи исключительную важность. Основные преимущества О. с. по сравнению со связью на радиочастотах, определяемые высоким значением оптической частоты (малой длиной волны): большая ширина полосы частот для передачи информации, в 10 4 раз превышающая полосу частот всего радиодиапазона, и высокая направленность излучения при входных и выходных Апертура х, значительно меньших апертур антенн в радиодиапазоне. Последнее достоинство О. с. позволяет применять в передатчиках оптических систем связи генераторы с относительно малой мощностью и обеспечивает повышенную помехозащищенность и скрытность связи.

Структурно линия О. с. аналогична линии радиосвязи (См. Радиосвязь). Для модуляции излучения оптического генератора либо управляют процессом генерации, воздействуя на источник питания или на оптический резонатор генератора, либо применяют дополнительные внешние устройства, изменяющие выходное излучение по требуемому закону (см. Модуляция света). При помощи выходного оптического узла излучение формируется в малорасходящийся луч, достигающий входного оптического узла, который фокусирует его на активную поверхность фотопреобразователя. С выхода последнего электрические сигналы поступают в узлы обработки информации. Выбор несущей частоты в системе О. с. - сложная комплексная задача, в которой должны учитываться условия распространения оптического излучения в среде передачи, технические характеристики лазеров, модуляторов, приёмников света (См. Приёмники света), оптических узлов. В системах О. с. находят применение два способа приёма сигналов - прямое детектирование и гетеродинный приём. Гетеродинный метод приёма, обладая рядом преимуществ, главные из которых - повышенная чувствительность и дискриминация фоновых помех, в техническом отношении много сложнее прямого детектирования. Серьёзным недостатком этого метода является существенная зависимость величины сигнала на выходе фотоприёмника от характеристик трассы.

В зависимости от дальности действия системы О. с. можно разделить на следующие основные классы: открытые наземные системы ближнего радиуса действия, использующие прохождение излучения в приземных слоях атмосферы; наземные системы, использующие закрытые световодные каналы (волоконные Световод ы, светонаправляющие зеркально-линзовые структуры) для высокоинформативной связи между АТС, ЭВМ, для междугородной связи; высокоинформативные линии связи (главным образом ретрансляционные), действующие в ближнем космическом пространстве; дальние космические линии связи.

В СССР и за рубежом накоплен определённый опыт работы с открытыми линиями О. с. в приземных слоях атмосферы с использованием лазеров. Показано, что сильная зависимость надёжности связи от атмосферных условий (определяющих оптическую видимость) на трассе распространения ограничивает применение открытых линий О. с. относительно малыми расстояниями (несколько километров) и лишь для дублирования существующих кабельных линий связи, использования в малоинформативных передвижных системах, системах сигнализации и т.п. Однако открытые линии О. с. перспективны как сродство связи между Землёй и космосом. Например, с помощью лазерного луча можно передавать информацию на расстояние Оптическая связь10 8 км со скоростью до 10 5 бит в сек , в то время как микроволновая техника при этих расстояниях обеспечивает скорость передачи только Оптическая связь10 бит в сек . В принципе, О. с. в космосе возможна на расстояниях до 10 10 км , что немыслимо для иных систем связи; однако построение космических линий О. с. технически весьма сложно.

В земных условиях наиболее перспективны системы О. с., использующие закрытые световодные структуры. В 1974 показана возможность изготовления стеклянных световодов с затуханием передаваемых сигналов не более нескольких дб /км . При современном уровне техники, используя полупроводниковые диодные излучатели, работающие как в лазерном (когерентном), так и в некогерентном режимах, кабели со световолоконными жилами и полупроводниковые приёмники, можно построить магистрали связи на тысячи телефонных каналов с ретрансляторами, располагаемыми на расстояниях около 10 км друг от друга. Интенсивные работы по созданию лазерных излучателей со сроками службы Оптическая связь10-100 тыс. ч , разработка широкополосных высокочувствительных приёмных устройств, более эффективных световодных структур и технологии изготовления световодов большой протяжённости, по-видимому, сделают О. с. конкурентоспособной со связью по существующим кабельным и релейным магистралям уже в ближайшем десятилетии. Можно ожидать, что О. с. займёт важное место в общегосударственной сети связи наряду с др. средствами. В перспективе системы О. с. со световодными линиями по своим информационным возможностям и стоимости на единицу информации могут стать основным видом магистральной и внутригородской связи.

Лит.: Чернышев В. Н., Шереметьев А. Г., Кобзев В. В., Лазеры в системах связи, М., ; Пратт В. К., Лазерные системы связи, пер. с англ., М., 1972; Применение лазеров, пер. с англ., М., 1974.

А. В. Иевский, М. Ф. Стельмах.


Большая советская энциклопедия . - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Оптическая связь" в других словарях:

    Передача информации с помощью света. Простейшие (малоинформативные) виды О. с. использовались с кон. 18 в. (напр., семафорная азбука). С появлением лазеров возникла возможность перенести в оптич. диапазон средства и принципы получения, обработки… … Физическая энциклопедия

    ОПТИЧЕСКАЯ СВЯЗЬ СМ - Связь оптическая … Большая политехническая энциклопедия

    Большой Энциклопедический словарь

    оптическая связь - См. optical communications. Различие в употреблении двух терминов состоит в следующем: понятие optical чаще всего относится к оборудованию оптической связи, а термин lightwave к средствам обработки оптических сигналов. [Л.М. Невдяев.… … Справочник технического переводчика

    Связь между двумя или несколькими пунктами посредством света, световых сигналов. Использование света для передачи простейших сообщений имеет давнюю историю. С древнейших времён огни костров предупреждали о приближении врагов, указывали путь… … Энциклопедия техники

    Связь посредством электромагнитных колебаний оптического диапазона (1013 1015 Гц), обычно с применением лазеров. Системы оптической связи структурно подобны системам радиосвязи. Перспективны линии оптической связи космические открытые и наземные… … Энциклопедический словарь

    оптическая связь - optinis ryšys statusas T sritis automatika atitikmenys: angl. optical communication vok. optische Kopplung, f; optische Nachrichtenübertragung, f rus. оптическая связь, f pranc. communication optique, m … Automatikos terminų žodynas

    Связь между двумя или неск. пунктами посредством электромагнитных волн оптич. диапазона. Емкость оптич. канала связи значительно превышает ёмкость радиочастотных каналов, т. к. оптическое излучение имеет частоты порядка 10 1000 ТГц (1012 1015 Гц) … Большой энциклопедический политехнический словарь

    Волоконно оптическая связь вид проводной электросвязи, использующий в качестве носителя информационного сигнала электромагнитное излучение оптического (ближнего инфракрасного) диапазона, а в качестве направляющих систем волоконно… … Википедия

МИР ЦИФРЫ И СТЕКЛА

ВВЕДЕНИЕ

У оптоволоконной связи много хорошо известных преимуществ над витой парой и коаксиальными кабелями, например, невосприимчивость к электрическим помехам и непревзойденно широкая полоса пропускания

За последнюю четверть века оптоволоконная связь стала широко распространенным методом передачи видео- и аудиосигнала, других аналоговых сигналов и цифровых данных. У оптоволоконной связи много хорошо известных преимуществ над витой парой и коаксиальными кабелями, например, невосприимчивость к электрическим помехам и непревзойденно широкая полоса пропускания. По этим и многим другим причинам волоконно-оптические системы передачи информации все глубже проникают в самые разные области информационных технологий.

Цифровые системы обеспечивают очень высокую производительность, гибкость и надежность, и стоят при этом не больше, чем аналоговые решения, на смену которым они приходят

Однако, несмотря на эти преимущества, в оптоволоконных системах до недавнего времени использовались те же самые аналоговые технологии передачи сигнала, что и в их медных предшественниках. Сейчас, когда появилось новое поколение аппаратуры, основанное исключительно на цифровых методах обработки сигналов, оптоволоконная связь вновь выводит телекоммуникации на совершенно новый уровень. Цифровые системы обеспечивают очень высокую производительность, гибкость и надежность, и стоят при этом не больше, чем аналоговые решения, на смену которым они приходят.

В этом пособии рассматривается техника цифровой передачи сигнала по оптоволоконным кабелям и ее экономические и технологические преимущества.

АНАЛОГОВАЯ ПЕРЕДАЧА ПО ОПТОВОЛОКНУ

Чтобы в должной мере оценить преимущества цифровых технологий, давайте вначале рассмотрим традиционные методы передачи аналоговых сигналов по оптоволокну. Для передачи аналоговых сигналов используют амплитудную (АМ) и частотную (ЧМ) модуляцию. В обоих случаях на вход оптического передатчика поступает низкочастотный аналоговый аудио- и видеосигнал или данные, которые преобразуются в оптический сигнал. Делается это по-разному.

В системах с амплитудной модуляцией оптический сигнал – это световой поток с интенсивностью, меняющейся в соответствии с изменениями входного электрического сигнала. В качестве источника света используются либо светодиоды, либо лазеры. К сожалению, и те и другие нелинейны, то есть в полном диапазоне яркостей от отсутствия излучения до максимального значения не соблюдается пропорциональность между входным сигналом и интенсивностью света. Тем не менее, именно такой способ управления используется в системах с амплитудной модуляцией. В результате возникают различные искажения передаваемого сигнала:

  • снижение отношения сигнал/шум по мере роста длины кабеля;
  • нелинейное дифференциальное усиление и фазовые ошибки при передаче видеосигнала;
  • ограничение динамического диапазона аудиосигнала.

Для улучшения качества работы оптоволоконных систем передачи сигнала было предложено использовать частотную модуляцию, при которой источник света всегда либо выключен полностью, либо включен на полную мощность , а частота следования импульсов изменяется в соответствии с амплитудой входного сигнала. Для тех, кто знаком с частотной модуляцией сигналов в радиотехнике, применение здесь этого термина может показаться необоснованным, поскольку в контексте оптоволоконных систем это воспринимается как метод управления частотой самого светового излучения. Это не так, и в самом деле более правильно было бы использовать термин «фазоимпульсная модуляция» (ФИМ), но в области оптоволоконной техники устоялась именно такая терминология. Следует всегда помнить, что слово «частотная» в названии метода модуляции означает частоту следования импульсов, а не частоту несущих их световых волн.

При амплитудной модуляции уровень входного сигнала представляется интенсивностью светового луча

При частотной модуляции уровень входного сигнала представляется частотой следования световых импульсов
Рис. 1. Сравнение амплитудной и частотной модуляции

Хотя частотная модуляция устраняет многие проблемы управления яркостью излучателя, свойственные системам с АМ, у нее есть и свои трудности. Одна из них – известные в ЧМ-системах перекрестные помехи. Они наблюдаются, в частности, при передаче нескольких сигналов с частотной модуляцией по одному оптоволокну, например, при использовании мультиплексора. Перекрестные помехи возникают в передатчике или приемнике как результат нестабильности настройки важных схем фильтрации сигнала, предназначенных для разделения несущих частот. Если фильтры настроены некачественно, то частотно-модулированные несущие взаимодействуют друг с другом и искажаются. Инженеры, специализирующиеся на оптоволоконных системах, могут создать ЧМ-системы, в которых вероятность возникновения перекрестных помех сведена к минимуму, но любое усовершенствование конструкции влечет за собой возрастание стоимости приборов.

Еще один тип искажений называется интермодуляцией. Как и перекрестные помехи, интермодуляция возникает в системах, предназначенных для передачи сразу нескольких сигналов по одному оптоволокну. Интермодуляционные искажения возникают в передатчике чаще всего как результат нелинейности в цепях, общих для различных ЧМ-несущих. Как следствие, до объединения нескольких несущих в один оптический сигнал они действуют друг на друга, снижая точность передачи исходного сигнала.

ЦИФРОВЫЕ СИСТЕМЫ

Как и в аналоговых системах, на передатчики цифровых систем поступает низкочастотный аналоговый аудио- и видеосигнал или цифровые данные, которые преобразуются в оптический сигнал. Приемник получает оптический сигнал и выдает электрический сигнал исходного формата. Различие состоит в том, как сигналы обрабатываются и передаются от передатчика к приемнику.



Рис. 2. Цифровая система передачи аналогового сигнала

В чисто цифровых системах входной низкочастотный сигнал сразу поступает на аналого-цифровой преобразователь, который входит в состав передатчика. Там сигнал преобразуется в последовательность логических уровней – нулей и единиц, называемую цифровым потоком. Если передатчик многоканальный, то есть рассчитан на работу с несколькими сигналами, то несколько цифровых потоков объединяются в один, и он управляет включением и выключением одного излучателя, которое происходит с очень высокой частотой.

На приемном конце происходит обратное преобразование сигнала. Из комбинированного цифрового потока выделяются индивидуальные потоки, соответствующие отдельным передаваемым сигналам. Они поступают на цифро-аналоговые преобразователи, после чего выдаются на выходы в исходном формате (рис. 2).

Чисто цифровая передача сигнала имеет массу преимуществ над традиционными АМ- и ЧМ-системами – от универсальности и более качественного сигнала до меньшей стоимости монтажа. Давайте рассмотрим некоторые из преимуществ более подробно и попутно обсудим выгодные как для установщика систем, так и для их пользователя экономические показатели.

ТОЧНОСТЬ ПЕРЕДАЧИ СИГНАЛА

В аналоговых системах с амплитудной модуляцией сигнал теряет качество пропорционально пути, пройденному по оптоволокну. Этот факт в сочетании с тем, что АМ-системы работают только с многомодовыми световодами, ограничивает применение таких систем сравнительно небольшими расстояниями передачи. ЧМ-системы работают несколько лучше: в них качество сигнала хотя и снижается, но в не очень длинных линиях остается примерно постоянным, резко снижаясь лишь при достижении некоторой предельной длины. Только в полностью цифровых системах гарантируется сохранение качества сигнала при передаче по оптоволоконной линии связи независимо от расстояния между передатчиком и приемником и количества передаваемых каналов (конечно, в пределах возможностей системы).

В аналоговых системах с амплитудной модуляцией сигнал теряет качество пропорционально пути, пройденному по оптоволокну. Этот факт в сочетании с тем, что АМ-системы работают только с многомодовыми световодами, ограничивает применение таких систем сравнительно небольшими расстояниями передачи

Точность воспроизведения передаваемого сигнала представляет значительную проблему при разработке систем для организации нескольких каналов передачи по одному оптоволокну (мультиплексоров). Например, в аналоговой системе, рассчитанной на передачу четырех каналов видео- или аудиосигнала, для того, чтобы уложиться в полосу пропускания системы, приходится ограничивать полосу, отводимую отдельным каналам. В цифровых системах не приходится идти на такой компромисс: по одному световоду можно передавать один, четыре и даже десять сигналов без снижения качества.

БОЛЕЕ ВЫСОКОЕ КАЧЕСТВО ПЕРЕДАЧИ СИГНАЛОВ

Рис. 3

Передача аналоговых сигналов в цифровой форме обеспечивает более высокое качество, чем чисто аналоговая. Искажение сигнала при таком способе передачи может происходить только при аналого-цифровом и обратном цифро-аналоговом преобразовании. Хотя никакое преобразование не идеально, современные технологии настолько совершенны, что даже недорогие АЦП и ЦАП обеспечивают гораздо более высокое качество видео- и аудиосигнала, чем можно достичь в аналоговых АМ- и ЧМ-системах. Это легко видно из сравнения отношений сигнал-шум и нелинейных искажений (дифференциальной фазы и дифференциального усиления) цифровых и аналоговых систем, предназначенных для передачи сигналов одного формата по оптоволокну одинакового типа на одной и той же длине волны.

Цифровые технологии предоставляют инженерам невиданную ранее гибкость при создании оптоволоконных систем. Теперь для различных рынков, задач и бюджетов легко подобрать нужный уровень производительности. Например, меняя разрядность аналого-цифрового преобразователя, можно влиять на необходимую для передачи сигнала полосу пропускания системы, и, как следствие, общую производительность и стоимость. При этом другие свойства цифровой системы – отсутствие искажений и независимость качества работы от длины линии – сохраняются вплоть до максимального расстояния передачи. При разработке аналоговых систем инженеры всегда находятся в клещах между стоимостью системы и ее техническими характеристиками , пытаясь сбалансировать их без ущерба для критически важных параметров передаваемых сигналов. В цифровых системах масштабирование систем и управление их производительностью и стоимостью – гораздо менее сложная задача.

НЕОГРАНИЧЕННОЕ РАССТОЯНИЕ ПЕРЕДАЧИ

Другое преимущество цифровых систем над аналоговыми предшественниками – их способность восстанавливать сигнал, не внося в него дополнительных искажений. Такое восстановление выполняется в специальном приборе, называемом репитером или линейным усилителем.

Преимущество, предоставляемое цифровыми системами, очевидно. В них сигнал может быть передан на расстояния, значительно превосходящие возможности АМ- и ЧМ- систем, при этом разработчик может быть уверен, что принятый сигнал точно совпадает с переданным и соответствует требованиям технического задания.

По мере прохождения света по оптоволокну его интенсивность постепенно снижается и, в конце концов, становится недостаточной для детектирования. Если же немного не доходя до того места, где свет становится слишком слабым, установить линейный усилитель, то он усилит сигнал до его исходной мощности, и его можно будет передавать дальше на такое же расстояние. Важно отметить, что в линейном усилителе восстанавливается цифровой поток, что не оказывает никакого влияния на качество закодированного в нем аналогового видео- или аудиосигнала независимо от того, сколько раз выполнялось восстановление в линейных усилителях на пути следования сигнала по длинной оптоволоконной линии.

Преимущество, предоставляемое цифровыми системами, очевидно. В них сигнал может быть передан на расстояния, значительно превосходящие возможности АМ- и ЧМ-систем, при этом разработчик может быть уверен, что принятый сигнал точно совпадает с переданным и соответствует требованиям технического задания.

МЕНЬШАЯ СТОИМОСТЬ

Оценивая те многочисленные преимущества, которыми обладают цифровые оптоволоконные системы, можно предположить, что они должны стоить гораздо дороже традиционных аналоговых систем. Однако это не так, и пользователи цифровых систем, напротив, экономят свои деньги.

На конкурентном рынке всегда найдется производитель, предлагающий цифровое качество по цене аналоговой системы

Стоимость цифровых компонентов существенно снизилась за последние годы, и изготовители оборудования смогли разработать и предложить к продаже изделия, которые стоят так же или даже дешевле, как и аналоговые приборы предыдущего поколения. Конечно, некоторые фирмы хотят убедить общественность в том, что превосходное качество цифровых систем можно получить только за дополнительную плату, но на деле они просто решили не делить сэкономленное со своими клиентами. Но на конкурентном рынке всегда найдется производитель, предлагающий цифровое качество по цене аналоговой системы.

Цифровые системы позволяют по одному кабелю передавать больший объем информации, тем самым снижая потребность в нем

На стоимость установки и эксплуатации оптоволоконной системы влияют и другие факторы. Наиболее очевидный из них - затраты на кабель. Цифровые системы позволяют по одному кабелю передавать больший объем информации, тем самым снижая потребность в нем. Преимущество особенно хорошо заметно там, где надо одновременно передавать сигналы различных типов, например, видео и звук или звук и данные. Без особых проблем инженеры смогут сконструировать цифровую систему с приемлемой стоимостью, в которой по одному оптоволокну будут передаваться сигналы различных типов, например, два канала видео и четыре канала звука. При использовании аналоговых технологий, скорее всего, пришлось бы делать две отдельные системы, или, как минимум, использовать два раздельных кабеля для передачи аудио- и видеосигналов.

Из-за меньшего количества компонентов, которые могут со временем выйти из строя, цифровые системы гораздо более стабильны и надежны

Даже в случаях, когда по одному оптоволокну надо передавать несколько однотипных сигналов, цифровые системы предпочтительнее, поскольку работают более надежно и обеспечивают более высокое качество сигнала. Например, в цифровом видеомультиплексоре можно передать десять каналов с одинаково высоким качеством , а в аналоговой системе такое вообще невозможно.

Следует учитывать и неизбежные за годы эксплуатации оптоволоконных систем расходы на техническое обслуживание и ремонт. И здесь преимущество за цифровыми системами. Во-первых, для них не требуется первоначальная настройка после монтажа – передатчик и приемник просто соединяются оптоволоконным кабелем, и система готова к работе. Аналоговым системам, как правило, требуется подстройка под параметры конкретной линии передачи, учитывающая ее длину и интенсивность сигнала. Дополнительное время на регулировку влечет за собой дополнительные затраты.

Передатчики и приемники для цифровых систем стоят дешевле, расход кабеля меньше, эксплуатационные расходы ниже

Из-за меньшего количества компонентов, которые могут со временем выйти из строя, цифровые системы гораздо более стабильны и надежны. Для них не потребуется повторная на- стройка, а поиск неисправности займет гораздо меньше времени, поскольку в них нет перекрестных искажений, дрейфа параметров и других недостатков, свойственных традиционным аналоговым системам.

Подведем итог. Передатчики и приемники для цифровых систем стоят дешевле, расход кабеля меньше, эксплуатационные расходы ниже. Цифровые оптоволоконные системы обеспечивают очевидное экономическое преимущество на всех уровнях.

ВЫВОДЫ

Как оптоволоконная технология имеет много преимуществ по сравнению с традиционными медными проводами и коаксиальными кабелями, так и цифровая передача информации продвигает оптоволоконную технологию на несколько ступеней вверх, давая пользователям целый набор новых полезных качеств. Цифровые системы обладают уникальными характеристиками: точностью передачи сигнала на всей длине линии связи, минимальными вносимыми искажениями (в том числе отсутствием перекрестных искажений и интермодуляции), возможностью многократного восстановления цифрового потока при его передаче по длинной линии без ущерба для качества закодированного в нем аналогового сигнала. Это гарантирует уровень верности воспроизведения аналогового сигнала, недостижимый для аналоговых систем.

Цены на компоненты цифровых и аналоговых оптоволоконных систем сопоставимы, а с учетом затрат на монтаж, эксплуатацию и техническое обслуживание цифровые системы дают очевидную экономическую выгоду.

Разрабатывая новую оптоволоконную систему, не тратьте время на анализ преимуществ и недостатков цифровых и аналоговых систем, поскольку выбор совершенно очевиден: цифровые системы лучше с любой точки зрения. Гораздо полезнее будет ограничиться только ими и подобрать те изделия, которые наилучшим образом соответствуют вашим потребностям. Даже среди цифровых систем существует огромное разнообразие решений. Вот некоторые вопросы, которые помогут вам при их оценке:

  • насколько проста установка системы?
    • если передатчик и приемник настраиваются пользователем, то насколько просто это сделать и какие существуют проблемы?
  • компактна ли, прочна и надежна конструкция приборов?
  • выпускаются ли приборы в настольных корпусах или предназначены для установки в стойку? Существуют ли варианты в обоих типах корпусов?
    • пригодны ли приборы для использования как с одномодовыми, так и многомодовыми световодами?
    • обладает ли изготовитель достаточным опытом и репутацией на рынке предлагаемых им изделий?
    • как соотносится цена изделия с ценой традиционных аналоговых систем? (Цифровые приборы в производстве не дороже аналоговых и их стоимость не должна быть выше).

Анализ рынка и сравнение характеристик аналогичных изделий позволит вам в итоге подобрать элементы цифровых оптоволоконных систем, которые верой и правдой будут служить вам в течение многих лет.

В основе построения волоконно-оптических линий связи (ВОЛС) положен принцип трансляции световых волн на большие расстояния. При этом электрические сигналы (видео сигналы от видеокамер, сигналы управления видеокамерами и данные), поступают на передатчик, и далее преобразуются в световые импульсы, передавая данные с минимальными искажениями.

Большое распространение волоконно-оптические линии получили благодаря целому ряду достоинств, которые отсутствуют при трансляции сигналов по медным кабелям (коаксиальные и витая пара) или по радио.

Основные достоинства оптоволокна (ВОЛС):

  • широкая полоса пропускания
  • малое затухание сигналов
  • отсутствие электромагнитных помех
  • дальность на десятки километров
  • срок службы более 25 лет

Виды оптоволокна

При построении волоконно-оптических линий связи (ВОЛС) используют многомодовое и одномодовое оптоволокно.

Оно состоит из ядра и оболочки. Материалом ядра служит сверхчистое кварцевое стекло. Удержание светового импульса происходит вследствие того, что коэффициент преломления материала ядра (N1) больше чем у оболочки (N2). Так происходит полное отражение светового луча внутри ядра оптоволокна.

Многомодовое оптоволокно 50/125 nm и 62,5/125 nm позволяет передавать одновременно несколько сотен разрешенных световых мод, вводимых под разными углами. Все разрешенные моды имеют разные траектории распространения и, соответственно, различное время распространения. Поэтому главный недостаток - большая величина модовой дисперсии, ограничивающая полосу пропускания, - из-за которого передатчик по оптоволокну имеет малую дальность. В волоконно-оптических линиях связи (ВОЛС) осуществляется трансляция данных на расстояние не более 4-5 км.

Для уменьшения модовой дисперсии и сохранения высокой полосы пропускания, на практике применяют волоконно-оптические линии с градиентным профилем показателя преломления сердцевины кабеля. В отличие от стандартных многомодовых волокон, имеющих постоянный профиль преломления материала ядра, такое оптоволокно имеет показатель преломления N, который плавно уменьшается от центра к оболочке.

Одномодовое оптоволокно 9/125 nm сконструировано таким образом, что в ядре может распространяться только одна, основная мода. Именно поэтому такие волокна имеют наилучшие характеристики, и наиболее активно используются при строительстве ВОЛС. Основные преимущества - малое затухание 0,25 db/км, минимальная величина модовой дисперсии и широкая полоса пропускания - благодаря которым обеспечивается бесперебойная трансляция электрических сигналов.

МИР ЦИФРЫ И СТЕКЛА

ВВЕДЕНИЕ

У оптоволоконной связи много хорошо известных преимуществ над витой парой и коаксиальными кабелями, например, невосприимчивость к электрическим помехам и непревзойденно широкая полоса пропускания

За последнюю четверть века оптоволоконная связь стала широко распространенным методом передачи видео- и аудиосигнала, других аналоговых сигналов и цифровых данных. У оптоволоконной связи много хорошо известных преимуществ над витой парой и коаксиальными кабелями, например, невосприимчивость к электрическим помехам и непревзойденно широкая полоса пропускания. По этим и многим другим причинам волоконно-оптические системы передачи информации все глубже проникают в самые разные области информационных технологий.

Цифровые системы обеспечивают очень высокую производительность, гибкость и надежность, и стоят при этом не больше, чем аналоговые решения, на смену которым они приходят

Однако, несмотря на эти преимущества, в оптоволоконных системах до недавнего времени использовались те же самые аналоговые технологии передачи сигнала, что и в их медных предшественниках. Сейчас, когда появилось новое поколение аппаратуры, основанное исключительно на цифровых методах обработки сигналов, оптоволоконная связь вновь выводит телекоммуникации на совершенно новый уровень. Цифровые системы обеспечивают очень высокую производительность, гибкость и надежность, и стоят при этом не больше, чем аналоговые решения, на смену которым они приходят.

В этом пособии рассматривается техника цифровой передачи сигнала по оптоволоконным кабелям и ее экономические и технологические преимущества.

АНАЛОГОВАЯ ПЕРЕДАЧА ПО ОПТОВОЛОКНУ

Чтобы в должной мере оценить преимущества цифровых технологий, давайте вначале рассмотрим традиционные методы передачи аналоговых сигналов по оптоволокну. Для передачи аналоговых сигналов используют амплитудную (АМ) и частотную (ЧМ) модуляцию. В обоих случаях на вход оптического передатчика поступает низкочастотный аналоговый аудио- и видеосигнал или данные, которые преобразуются в оптический сигнал. Делается это по-разному.

В системах с амплитудной модуляцией оптический сигнал – это световой поток с интенсивностью, меняющейся в соответствии с изменениями входного электрического сигнала. В качестве источника света используются либо светодиоды, либо лазеры. К сожалению, и те и другие нелинейны, то есть в полном диапазоне яркостей от отсутствия излучения до максимального значения не соблюдается пропорциональность между входным сигналом и интенсивностью света. Тем не менее, именно такой способ управления используется в системах с амплитудной модуляцией. В результате возникают различные искажения передаваемого сигнала:

  • снижение отношения сигнал/шум по мере роста длины кабеля;
  • нелинейное дифференциальное усиление и фазовые ошибки при передаче видеосигнала;
  • ограничение динамического диапазона аудиосигнала.

Для улучшения качества работы оптоволоконных систем передачи сигнала было предложено использовать частотную модуляцию, при которой источник света всегда либо выключен полностью, либо включен на полную мощность, а частота следования импульсов изменяется в соответствии с амплитудой входного сигнала. Для тех, кто знаком с частотной модуляцией сигналов в радиотехнике, применение здесь этого термина может показаться необоснованным, поскольку в контексте оптоволоконных систем это воспринимается как метод управления частотой самого светового излучения. Это не так, и в самом деле более правильно было бы использовать термин «фазоимпульсная модуляция» (ФИМ), но в области оптоволоконной техники устоялась именно такая терминология. Следует всегда помнить, что слово «частотная» в названии метода модуляции означает частоту следования импульсов, а не частоту несущих их световых волн.

При амплитудной модуляции уровень входного сигнала представляется интенсивностью светового луча

При частотной модуляции уровень входного сигнала представляется частотой следования световых импульсов
Рис. 1. Сравнение амплитудной и частотной модуляции

Хотя частотная модуляция устраняет многие проблемы управления яркостью излучателя, свойственные системам с АМ, у нее есть и свои трудности. Одна из них – известные в ЧМ-системах перекрестные помехи. Они наблюдаются, в частности, при передаче нескольких сигналов с частотной модуляцией по одному оптоволокну, например, при использовании мультиплексора. Перекрестные помехи возникают в передатчике или приемнике как результат нестабильности настройки важных схем фильтрации сигнала, предназначенных для разделения несущих частот. Если фильтры настроены некачественно, то частотно-модулированные несущие взаимодействуют друг с другом и искажаются. Инженеры, специализирующиеся на оптоволоконных системах, могут создать ЧМ-системы, в которых вероятность возникновения перекрестных помех сведена к минимуму, но любое усовершенствование конструкции влечет за собой возрастание стоимости приборов.

Еще один тип искажений называется интермодуляцией. Как и перекрестные помехи, интермодуляция возникает в системах, предназначенных для передачи сразу нескольких сигналов по одному оптоволокну. Интермодуляционные искажения возникают в передатчике чаще всего как результат нелинейности в цепях, общих для различных ЧМ-несущих. Как следствие, до объединения нескольких несущих в один оптический сигнал они действуют друг на друга, снижая точность передачи исходного сигнала.

ЦИФРОВЫЕ СИСТЕМЫ

Как и в аналоговых системах, на передатчики цифровых систем поступает низкочастотный аналоговый аудио- и видеосигнал или цифровые данные, которые преобразуются в оптический сигнал. Приемник получает оптический сигнал и выдает электрический сигнал исходного формата. Различие состоит в том, как сигналы обрабатываются и передаются от передатчика к приемнику.


Рис. 2. Цифровая система передачи аналогового сигнала

В чисто цифровых системах входной низкочастотный сигнал сразу поступает на аналого-цифровой преобразователь, который входит в состав передатчика. Там сигнал преобразуется в последовательность логических уровней – нулей и единиц, называемую цифровым потоком. Если передатчик многоканальный, то есть рассчитан на работу с несколькими сигналами, то несколько цифровых потоков объединяются в один, и он управляет включением и выключением одного излучателя, которое происходит с очень высокой частотой.

На приемном конце происходит обратное преобразование сигнала. Из комбинированного цифрового потока выделяются индивидуальные потоки, соответствующие отдельным передаваемым сигналам. Они поступают на цифро-аналоговые преобразователи, после чего выдаются на выходы в исходном формате (рис. 2).

Чисто цифровая передача сигнала имеет массу преимуществ над традиционными АМ- и ЧМ-системами – от универсальности и более качественного сигнала до меньшей стоимости монтажа. Давайте рассмотрим некоторые из преимуществ более подробно и попутно обсудим выгодные как для установщика систем, так и для их пользователя экономические показатели.

ТОЧНОСТЬ ПЕРЕДАЧИ СИГНАЛА

В аналоговых системах с амплитудной модуляцией сигнал теряет качество пропорционально пути, пройденному по оптоволокну. Этот факт в сочетании с тем, что АМ-системы работают только с многомодовыми световодами, ограничивает применение таких систем сравнительно небольшими расстояниями передачи. ЧМ-системы работают несколько лучше: в них качество сигнала хотя и снижается, но в не очень длинных линиях остается примерно постоянным, резко снижаясь лишь при достижении некоторой предельной длины. Только в полностью цифровых системах гарантируется сохранение качества сигнала при передаче по оптоволоконной линии связи независимо от расстояния между передатчиком и приемником и количества передаваемых каналов (конечно, в пределах возможностей системы).

В аналоговых системах с амплитудной модуляцией сигнал теряет качество пропорционально пути, пройденному по оптоволокну. Этот факт в сочетании с тем, что АМ-системы работают только с многомодовыми световодами, ограничивает применение таких систем сравнительно небольшими расстояниями передачи

Точность воспроизведения передаваемого сигнала представляет значительную проблему при разработке систем для организации нескольких каналов передачи по одному оптоволокну (мультиплексоров). Например, в аналоговой системе, рассчитанной на передачу четырех каналов видео- или аудиосигнала, для того, чтобы уложиться в полосу пропускания системы, приходится ограничивать полосу, отводимую отдельным каналам. В цифровых системах не приходится идти на такой компромисс: по одному световоду можно передавать один, четыре и даже десять сигналов без снижения качества.

БОЛЕЕ ВЫСОКОЕ КАЧЕСТВО ПЕРЕДАЧИ СИГНАЛОВ


Рис. 3

Передача аналоговых сигналов в цифровой форме обеспечивает более высокое качество, чем чисто аналоговая. Искажение сигнала при таком способе передачи может происходить только при аналого-цифровом и обратном цифро-аналоговом преобразовании. Хотя никакое преобразование не идеально, современные технологии настолько совершенны, что даже недорогие АЦП и ЦАП обеспечивают гораздо более высокое качество видео- и аудиосигнала, чем можно достичь в аналоговых АМ- и ЧМ-системах. Это легко видно из сравнения отношений сигнал-шум и нелинейных искажений (дифференциальной фазы и дифференциального усиления) цифровых и аналоговых систем, предназначенных для передачи сигналов одного формата по оптоволокну одинакового типа на одной и той же длине волны.

Цифровые технологии предоставляют инженерам невиданную ранее гибкость при создании оптоволоконных систем. Теперь для различных рынков, задач и бюджетов легко подобрать нужный уровень производительности. Например, меняя разрядность аналого-цифрового преобразователя, можно влиять на необходимую для передачи сигнала полосу пропускания системы, и, как следствие, общую производительность и стоимость. При этом другие свойства цифровой системы – отсутствие искажений и независимость качества работы от длины линии – сохраняются вплоть до максимального расстояния передачи. При разработке аналоговых систем инженеры всегда находятся в клещах между стоимостью системы и ее техническими характеристиками, пытаясь сбалансировать их без ущерба для критически важных параметров передаваемых сигналов. В цифровых системах масштабирование систем и управление их производительностью и стоимостью – гораздо менее сложная задача.

НЕОГРАНИЧЕННОЕ РАССТОЯНИЕ ПЕРЕДАЧИ

Другое преимущество цифровых систем над аналоговыми предшественниками – их способность восстанавливать сигнал, не внося в него дополнительных искажений. Такое восстановление выполняется в специальном приборе, называемом репитером или линейным усилителем.

Преимущество, предоставляемое цифровыми системами, очевидно. В них сигнал может быть передан на расстояния, значительно превосходящие возможности АМ- и ЧМ- систем, при этом разработчик может быть уверен, что принятый сигнал точно совпадает с переданным и соответствует требованиям технического задания.

По мере прохождения света по оптоволокну его интенсивность постепенно снижается и, в конце концов, становится недостаточной для детектирования. Если же немного не доходя до того места, где свет становится слишком слабым, установить линейный усилитель, то он усилит сигнал до его исходной мощности, и его можно будет передавать дальше на такое же расстояние. Важно отметить, что в линейном усилителе восстанавливается цифровой поток, что не оказывает никакого влияния на качество закодированного в нем аналогового видео- или аудиосигнала независимо от того, сколько раз выполнялось восстановление в линейных усилителях на пути следования сигнала по длинной оптоволоконной линии.

Преимущество, предоставляемое цифровыми системами, очевидно. В них сигнал может быть передан на расстояния, значительно превосходящие возможности АМ- и ЧМ-систем, при этом разработчик может быть уверен, что принятый сигнал точно совпадает с переданным и соответствует требованиям технического задания.

МЕНЬШАЯ СТОИМОСТЬ

Оценивая те многочисленные преимущества, которыми обладают цифровые оптоволоконные системы, можно предположить, что они должны стоить гораздо дороже традиционных аналоговых систем. Однако это не так, и пользователи цифровых систем, напротив, экономят свои деньги.

На конкурентном рынке всегда найдется производитель, предлагающий цифровое качество по цене аналоговой системы

Стоимость цифровых компонентов существенно снизилась за последние годы, и изготовители оборудования смогли разработать и предложить к продаже изделия, которые стоят так же или даже дешевле, как и аналоговые приборы предыдущего поколения. Конечно, некоторые фирмы хотят убедить общественность в том, что превосходное качество цифровых систем можно получить только за дополнительную плату, но на деле они просто решили не делить сэкономленное со своими клиентами. Но на конкурентном рынке всегда найдется производитель, предлагающий цифровое качество по цене аналоговой системы.

Цифровые системы позволяют по одному кабелю передавать больший объем информации, тем самым снижая потребность в нем

На стоимость установки и эксплуатации оптоволоконной системы влияют и другие факторы. Наиболее очевидный из них - затраты на кабель. Цифровые системы позволяют по одному кабелю передавать больший объем информации, тем самым снижая потребность в нем. Преимущество особенно хорошо заметно там, где надо одновременно передавать сигналы различных типов, например, видео и звук или звук и данные. Без особых проблем инженеры смогут сконструировать цифровую систему с приемлемой стоимостью, в которой по одному оптоволокну будут передаваться сигналы различных типов, например, два канала видео и четыре канала звука. При использовании аналоговых технологий, скорее всего, пришлось бы делать две отдельные системы, или, как минимум, использовать два раздельных кабеля для передачи аудио- и видеосигналов.

Из-за меньшего количества компонентов, которые могут со временем выйти из строя, цифровые системы гораздо более стабильны и надежны

Даже в случаях, когда по одному оптоволокну надо передавать несколько однотипных сигналов, цифровые системы предпочтительнее, поскольку работают более надежно и обеспечивают более высокое качество сигнала. Например, в цифровом видеомультиплексоре можно передать десять каналов с одинаково высоким качеством, а в аналоговой системе такое вообще невозможно.

Следует учитывать и неизбежные за годы эксплуатации оптоволоконных систем расходы на техническое обслуживание и ремонт. И здесь преимущество за цифровыми системами. Во-первых, для них не требуется первоначальная настройка после монтажа – передатчик и приемник просто соединяются оптоволоконным кабелем, и система готова к работе. Аналоговым системам, как правило, требуется подстройка под параметры конкретной линии передачи, учитывающая ее длину и интенсивность сигнала. Дополнительное время на регулировку влечет за собой дополнительные затраты.

Передатчики и приемники для цифровых систем стоят дешевле, расход кабеля меньше, эксплуатационные расходы ниже

Из-за меньшего количества компонентов, которые могут со временем выйти из строя, цифровые системы гораздо более стабильны и надежны. Для них не потребуется повторная на- стройка, а поиск неисправности займет гораздо меньше времени, поскольку в них нет перекрестных искажений, дрейфа параметров и других недостатков, свойственных традиционным аналоговым системам.

Подведем итог. Передатчики и приемники для цифровых систем стоят дешевле, расход кабеля меньше, эксплуатационные расходы ниже. Цифровые оптоволоконные системы обеспечивают очевидное экономическое преимущество на всех уровнях.

ВЫВОДЫ

Как оптоволоконная технология имеет много преимуществ по сравнению с традиционными медными проводами и коаксиальными кабелями, так и цифровая передача информации продвигает оптоволоконную технологию на несколько ступеней вверх, давая пользователям целый набор новых полезных качеств. Цифровые системы обладают уникальными характеристиками: точностью передачи сигнала на всей длине линии связи, минимальными вносимыми искажениями (в том числе отсутствием перекрестных искажений и интермодуляции), возможностью многократного восстановления цифрового потока при его передаче по длинной линии без ущерба для качества закодированного в нем аналогового сигнала. Это гарантирует уровень верности воспроизведения аналогового сигнала, недостижимый для аналоговых систем.

Цены на компоненты цифровых и аналоговых оптоволоконных систем сопоставимы, а с учетом затрат на монтаж, эксплуатацию и техническое обслуживание цифровые системы дают очевидную экономическую выгоду.

Разрабатывая новую оптоволоконную систему, не тратьте время на анализ преимуществ и недостатков цифровых и аналоговых систем, поскольку выбор совершенно очевиден: цифровые системы лучше с любой точки зрения. Гораздо полезнее будет ограничиться только ими и подобрать те изделия, которые наилучшим образом соответствуют вашим потребностям. Даже среди цифровых систем существует огромное разнообразие решений. Вот некоторые вопросы, которые помогут вам при их оценке:

  • насколько проста установка системы?
    • если передатчик и приемник настраиваются пользователем, то насколько просто это сделать и какие существуют проблемы?
  • компактна ли, прочна и надежна конструкция приборов?
  • выпускаются ли приборы в настольных корпусах или предназначены для установки в стойку? Существуют ли варианты в обоих типах корпусов?
    • пригодны ли приборы для использования как с одномодовыми, так и многомодовыми световодами?
    • обладает ли изготовитель достаточным опытом и репутацией на рынке предлагаемых им изделий?
    • как соотносится цена изделия с ценой традиционных аналоговых систем? (Цифровые приборы в производстве не дороже аналоговых и их стоимость не должна быть выше).

Анализ рынка и сравнение характеристик аналогичных изделий позволит вам в итоге подобрать элементы цифровых оптоволоконных систем, которые верой и правдой будут служить вам в течение многих лет.

1. Общие понятия электромагнитных излучений
2. Понятие "Свет"

а. История
б. Общие сведения
в. Развитие
4. Заключение

1. Общие понятия электромагнитных излучений.
Электромагнитное излучение - это движение возмущений электромагнитного поля в пространстве. Существуют невидимые и видимые электромагнитные излучения. Электромагнитное излучение порождается движущимися электрическими зарядами, и распространяется во все направления и практически во всех средах. Они переносятся без затуханий насколько угодно большие расстояния.

Электромагнитное излучение подразделяется на:
. радиоволны (начиная со сверхдлинных);
. инфракрасное излучение;
. видимый свет;
. ультрафиолетовое излучение;
. рентгеновское излучение и жесткое (гамма-излучение).

Электромагнитная шкала (спектр) - совокупность всех диапазонов частот электромагнитного излучения. В качестве спектральной характеристики используют следующие величины:
. Длина волны;
. Частота колебания;
. Энергия фотона.

Спектр делится на следующие участки:
. Низкочастотные колебания;
. Радиоволны;
. Инфракрасное излучение;
. Видимое излучение (cвет);
. Ультрафиолетовое излучение;
. Рентгеновское излучение;
. Гамма-излучение.
Электромагнитные волны широко используются в наше время в радио и электротехнике, современных приборах. Радиоволны применяются для радиосвязи, телевидения, радиолокации. Инфракрасное излучение используют в печах, обогревателях и всех приборах для обогревания и сушки. Ультрафиолетовое излучение используют для обеззараживания помещений, изучений и исследований атомов и молекул. Широко используется в криминалистике для нахождения биологических следов. Рентгеновские лучи используют в медицине для диагностики заболеваний и для лечения некоторых болезней.

2. Понятие "Свет".
Свет - это видимое электромагнитное излучение, испускаемое нагретым или находящимся в возбуждённом состоянии веществом. Но также за свет принимают и примыкающие к нему широкие области спектра: ультрафиолетовое и инфракрасное излучение. Длины волн видимого излучения лежат в диапазоне от 380 до 780 нанометров. Свет изучает раздел физики под названием оптика. Свет может рассматриваться либо как электромагнитная волна, скорость распространения в вакууме которой постоянна, либо как поток фотонов — частиц, обладающих определённой энергией, импульсом, собственным моментом импульса и нулевой массой.
Свету присущи все свойства электромагнитных волн:
. Отражение;
. Преломление;
. Интерференция;
. Дифракция;
. Поляризация.
Свет может оказывать давление на вещество, поглощаться средой, вызывать явление фотоэффекта. Свет отклоняется от прямолинейного направления. Имеет конечную скорость распространения в вакууме 300 000 км/с, а в среде скорость убывает. Помимо падения скорости, свет начинает преломляться и может начать распадаться на световой спектр при определенных обстоятельствах. Это объясняется явлением интерференции. Именно интерференцией света объясняется окраска мыльных пузырей и тонких масляных пленок на воде. Световые волны частично отражаются от поверхности тонкой пленки, частично проходят в нее, и мы наблюдаем на поверхности радужный рисунок.
Дифракция света - это отклонение световой волны от прямолинейного распространения. Это хорошо видно, когда в комнате занавешенной темными, плотными шторами в занавеске сделать небольшую дырочку, свет пойдёт как конус вершина которого будет находиться в нашей проделанной дырочке. Преломление света мы можем наблюдать, поставив в стакан с водой ложку. Она будет поделена на границе между воздухом и водой.
Мы наблюдаем окружающий мир только потому, что человек может воспринимать видимый спектр электромагнитных волн. Это происходит из-за того, что специальные рецепторы, находящиеся в сетчатке глаза могут реагировать на световые излучения. И мы можем различать зрительные образы: цвет, форму, величину, расстояние до предмета и многое другое. Человеческое зрение обладает рядом свойств:
. Световой чувствительностью;
. Остротой;
. Полем обзора;
. Бинокулярностью;
. Контрастностью и адаптацией.

3. Применение света в оптоволокне.
а. История
Свет широко используют в технике, но особое развитие в наши дни получил в оптоволоконных сетях. История передачи данных на расстоянии с помощью света и прозрачных материалов началась в 1934 году. Норман Френч предложил преобразовывать голос в световые сигналы и передавать его по стеклянным стержням. Через несколько лет, швейцарский физик Жан-Даниэль Колладон, провел эксперимент с передачей света через “параболический жидкий поток”, то есть воду.
Оптоволокно современного вида изобрели в 1954 году. Это сделали два английских физика Нариндер Сингх Капани, Гарольд Хопкинс и голландский исследователь Абрахам Ван Хил. О своих изобретениях они объявили в одно время, поэтому всех троих считают основателями этой технологии. Кстати, оптоволокно назвали оптоволокном через два года после изобретения.
Первые оптоволоконные кабели имели большую потерю света. Уменьшить потери удалось Лоуренсу Кертису в конце 50-ых годов. После того, как в 1962 году была открыта лазерная технология, оптоволокно получило еще один толчок в развитии.
б. Общие сведения
Волоконно-оптическая связь — вид проводной электросвязи, использующий в качестве носителя информационного сигнала электромагнитное излучение оптического (ближнего инфракрасного) диапазона, а в качестве направляющих систем — волоконно-оптические кабели. Благодаря высокой несущей частоте и широким возможностям мультиплексирования, пропускная способность волоконно-оптических линий многократно превышает пропускную способность всех других систем связи и может измеряться терабитами в секунду. Но от истории вернемся к современности. Сегодня, оптоволоконный кабель представляет собой самый быстрый способ передачи данных. Это и не удивительно. В качестве переносчика информации выступает свет, а он, как известно, имеет самую высокую скорость перемещения во Вселенной (300 тысяч километров в секунду). Малое затухание света в оптическом волокне позволяет применять волоконно-оптическую связь на значительных расстояниях без использования усилителей. Волоконно-оптическая связь свободна от электромагнитных помех и труднодоступна для несанкционированного использования — незаметно перехватить сигнал, передаваемый по оптическому кабелю, технически крайне сложно. Если сравнивать с другими способами передачи информации, то порядок величин Тбайт/с просто недостижим. Еще один плюс таких технологий — это надежность передачи. Передача по оптоволокну не имеет недостатков электрической или радиопередачи сигнала. Отсутствуют помехи, которые могут повредить сигнал, и нет необходимости лицензировать использование радиочастоты. Однако не так много людей представляют себе, как вообще происходит передача информации по оптоволокну, и тем более не знакомы с конкретными реализациями технологий. Вначале рассмотрим, как вообще передается информация по оптоволокну. Оптоволокно — это волновод, по которому распространяются электромагнитные волны с длиной волны порядка тысячи нанометров (10-9 м). Это область инфракрасного излучения, не видимого человеческим глазом. И основная идея состоит в том, что при определенном подборе материала волокна и его диаметра возникает ситуация, когда для некоторых длин волн эта среда становится почти прозрачной и даже при попадании на границу между волокном и внешней средой большая часть энергии отражается обратно внутрь волокна. Тем самым обеспечивается прохождение излучения по волокну без особых потерь, и основная задача — принять это излучение на другом конце волокна. Конечно, за столь кратким описанием скрывается огромная и трудная работа многих людей. Не надо думать, что такой материал просто создать или что этот эффект очевиден. Наоборот, к этому нужно относиться как к большому открытию, так как сегодня это обеспечивает лучший способ передачи информации. Нужно понимать, что материал волновода — это уникальная разработка и от его свойств зависит качество передачи данных и уровень помех; изоляция волновода разработана с учетом того, чтобы выход энергии наружу был минимален. Что же касается конкретно технологии, называемой «мультиплексинг», то это означает, что вы одновременно передаете несколько длин волн. Между собой они не взаимодействуют, а при приеме или передаче информации интерференционные эффекты (наложение одной волны на другую) несущественны, так как наиболее сильно они проявляются при кратных длинах волн. Здесь же речь идет об использовании близких частот (частота обратно пропорциональна длине волны, поэтому все равно, о чем говорить). Устройство под названием «мультиплексор» — это аппарат для кодирования или декодирования информации в формат волн и обратно.
в. Развитие
Плавно перейдя к тенденциям развития этой технологии, мы наверняка не откроем Америки, если скажем, что DWDM является наиболее перспективной оптической технологией передачи данных. Это можно связать в большей мере с бурным ростом Интернет - трафика, показатели роста которого приближаются к тысячам процентов. Основными же отправными точками в развитии станут увеличение максимальной длины передачи без оптического усиления сигнала и реализация большего числа каналов (длин волн) в одном волокне. Сегодняшние системы обеспечивают передачу 40 длин волн, что соответствует 100-гигагерцевой сетке частот. На очереди к выходу на рынок устройства с 50-гигагерцевой сеткой, поддерживающие до 80 каналов, что соответствует передаче терабитных потоков по одному волокну. И уже сегодня можно услышать заявления лабораторий фирм-разработчиков, таких как Lucent Technologies или Nortel Networks, о скором создании 25-гигагерцевых систем.
Однако, несмотря на столь бурное развитие инженерной и исследовательской мысли, рыночные показатели вносят свои коррективы. Прошедший год ознаменовался серьезным падением оптического рынка, что подтверждается существенным падением курса акций Nortel Networks (29% за один день торгов) после объявления ею о трудностях со сбытом своей продукции. В аналогичной ситуации оказались и другие производители.
В то же время, если на западных рынках наблюдается некоторое насыщение, то восточные только начинают разворачиваться. Наиболее ярким примером служит рынок Китая, где десяток операторов национального масштаба наперегонки строят магистральные сети. Китайцам нельзя не позавидовать - они теперь будут строить дома только в непосредственной близости от оптоволоконного кабеля. Министерство промышленности и информационных технологий Китая недавно издало соответствующий циркуляр. Кроме того, согласно этой новой политике, для поддержания здоровой конкуренции, услуги подключения должны предоставляться абонентам сразу несколькими провайдерами. Правда, скорость соединения никак не оговаривается.
Подобная политика конечно выгодна и китайским операторам. В 2012 году China Unicom (Hong Kong) Ltd (вторая по величине телекоммуникационная компания Китая) обеспечила подключение к своим FTTH-сетям для 10 миллионов китайских домохозяйств. А по информации Economic Information Daily, в 2015 году к ним присоединятся еще примерно 40 миллионов. Постановление китайского правительства вступает в силу с 1 апреля 2013 года. А в США, тем временем, обсуждается инициатива компании Google под названием "Google Fiber". Суть в том, что Google собирается предлагать FTTH-соединение на скорости 1 гигабит в секунду для конечного потребителя. Ранее, скорость 1 Гбит/с использовалась только в некоторых научных, государственных и военных учреждениях. А теперь речь идет про общенациональную сеть с такой скоростью связи. В качестве пилотной версии "гуглволокно" начали внедрять в Канзасе. И хотя работа в этом направлении продолжается, ждать появления общенациональной оптоволоконной сети Google придется еще долго. Компания Goldman Sachs оценивает стоимость этого проекта в сумму более 140 миллиардов долларов.
Напомню, что в США оптоволоконных сетей и так уже построено немало. Наиболее известный пример - компания Verizon, которая много лет строит собственную оптоволоконную инфраструктуру, и уже потратили на нее 15 миллиардов долларов, обеспечив подключение для примерно 15 миллионов домов. Но Verizon предлагает скорость 50 Мбит/с, которая может быть увеличена пока лишь до 100 Мбит/с. И если «у них» вопросы построения магистральных сетей уже практически решены, то в нашей стране, как это ни печально, пока просто нет необходимости в толстых каналах для передачи собственного трафика.
Сегодня на российском рынке высокоскоростного подключения к Интернету выделяется два основных конкурирующих направления - это домашние оптоволоконные сети и ADSL-подключение.
Домашние сети - это определенная разновидность «выделенного подключения», обеспечивающего подключение домашнего компьютера к сети через оптоволоконный кабель, который провайдер подводит к каждой квартире. Технология ADSL, в свою очередь, относится к виду широкополосных подключений, которые функционируют по принципу телефонного модема, преобразуя аналоговую телефонную линию в высокоскоростной канал передачи с помощью специальной технологии. Таким образом, главное отличие двух конкурирующих технологий - технологическое.
Тем не менее, прошедшая в начале декабря выставка «Ведомственные и корпоративные сети связи» выявила огромный интерес отечественных связистов к новым технологиями, и к DWDM в том числе. И если такие монстры, как «Транстелеком» или «Ростелеком», уже имеют транспортные сети масштаба государства, то нынешние энергетики только начинают их строить. Так что, несмотря на все неурядицы, за оптикой — будущее. И немалую роль здесь сыграет DWDM. Стоимость использования волоконно-оптической технологии уменьшается, что делает данную услугу конкурентоспособной по сравнению с традиционными услугами. Технология оптоволоконной передачи данных будет развиваться до тех пор, пока не будет придумана альтернатива. Из будущих конкурентов видится только квантовая сеть, но эта технология находится еще в рамках становления и пока не страшна оптоволокну.
Что касается минусов, то он один - дороговизна оборудования и инструментов монтажа оптоволокна. Сам кабель стоит в десятки раз меньше, чем передатчики, приемники и усилители сигнала. Кроме того, для спайки кабелей, используются специальные инверторы, некоторые из них стоят как дорогой автомобиль.

4. Заключение .
В наше время информационных технологий, государство начало особое внимание уделять процессу информатизации общества. Этот процесс не мог не затронуть такой аспект общественной жизни, как образование. Сегодня все больше бюджетных средств тратится на поднятие уровня технического оборудования в школах, для улучшения информационной образованности молодежи. Эти улучшения также касаются качества Интернет-соединения в образовательных учреждениях. А самый прогрессивный и быстрый способ Интернет-соединения - оптоволоконные системы. Их внедрение в образование позволит добиться огромного скачка в информационной образованности студентов и школьников, что в будущем позволит воспитать отличнейших специалистов в сфере международных Интернет-систем, которые поднимут нашу страну на более высокий уровень развития в мире. Параллельно с этим развитие телекоммуникации поможет воспитать людей, способных поддерживать стабильность и безопасность наших интернет ресурсов.
С моей точки зрения, изучение поставленной проблемы имеет большое будущее и я предполагаю продолжить работу над данной темой уже будучи студентом. Я считаю, что изучая современные технологии, участвуя в различного уровня исследованиях, конференциях, можно стать конкурентоспособным специалистом.

Литература:
1) Большая Российская энциклопедия.
2) Газета "White Paper".
3) Журнал "КомпьютерПресс №1 2001.
4) Кудряшов Ю. Б., Перов Ю. Ф. Рубин А. Б. Радиационная биофизика: радиочастотные и микроволновые электромагнитные излучения.
5) Листвин А. В., Листвин В. Н., Швырков Д. В. Оптические волокна для линий связи. М.: ЛЕСАРарт, 2003.
6) Отчет фирмы Alcatel-Lucent за 28 СЕНТЯБРЯ 2009.
7) Советская энциклопедия.
8) Тарасов К. И. Спектральные приборы.

Передача сигналов по оптическому кабелю стала еще доступнее благодаря новым устройствам преобразования аудио-/видеосигналов в программе поставок ПРОСОФТ

Передача данных по оптоволокну используется, если видеосигнал необходимо транслировать на особо длинные расстояния. При передачи данных по оптическим линиям связи кардинально решается проблема с внешними электромагнитными помехами и разностью потенциалов, что существенно улучшает качество получаемого сигнала.

Таким образом, передача по оптике аудио-/видеосигналов имеет практически одни достоинства. Это и значительные расстояния, на которые возможна передача данных (например, для DVI-сигнала - до 5 км), невысокая стоимость приборов для передачи по оптоволокну AV-сигналов и т. д. К недостаткам такого способа условно можно отнести высокую стоимость оптического кабеля по сравнению с витой парой.

При прокладке оптических кабелей очень важно избежать перегибов волокна. Само оптоволокно достаточно хрупкое, и в случае сильных изгибов возможна поломка волокон или их замутнение из-за возникновения микротрещин. Все это может существенно снизить пропускную способность сети или даже привести к тому, что передача данных будет прекращена из-за отсутствия сигнала.

Технология передачи данных по оптоволокну

Передача аудио-/видеосигнала по волоконно-оптическим линиям связи организована достаточно просто - транслируемый сигнал с источника подается на преобразователь электрического сигнала в оптический, после чего передается по оптоволоконному кабелю. На стороне приемника устанавливается обратный преобразователь из оптического в электрический сигнал, который и подается на устройство отображения для получения высочайшего качества сигнала.
Передача данных по оптоволокну осуществляется при помощи приборов, которые работают с одномодовым либо многомодовым оптическим кабелем (в зависимости от модификации) и имеют крайне низкие потери на расстоянии.

Передача сигналов с помощью специальных устройств

ПРОСОФТ предлагает своим партнерам необходимые решения для передачи аудио-/видеосигналов по оптоволоконному кабелю. Передовые разработки компании позволяют инсталляторам и интеграторам создавать различные по протяженности линии передач цифровых сигналов с помощью специальных устройств преобразования аудио-/видеосигналов.

Устройства для передачи данных по оптике поддерживают технологии EDID и HDCP. Поэтому проблем при соединении данных устройств с источниками сигналов и устройствами отображения информации не возникает.

Каждый такой прибор поставляется с внешним адаптером питания и, как правило, имеет небольшие габариты, что позволяет использовать его в местах ограниченного доступа.
Температурный режим эксплуатации: от 0 до +50С.

Диапазон применения также достаточно широк: от небольших корпоративных систем (таких как конференц-залы и переговорные комнаты), до гигантских сетей Digital Signage, разветвленных систем охраны и видеонаблюдения. Однако стоит заметить, что сферы применения волоконно-оптических сетей гораздо шире.

Передача по оптике AV-сигналов на сегодняшний день является самым бескомпромиссным решением для трансляции сигналов на длинные и сверхдлинные расстояния.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: