Uart интерфейс описание на русском. Изучение последовательного порта UART. Параллельный или последовательный

Истерии появилось множество вопросов, как подключить плату к компьютеру. И многие люди даже не понимают, что же такое UART. И я решил рассказать здесь какой это мощный инструмент.

Роутер превращается в компьютер, если к нему по UART подключить клавиатуру и дисплей

От телеграфа к COM-порту

Протокол UART (Universal asynchronous receiver/transmitter) или, по-русски, УАПП (универсальный асинхронный приемопередатчик) - старейший и самый распространенный на сегодняшний день физический протокол передачи данных. Наиболее известен из семейства UART протокол RS-232 (в народе – COM-порт, тот самый который стоит у тебя в компе). Это, наверное, самый древний компьютерный интерфейс. Он дожил до наших дней и не потерял своей актуальности.

Надо сказать, что изначально интерфейс УАПП появился в США как средство для передачи телеграфных сообщений, и рабочих бит там было пять (как в азбуке Морзе). Для передачи использовались механические устройства. Потом появились компьютеры, и коды ASCII, которые потребовали семь бит. В начале 60-х на смену пришла всем известная 8-битная таблица ASCII, и тогда формат передачи стал занимать полноценный байт, плюс управляющие три бита.

В 1971 году, когда уже начался бум микросхем, Гордон Белл для компьютеров PDP фирмы Western Digital сделал микросхему UART WD1402A. Примерно в начале 80-х фирмой National Semiconductor был создан чип 8520. В 90-е был придуман буфер к интерфейсу, что позволило передавать данные на более высоких скоростях. Этот интерфейс, не претерпев практически никаких изменений, дошел и до наших дней

Физика интерфейса

Чтобы понять, что роднит и отличает разные UART-интерфейсы, разберем принцип работы самого популярного и любимого нами протокола RS-232. Дотошно расписывать все тонкости его работы я не буду. Об этом написан ни один десяток мегабайт статей, и если ты умеешь пользоваться Гуглом, то без проблем найдешь всю необходимую информацию. Но основы я расскажу, благо с ними можно уже круто всем рулить, а всякие фишки используются очень редко.

Основные рабочие линии у нас – RXD и TXD, или просто RX и TX. Передающая линия – TXD (Transmitted Data), а порт RXD (Received Data) – принимающая.
Эти линии СОМ-порта задействованы при передаче без аппаратного управления потоком данных. При аппаратном потоке задействованы еще дополнительные интерфейсные линии (DTS, RTS и пр.). Выход передатчика TX соединен с входом приемника RX и наоборот. Электрический принцип работы RS-232 отличается от стандартной 5-вольтовой TTL логики. В этом протоколе логический нуль лежит от +3 до +12 вольт, а единица от -3 до -12, соответственно. Промежуток от -3 до +3 вольт считается зоной неопределенности. Учти, что все напряжения указаны относительно корпуса компьютера, или земли. Теперь, я думаю, ты понимаешь, зачем в компьютерном блоке питания существует сразу два напряжения: -12 и +12 вольт. Они были введены специально для работы СОМ-порта.


Приём сигнала по RS-232 (взято из книги М.Гук «Аппаратные интерфейсы ПК»)

Такая большая амплитуда рабочих напряжений, целых 24 вольта, нужна в первую очередь для помехоустойчивости линий связи. По стандарту, длина кабеля, по которому у нас бегают данные, может быть 15 м. Хотя на практике люди умудрялись заставлять его работать даже на 25 м. Электрические параметры RS-232 – это главная характеристика, которая отличает его от других протоколов семейства UART.

Следующие характеристики – формат посылки и скорость передачи данных – полностью применимы ко всем видам UART и обеспечивают их совместимость через несложные схемы сопряжения.

Стандартная посылка занимает 10 бит. Но правило это распространяется только на стандартные настройки СОМ-порта. В принципе, его можно перенастроить так, чтобы он даже интерфейс One-Wire понимал. В режиме простоя, когда по линии ничего не передается, она находится в состоянии логической единицы, или -12 вольт. Начало передачи обозначают передачей стартового бита, который всегда равен нулю. Затем идет передача восьми бит данных. Завершает посылку бит четности и стоповый бит. Бит четности осуществляет проверку переданных данных. Стартовый бит говорит нам, что пересылка данных завершена. Надо отметить, что STOP-бит может занимать 1, 1.5, и 2 бита. Не стоит думать, что это дробные биты, это число говорит только о его длительности. Стоповый бит, как и стартовый, равен нулю.


Сигнал UART на экране осциллографа. Виден старт бит, данные и стоповый бит. Спасибо DIHALT за картинку

Скорость работы

Даже если тебе раньше никогда не приходилось работать с СОМ-портом, по крайней мере, в модеме ты должен знать номинальные скорости работы: 9600, 28800, 33600, 56000 и т.п. Сколько бит в секунду убегает из нашего порта? Вот смотри, допустим, скорость у нас 9600 бит в секунду. Это означает, что передача одного бита будет занимать 1/9600 секунды, а пересылка байта – 11/9600. И такая скорость для байта верна только в случае, если стоп-бит будет занимать один бит. В случае, если он занимает два стоп-бита, то передача будет 12/9600. Это связано с тем, что вместе с битами данных передаются еще специальные биты: старт, стоп и бит четности. Линейка скоростей СОМ-порта стандартизирована. Как правило, все устройства работают на трех стандартных скоростях: 9600, 19200, 115200. Но возможны другие варианты, даже использование нестандартных скоростей или скорости, меняющейся во времени, – с этим я сталкивался при разборе полетов очередного устройства.

Такой разный протокол

Видов UART существует великое множество. Я не буду перечислять их наименования, ибо, если ты владеешь английским, то сумеешь и сам нагуглить. Но самые основные не отметить нельзя! Напомню, что главное отличие интерфейсов состоит в среде и способе передаче данных. Данные могут передаваться даже по оптоволокну.

Второй по распространению интерфейс после RS-232 – это RS-485. Он является промышленным стандартом, и передача в нем осуществляется по витой паре, что дает ему неплохую помехоустойчивость и повышенную скорость передачи до 4 мегабит в секунду. Длина провода тут может достигать 1 км. Как правило, он используется на заводах для управления разными станками.

Надо сказать, что IRDA, или инфракрасная связь, которая встроена в большинство телефонов и КПК, тоже по сути является UARTом. Только данные передаются не по проводам, а с помощью инфракрасного излучения.

В SMART-картах (SIM, спутниковое телевиденье, банковские карты) – тех самых устройствах, которые мечтает похачить каждый уважающий себя фрикер – тоже используется наш любимый UART. Правда, там полудуплексная передача данных, и логика работы может быть 1,8/3,3 и 5 вольт. Выглядит так, будто RX запаян с TX на одном конце и на другом – в результате, один передает, другой в этот момент слушает, и наоборот. Это регламентировано стандартом смарт-карт. Так мы точно знаем, сколько байт пошлем, и сколько нам ответит карточка. Тема достойна отдельной статьи. В общем, запомни, что UART есть практически везде.


Устройства, которые имеют на своём борту UART, по часовой стрелке: мышка, ридер-эмулятор SMART-карт, КПК Palm m105, отладочная плата для микроконтроллера ATtiny2313 (или AT89C2051), модем.

Сопряжение интерфейсов

Я уже глаза намозолил разными интерфейсами, но как с ними работать-то? Ну, с обычным RS-232 понятно, а, допустим, с 5-вольтовым юартом как быть? Все просто: существуют различные готовые микросхемы-преобразователи. Как правило, в маркировке они содержат цифры «232». Увидел в схеме микруху с этими цифирями – будь уверен: скорее всего, это преобразователь. Через такие микросхемы с небольшим обвязом и сопрягаются все интерфейсы UART. Я не буду рассказывать о промышленных интерфейсах, а скажу о тех преобразователях, которые интересуют нас в первую очередь.

Самый известный преобразователь интерфейса – это микросхема, разработанная фирмой MAXIM, которая и получила от нее часть своего названия (max232). Для ее работы требуется четыре конденсатора от 0,1 микрофарады до 4 микрофарад и питание 5 вольт. Удивительно, что эта микросхема из 5 вольт генерирует отрицательное напряжение, чтобы сопрягать 5-вольтовый UART с RS-232.

Существуют микросхемы сопряжения USB с UART, например, микросхема ft232rl. В Ubuntu для этой микросхемы уже встроены драйвера. Для Windows их придется качать с официального сайта. После установки драйверов в системе появится виртуальный СОМ-порт, и с ним уже можно рулить различными устройствами. Советую не принимать эти микросхемы, как единственно возможные. Найдется громадное количество более дешевых и интересных аналогов, посему наседай на Гугл и поймешь, что мир UARTа – это круто.

В целом, микросхемы стоят достаточно дорого и порой можно обойтись более сложными, но зато более дешевыми схемами на паре транзисторов.

Что нам это дает?

Как ты понял, интерфейс UART присутствует во многих устройствах, в которых стоит какой-либо процессор или контроллер. Я даже больше скажу: если там стоит контроллер, то юарт есть стопудово (только он не всегда может использоваться). Как правило, по этому интерфейсу идет наладка и проверка работоспособности девайса. Зачастую производитель умалчивает о наличии этого интерфейса в изделии, но найти его несложно: достаточно скачать мануал на процессор и, где находится юарт, ты будешь знать. После того, как ты получишь физический доступ к железяке по нашему интерфейсу, можно его настроить на свое усмотрение или даже заставить работать, так как надо тебе, а не как задумал производитель. В общем, – выжать максимум возможностей из скромного девайса. Знание этого протокола дает также возможность подслушать, что же творится в линиях обмена между различными процессорами, так как часто производители организуют целые юарт-сети в своем устройстве. В общем, применений много, главное – интуитивно понимать, как это делать.

Апдейтим роутер

Намедни я намутил себе WiFi-роутер WL-520GU и, прочитав статью Step’a «Level-up для точки доступа» (][ #106), успешно установил туда Linux. Но у меня возникли проблемы с монтированием swap-раздела жесткого диска. Так появилась необходимость посмотреть лог загрузки точки доступа – подмонтировался раздел или нет – причем, как говорится, на лету, чтобы сразу вносить необходимые изменения. Шестым чувством я подозревал, что в моем роутере просто обязан быть UART. Я взял в руки крестовую отвертку и начал его разбирать. Дело тривиальное, но с заковыркой – потайные винтики находятся под резиновыми ножками (если решишь повторить, помни, что при разборе ты лишаешься гарантии). Моему взору предстала достаточно скучная плата, где все «chip-in-one»: один центральный процессор, в который включено все, внешняя оператива, флеша, преобразователь питания и рядок разъемов с кнопками. Но на плате была не распаянная контактная площадка, точнее сказать, отверстия под иголки. Их было четыре штуки. Вот он UART, это очевидно! По плате даже без мультиметра видно, что крайние иголки – это +3,3 вольта и второй – земля. Средние контакты, соответственно, RX и TX. Какой из них что, легко устанавливается методом научного тыка (спалить интерфейс очень проблематично).
Сразу хочу отметить, что интерфейс UART в каждом роутере выглядит по-разному. В большинстве случаев, это не распаянные отверстия на плате. Правда, в одном роутере от ASUS я даже встретил полностью подписанный разъем.

Собираем преобразователь

Чтобы подключить роутер к компу, необходимо сопрячь интерфейсы RS-232 с UARTом роутера. В принципе, можно подключить к USB, используя указанную выше микросхему FT232RL, – что я и сделал при первой проверке роутера. Но эта микросхема – в достаточно сложном для пайки корпусе, посему мы поговорим о более простых решениях. А именно – микросхеме MAX232. Если ты собираешься питаться от роутера, то там, скорее всего, будет 3,3 вольта, поэтому лучше использовать MAX3232, которая обычно стоит в КПК (схему распайки нетрудно найти в инете). Но в моем роутере присутствовало питание +5 вольт на входе, а указанных микросхем у меня великое множество, и я не стал заморачиваться. Для сборки нам потребуются конденсаторы 0,1 мкФ (4 штуки) и сама микросхема. Запаиваем все по традиционной схеме, и начинаем эксперименты.


Исходники для сборки

На выход я сразу повесил 9-пиновый разъем типа «папа», чтобы можно было легко подключить нуль-модемный кабель. Если ты помнишь, во времена DOSа такими кабелями делали сетку из двух компов и резались в «Дюкнюкем». Провод для наших целей собрать несложно. Правда, получится не полный нуль-модем и через него особо не поиграешь, но рулить точкой доступа будет самое то! Тебе понадобятся два 9-пиновых разъема типа «мама», корпуса к ним и провод, например, от старой мышки или клавы (главное, чтобы в нем было три провода). Сначала соединяем земли ¬- это пятый контакт разъемов; просто берем любой провод и с обоих сторон припаиваем к 5-му контакту. А вот с RX и TX надо поступить хитрее. С одного конца провода запаиваем на 3-й контакт, а с другого – на 2-й. Аналогично с третьим проводом, только с одного конца запаиваем на 2-й контакт, с другого – на 3-й. Суть в том, что TX должен передавать в RX. Прячем запаянные разъемы в корпус - и готов нуль-модемный кабель!


Распаянные иголки на плате роутера.

Для удобства монтажа в материнку роутера я впаял штырьковый разъем, а в монтажку с MAX232 – обратный разъем и вставил платку, как в слот. RX и TX роутера подбираются экспериментально.


Собраная плата

Теперь надо запитать микросхему преобразователя. Общий провод у нас присутствует уже прямо в разъеме на мамке роутера. А вот + 5 вольт находится прямо у входа питания роутера, в месте, где подключается адаптер. Точку нахождения 5 вольт определяем вольтметром, измеряя разные узлы относительно земли роутера.
Подключаем питание. Включаем и начинаем наши злостные эксперименты.


Прожигаем отверстие для вывода проводов


Распаянный СОМ-порт


Всё в сборе. Обратите внимание, что красный провод питания идёт к разъёму адаптера роутера. Узелок внутри сделан, для того чтобы рывком на оторвать припаянные провода.

Настройка терминала

Нам нужно настроить терминальную программу. В Винде все достаточно просто: запускаем Hyper Terminal, отключаем программную и аппаратную проверку данных, выставляем скорость 115200 и один стоповый бит. А вот в Линухе дело обстоит чуть хитрее. У меня Ubuntu, и рассказывать буду про нее. Для начала разберись, как в твоей сборке именуется СОМ-порт. В моем случае СОМ1 был ttyS0 (если использовать к примеру микросхему FT232, то он будет именоваться ttyUSB0). Для работы с ним я использовал софтинку minicom.

Запускай ее с параметрами: minicom -l -8 -c on -s. Далее выбирай «Настройки последовательного порта»:
Последовательный порт /dev/ttyS0

* Скорость/четность/биты 115200 8N1
* Аппаратное управление потоком - нет
* Программное управление потоком - нет

Сохраняем настройки. Софтина попробует проинициализировать модем - не обращай внимания. Чтобы вызвать меню, нажми . Там можно менять настройки, например: включить/выключить эхо - Е.
Настройка

Я не рекомендую подключать микросхему преобразователя к роутеру, дабы проверить ее функционал. Допускается только брать с него питание. Проверка проходит очень просто - необходимо перемкнуть RX с TX. Сначала перемыкаешь в СОМ-порте 2-й и 3-й контакт - проверяешь настройки терминалки. Пишешь что-то на клаве: если символы возвращаются, значит, все ОК. Также проверяешь кабель, те же контакты. Потом подключаешь микросхему, и уже у нее на выходе ставишь перемычку. Я заостряю на этом внимание, потому что, например, у меня возникли проблемы, и ничего не работало, пока я все не проверил и не нашел ошибку.

После всех настроек можешь смело цеплять к роутеру и искать RX-TX на роутере, периодически выдергивая из него питание. Если все сделано правильно, то при подаче питания ты увидишь лог загрузки роутера. Принимай поздравления, теперь у тебя полный аппаратный рут, так, будто ты сидишь за монитором с клавой роутера.


Лог загрузки роутера в программе minicom

Автономное плаванье

Согласись, делать через терминальную программу то же самое, что удобнее сделать через SSH – не айс. Мне хотелось превратить роутер в автономный Linux-компьютер, со своей хитрой архитектурой. Для этого нужно, чтобы данные с клавиатуры передавались по UART, и по нему же выводились на монитор. Паять и разрабатывать устройство было лениво. Тогда-то и пришла идея заюзать для этих целей пылящийся без дела КПК. По сути, наладонник будет исполнять роль контроллера клавиатуры и дисплея, ну и служить сопряжением интерфейсов.

Сначала я попробовал древнейший Palm m100. Но, видимо, у него очень маленькая буферная память, и от количества данных, которые идут с роутера, ему становилось плохо. Я взял другой - промышленный КПК, с нормальным СОМ-портом и терминалкой. Подключил, вставил в док и, в результате, получил небольшой линукс-компьютер. В принципе, вместо дорогущего промышленного КПК подойдет большинство наладонников, работающих под операционкой WinCE, главное – найти подходящий терминальный софт.


Линукс компьютер:)

Итоги

Итак, я показал небольшой пример использования UART. Если ты вкуришь в этот протокол, то поверь, станешь просто повелителем различных железок. Есть он практически везде, и через него можно сопрягать, казалось бы, совершенно разные вещи. К примеру, к тому же роутеру при небольших настройках подключается мобильный телефон по юарту, – и раздает с него интернет. В общем, применений куча. Не бойся экспериментировать, самообразовываться и реализовать свои идеи.

Этот пост является отредактированной для хабра версией моей статьи в Хакере № 05/09 «Главный инструмент фрикера».

Литература:
1. Михаил Гук «Аппаратные интерфейсы ПК» - просто студенческая библия по персоналке.

UART - Universal Asynchronous Receiver-Transmitter, или по русски Универсальный Асинхронный Приёмопередатчик - УАПП. Используется для организации связи компьютера с различными цифровыми устройствами в электронике. Интерфейс преобразует передаваемые данные в последовательный код так, чтобы была возможна их передача по одной цифровой линии другому электронному устройству. Прямого описания протокола UART все таки есть, но его косвенное описание можно увидеть в стандартах на широко известные физический протоколы RS-232, RS-422, RS-423, RS-485

В чем разница между этими интерфейсами. В последовательном интерфейсе данные посылаются по одному проводу последовательно, друг за другом, а у "параллельного" имеется шина состоящая из нескольких проводов, по которым части сообщения передаются параллельно.

Главным достоинством параллельной передачи можно считать то, что за один момент посылается сразу группа битов. К тому же внутри микроконтроллера также используется параллельная передача данных, благодаря этому не требуется их дополнительное преобразовании. Но есть и существенные минусы. Главный из них состоит в том, что биты по проводам могут приходить не параллельно и необходимы дополнительные схемотехнические решения для получения точных посылок. Это ограничивает скорость передачи.

При последовательном передаче передаваемые биты данных сначала требуется преобразовать в параллельный код, на это расходуется дополнительное временя. Но зато отпадает необходимость в синхронизации следования битов по каждому отдельному проводу, что в данном случае, увеличивает возможности скоростной передачи данных.

Универсальный Асинхронный Приёмопередатчик - УАПП применяется с начала 60-х годов прошлого века и с тех пор претерпевал серьезные модернизации. Даже в 21 столетии последовательные протоколы UART всё ещё представляют один из основных методов обмена битами между различными цифровыми устройствами на небольшие расстояния.

UART является базой так широко используемого в прошлом . В самом простом виде UART интерфейс представляет собой три провода: передача, приём и земля.


Существенный минус универсального асинхронного приёмопередатчика кроется в том, что нет возможности определить какое из цифровых устройств является ведущим, а какое ведомым (мастер / раб). Обычно, это определяет то кто проектирует схему может назвать этот провод как TX и задать работу устройства, в соответствии с рисунком ниже:


В данном случае микроконтроллер принимает, и передаёт данные. А можно сделать следующим образом:


В соответствие с этой схемой микроконтроллер всегда передаёт (TX) получателю (RX) и наоборот. Какая из двух схем все таки правильная? Оказывается обе, все зависит только от производителя микросхемы и готового цифрового устройства.

Внимание TX, подключенный к TX и RX-RX, в большинстве случаев приведет к сгоранию микросхемы, так что это хороший пример того, что надо читать документацию перед тем как соединять чипы по UART, так как существует несколько способов соединения.

Если приемник и передатчик находятся на одной печатной плате, тогда уровень сигнала при приеме-передаче практически равен уровню напряжения питания микроконтроллера. Допустим, уровень логической единицы - "1" будет передаваться с потенциалом 3.3В, а ноль, с потенциалом, не более 0,5 Вольта. С передачей сигнала на большие расстояния начинают появляться проблемы в виде искажения сигнала и растет , появляются ошибки передачи, вплоть до полной остановки.

Для того, чтобы исключить такие проблемы в линию передачи и приема добавляют дополнительные буферы, которые усиливают сигнал. После этого их можно передавать на десятки метров без потери информации. Но в д.с для передачи уровня логической единицы применяется напряжение -3В..-15В, а для "0" - +3В до +15В.


Вместо инхронизации в UART применяется, так называемый "стартовый бит" подготавливающий цифровую схему к передачи сообщения. После стартового бита иду данные, а затем в линию посылается "стоп-бит", говорящий о завершении передачи информации. Вместе выходит 10 бит: первый - старт-бит, 8 бит данных, и последний стоп-бит, смотри осциллограмму передачи данных по протоколу UART интерфейса на рисунке ниже.


Биты передаются с определенной скоростью передачи, которая измеряется в битах в секунду или, в бодах. Так 9600 бод эквивалентно 9600 бит/сек. А так как у нас передаётся 10 бит за одно сообщение, это значит, что мы при этой скорости можем передать 960 сообщений за одну секунду.

Значение скорости передачи не передаётся вместе с сообщением, то в приёмнике и передатчике должны быть заранее заданы равные скорости. Интерфейс UART допускает до 5% рассинхронизации таймеров. В этом интервале он может получать и принимать верные информационные данные.

Можно сказать со 100% уверенностью, что каждый современный микроконтроллер имеет в своем составе универсальный последовательный интерфейс - UART. Умея работать с этим портом вы можете согласовать работу старых и современных электронных устройств, передать или принять данные в различные электронные устройства.

В современных микроконтроллерах, вместо UART интерфейса используют полностью с ним совместимый стандарт USART (универсальный асинхронный/синхронный приёмопередатчик).

USART это более гибкий в плане настройки UART с дополнительными функциями. В USART можно регулировать длину слова с более большим интервалом (от 5 до 9) чем в UART (от 8 до 9). В USART возможна как синхронная так асинхронная и передача данных (в UART осуществляется только асинхронная). При синхронной передачи помимо двух линий - данных и питания, применяется дополнительная шина (XCK) с синхросигналом. С такой настройкой USART уже пересекается с интерфейсом SPI и его можно применять как «ведущий» в интерфейсе SPI.

Рассмотрим классический случай, когда интерфейс асинхронный (т.е. с отсутствующей линией синхронизации).

Передача данных в UART интерфейсе происходит по одному биту в одинаковые временные промежутки. Этот промежуток задается скоростью UART и для конкретного типа соединения обозначается в бодах, что соответствует количество бит в секунду. В электронике имеется общепринятый ряд типовых скоростей: 300; 600; 1200; 2400; 4800; 9600; 19200; 38400; 57600; 115200; 230400;460800; 921600 бод;

Скорость (S, бод) и длительность бита (T, секунд) связаны между собой общеизвестной формулой

Байт данных отправляются в пакетах (первый бит идет перед байтом данных и второй бит следует после, количество бит опциональны)


Для приема и передачи данных в интерфейсе UART применяются всего две линии данных и земля:

передающая шина данных (TXD или TX);
принимающая линия данных (RXD или RX);
земля (GND).

Уровню логической единицы и нуля аналогичны типовым уровням TTL:

лог. "1" - +5 Вольт;
лог. "0" 0 Вольт.

Разновидность UART - интерфейс RS-485

Сети, построенные на основе интерфейсов RS-485 и RS-422, представляет собой приемопередатчики, подключенные с помощью витой пары. В основе RS-485 лежит принцип дифференциальной (балансной) передачи данных. Основа ее базируется на передаче одного сигнала по двум проводам. Причем по первому проводу (A) интерфейса следует оригинальный сигнал, а по второму - его инверсная копия. Простыми словами, если на А "1", то на В "0" и наоборот, т.е, между двумя проводами витой пары всегда существует разность потенциалов: при "1" уровне она положительная, при "нулевом" - отрицательная.

В этом уроке я расскажу про UART интерфейс в микроконтроллерах AVR и про работу с ним в . UART это универсальный асинхронный приёмопередатчик. Сам интерфейс достаточно распространён и имеется практически во всех AVR микроконтроллерах, исключения лишь составляет микроконтроллер Attiny13 и еще некоторые. Передача данных осуществляется по биту в равные промежутки времени, этот промежуток времени задаётся скоростью в бодах, вот например стандартные скорости: 4800 бод, 9600 бод, 19200 бод, 38400 бод и т.д. Следует также учесть, что скорость должна быть одинаковой с обеих сторон подключения. Кстати приёмник и передатчик работают независимо. Подключение UART осуществляется по трём линиям: RXD – приём, TXD – передача и GND – общий (минус). Подключать UART надо, так сказать "наоборот" RXD к TXD, а TXD к RXD как на картинке ниже:

С помощью UART также можно можно связать микроконтроллер и компьютер, но есть одна проблема: у UART интерфейса логические уровни 0 и +5 вольт, а в компьютере логические уровни в интерфейсе RS-232 могут быть от -25 до -3 вольт и от +3 до +25 вольт. Решить эту проблему нам поможет конвертер уровней, его можно собрать на транзисторах, а лучше использовать специальную микросхему MAX232. Вот самая распространенная схема подключения MAX232:

Работа с UART в BASCOM-AVR

Прежде всего, перед началом работы с UART нужно указать скорость в бодах, делается это командой: $baud = (скорость). Например: $baud = 9600 .Также не забываем указывать реальную частоту тактового генератора командой $crystal = (скорость Hz), в ином случае скорость работы программы будет не совпадать со скоростью работы микроконтроллера и в итоге приём или передача данных будет неверная. Пример написания команды $crystal на частоту 8МГц: $crystal = 8000000 . Кстати, имеет смысл открыть окно настроек в BASCOM-AVR (Options>Compiler>Communications):

В этом окне настроек вы можете указать скорость работы UART, тактовую частоту тактового генератора и посмотреть процент ошибок при выбранной тактовой частоте. Но лучше указывать скорость и тактовую частоту непосредственно в самой программе. Кстати процент ошибок при тактовой частоте в 4МГц очень мал (0.16%), но все, же есть. Если вы хотите чтобы процент ошибок был нулевой надо подобрать такую тактовую частоту, которая будет кратна скорости работы UART. Например, при тактовой частоте 3.6864 МГц и скорости работы UART в 115 200 бод процент ошибок будет нулевым.

И так, после указания тактовой частоты и скорости работы UART можно приступить к работе с самим интерфейсом. Чтобы послать, что-либо в UART есть команда Print (переменная или текст в кавычках), вот пример её использования: Print "Hello, world!" . Кроме текста в кавычках можно выводить и переменные, причём сразу несколько разделяя точкой с запитой, например: Print "Weight:" ; a ; "kg" или так Print "Hello," ; "world!" . Также с UART можно и принять, делается это командой Input (текст или переменная в кавычках для посылки), (переменная, куда записывать полученные данные). Как видим всё очень просто: сначала пишем в кавычках текст, который передастся в UART, а потом указываем переменную, в которую запишутся данные полученные данные из UART. Вот пример: Input "Weight:", a

Работа с UART на практике

Ну а теперь попробуем "порулить" UART на практике, сначала соберём простую схему:

Потом наберём простую программку, (используя полученные знания) и откомпилируем её. Вот и она:

$crystal = 8000000 $baud = 9600 Dim A As Byte Print "Hello, world!" Print "Hello http://сайт" Input "Size:" , A Print "Size=" ; A ; "bytes" End

А работать эта программка будет так: сначала будет посылать в UART текст, а потом будет ждать приёма данных (в данном случае числа) которые запишутся в переменную a и позже пошлёт текст вместе с переменой. Для тех, кому лень компилировать, в файлах к уроку есть готовая прошивка. Прошиваем микроконтроллер, подключаем выводы микроконтроллера RXD, TXD (подключаем, как я писал выше) и GND к COM порту компьютера (через конвертер уровней) или к USB (USB – UART переходник), открываем на компьютере программу для работы с COM портами, например: Terminal by Bray, Hyper Terminal или Terminal emulator в BASCOM-AVR, указываем COM порт к которому подключились, указываем скорость в бодах, смотрим в окно программы, подаём питание на микроконтроллер и радуемся. Необходимо также учесть, что после прошивки микроконтроллера необходимо установить фьюз биты на нужную нам тактовую частоту генератора в данном случае (для программки выше) на 8МГц. На 8МГц можно использовать внутренний тактовый генератор микроконтроллера и установить фьюз биты вот так (для ).

Статьи и Лайфхаки

Многих пользователей интересует всё, что связано с подключением платы к ПК. Одновременно с этим они задаются вопросом, что такое настройки uart в телефоне . Наша статья посвящена именно этому инструменту, а также его применению в сфере мобильных технологий.

Что же такое UART в телефоне и зачем нужна его настройка?

С английского языка UART, или universal asynchronous receiver-transmitter, можно перевести как универсальное асинхронное средство приёма-передачи. В настоящий момент это не только наиболее известный, но и достаточно старый протокол передачи информации.

Самым распространённым протоколом UART является RS-232, то есть com-порт, установленный на настольном компьютере. Его особенность заключается в том, что и сегодня он не теряет своей актуальности и активно используется. Широко известен и такой промышленный стандарт, как RS-485.

Добавим, что UART1 и UART2 применяется для подключения прошивочного кабеля, а также для соединения с компьютером. На системный разъём нашего сотового устройства выведены такие порты, как UART1, UART2 и USB. Добавим, что инфракрасный порт, по сути, также является UART. Отличие заключается лишь в способе передачи данных (не проводной, а ИК-излучение). В SIM-картах также используется этот протокол – правда, там предусмотрен полудуплексный способ передачи информации.

Отдельного внимания заслуживает запрос сопряжения интерфейсов. На сегодняшний день для этого существует особые микросхемы. Хорошим примером является микросхема ft232rl, разработанная для сопряжения UART с USB. Тем не менее, на ней не стоит зацикливаться, поскольку существуют и более дешёвые, однако весьма интересные аналоговые средства сопряжения.

Зачем нужен интерфейс UART? Как правило, именно по нему можно проверять и налаживать работоспособность нашего устройства.

Зачастую производители мобильной техники не акцентируют внимание на поддержке этого протокола. Чтобы это проверить наверняка, рекомендуется скачать мануал на тот процессор, где есть UART. Мы сможем не только получить физический доступ к устройству по нашему протоколу, но и настроить его работу на собственное усмотрение – нередко совсем не так, как это задумал производитель.

Итак, мы выяснили, что же представляет собой данный интерфейс. Однако понимание того, что такое настройки uart в телефоне, способна дать нам только подробная инструкция по настройке.

Инструкция по настройке UART в телефоне

Для настройки протокола вызываем инженерное меню телефона, набрав комбинацию *#3646633#, после чего переходим к следующему меню. Для этого заходим в пункт «Device» > «Set UART» > «UART Setting».

Мы видим такие пункты, как «PS Config» и «TST Config». Первый пункт отвечает за обмен информацией с ПК по USB-проводу, а второй необходим для отладки ПО, благодаря чему разработчики выявляют неисправности.

Каждый из пунктов содержит параметры перенаправления потока на устройство (UART 1-3 или USB) и скорость такого потока. Тестовый порт, то есть «TST Config», нам не нужен, и его мы не трогаем. Что касается «PS Config», необходимо позаботиться об определённых настройках. Устанавливаем значение «UART1». В драйвере на ПК, как правило, указана скорость потока (к примеру, 115200). Устанавливаем аналогичную скорость для UART1 (или «Auto»).

Также вместо UART1 можно выставить «USB Port», правда, в этом случае при подключении USB-провода не гарантируется, что режим USB отобразится. Перезагружаем устройство и вновь пробуем соединение.

Помните, когда у принтеров, мышей и модемов были толстые кабели с этими огромными неуклюжими разъемами? Те, которые буквально должны были ввинчиваться в компьютер? Мало кто знает, что эти UART-компоненты использовались для связи с вашим компьютером. Почти полностью заменила эти старые кабели и разъемы технология USB. UART-интерфейсы, описание которых найдете в этой статье, не ушли в прошлое. Их используют во многих проектах электроники DIY для подключения GPS, Bluetooth и модулей считывания карт RFID к Pi, Arduino или другим микроконтроллерам.

UART-интерфейс: описание

UART означает универсальный асинхронный приемник/передатчик. Это не коммуникационный протокол, такой как SPI и I2C, а физическая схема в микроконтроллере. Основной целью является передача и получение информации. Одно из лучших достижений технологии заключается в том, что он использует только два провода.

UART-интерфейс — это два устройства, которые обмениваются данными друг с другом. Передающий источник преобразует информацию с управляющего устройства, такого как центральный процессор, в последовательную форму, передает его в последовательном порядке на принимающий UART, который преобразует значения для принимающего устройства. Для передачи информации между двумя устройствами требуется только два провода.

Введение в коммуникацию UART

UART RS485 передае т данные асинхронно, что означает отсутствие сигнала для синхронизации выхода битов от передающего устройства к принимающему. Вместо тактового сигнала передающий UART добавляет биты начала и окончания передаваемого пакета. Эти параметры определяют начало и конец документа.

Когда принимающий UART обнаруживает стартовый бит, он начинает считывать входящие биты с определенной частотой, известной как скорость передачи. Скорость передачи данных является мерой скорости, выраженной в единице измерения, — бит/с. Оба устройства должны работать примерно с одинаковой скоростью передачи. Скорость передачи между передающим и принимающим устройствами может отличаться на 10%.

Оба прибора также должны быть сконфигурированы для передачи и получения той же структуры пакета.

UART — что это и как это работает?

UART, который собирается передавать информацию, получает ее из шины данных. Она используется для отправки информации другим устройством, таким как процессор, память или микроконтроллер. После того как передающий UART получает параллельные данные из шины данных, он добавляет бит начала, четности и стоп-бит, создавая пакет данных. Затем пакет выводится последовательно, по частям. Принимающий UART считывает бит данных на свой вывод. Получающий UART преобразует информацию обратно в параллельную форму, удаляет бит начала и стоповые биты. Наконец, принимающий UART передает пакет данных параллельно шине данных на принимающей стороне.

Линия передачи обычно удерживается на высоком уровне напряжения, когда она не передает информацию. Для запуска UART тянет линию передачи от высокого к низкому за один такт. Когда принимающий UART обнаруживает переход от высокого к низкому напряжению, он начинает считывать биты в кадре данных с частотой передачи в бодах.

Технические особенности

Базовая система UART обеспечивает надежную, умеренную скорость, полнодуплексную связь с тремя сигналами: Tx (переданные последовательные данные), Rx (полученные последовательные данные) и земля. В отличие от других протоколов, таких как SPI и I2C, никакого тактового сигнала не требуется, поскольку пользователь предоставляет аппаратному обеспечению UART необходимую информацию о времени.

Типичный сигнал данных в описании UART-интерфейса — это просто напряжение, которое переходит между логическим низким и логическим высоким значением. Приемник может корректно преобразовывать эти логические состояния в цифровые данные только в том случае, если он знает, когда пробовать сигнал. Это можно легко выполнить с использованием отдельного тактового сигнала. Например, передатчик обновляет сигнал данных на каждом фронте фронта, а затем приемник производит выборку данных на каждом заднем фронте.

Ключевые термины

Начальный бит - первый бит однобайтовой передачи. Это указывает на то, что линия данных выходит из состояния бездействия. Состояние бездействия обычно имеет логическую высоту, поэтому стартовый бит является логически низким.

Начальный бит - бит служебной информации. Это означает, что он облегчает связь между приемником и передатчиком, но не передает значимые данные.

Стоповый бит - последний бит однобайтовой передачи. Его логический уровень такой же, как состояние простоя сигнала, то есть логический максимум.

Пошаговая процедура

Чтобы сигнализировать о завершении пакета данных, отправляющий UART подключает линию передачи данных от низкого напряжения к высокому напряжению в течение двух бит продолжительности.

Описание интерфейса UART:

    Передающий UART принимает данные параллельно от шины данных и добавляет начальный бит, бит четности и стоп-бит(-ы) в кадр данных.

    Весь пакет отправляется последовательно от передающего к принимающему UART, который производит выборку линии данных с заранее сконфигурированной скоростью передачи данных.

    Принимающий UART отбрасывает начальный бит, бит четности и стоповый бит из кадра данных, преобразует последовательные данные обратно в параллель, передает их на шину данных на принимающей стороне.

    Преобразует полученные байты с компьютера по параллельным схемам в один последовательный бит-поток для исходящей передачи.

    При входящей передаче преобразует поток последовательного бита в байты, которые обрабатывает компьютер.

    Добавляет бит четности (если он был выбран) исходящих передач, проверяет четность входящих байтов (если выбрано), отбрасывает бит четности.

    Добавляет разделители начала и окончания исходящих, удаляет их из входящих передач.

Преимущества и недостатки

Не является совершенным, но UART довольно хороши в том, что они делают. Вот некоторые плюсы и минусы, которые помогут решить, соответствуют ли они потребностям вашего проекта:

Преимущества:

    Используется только два провода.

    Нет сигнала синхронизации.

    Имеет бит четности для проверки ошибок.

    Структура пакета данных может быть изменена, если для нее настроены обе стороны.

    Хорошо документированный и широко используемый метод.

Недостатки:

    Размер кадра данных ограничен максимумом в 9 бит.

    Не поддерживает нескольких подчиненных или нескольких мастер-систем.

Кроме того, скорость передачи данных каждого UART-интерфейса Arduino должна находиться в пределах 10% друг от друга.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: