Может ли ранг матрицы быть равен нулю. Вычисление ранга матрицы с помощью элементарных преобразований

Пусть задана некоторая матрица :

.

Выделим в этой матрице произвольных строк ипроизвольных столбцов
. Тогда определитель-го порядка, составленный из элементов матрицы
, расположенных на пересечении выделенных строк и столбцов, называется минором-го порядка матрицы
.

Определение 1.13. Рангом матрицы
называется наибольший порядок минора этой матрицы, отличного от нуля.

Для вычисления ранга матрицы следует рассматривать все ее миноры наименьшего порядка и, если хоть один из них отличный от нуля, переходить к рассмотрению миноров старшего порядка. Такой подход к определению ранга матрицы называется методом окаймления (или методом окаймляющих миноров).

Задача 1.4. Методом окаймляющих миноров определить ранг матрицы
.

.

Рассмотрим окаймление первого порядка, например,
. Затем перейдем к рассмотрению некоторого окаймления второго порядка.

Например,
.

Наконец, проанализируем окаймление третьего порядка.

.

Таким образом, наивысший порядок минора, отличного от нуля, равен 2, следовательно,
.

При решении задачи 1.4 можно заметить, что ряд окаймляющих миноров второго порядка отличны от нуля. В этой связи имеет место следующее понятие.

Определение 1.14. Базисным минором матрицы называется всякий, отличный от нуля минор, порядок которого равен рангу матрицы.

Теорема 1.2. (Теорема о базисном миноре). Базисные строки (базисные столбцы) линейно независимы.

Заметим, что строки (столбцы) матрицы линейно зависимы тогда и только тогда, когда хотя бы одну из них можно представить как линейную комбинацию остальных.

Теорема 1.3. Число линейно независимых строк матрицы равно числу линейно независимых столбцов матрицы и равно рангу матрицы.

Теорема 1.4. (Необходимое и достаточное условие равенства нулю определителя). Для того, чтобы определитель-го порядкабыл равен нулю, необходимо и достаточно, чтобы его строки (столбцы) были линейно зависимы.

Вычисление ранга матрицы, основанное на использовании его определения, является слишком громоздкой операцией. Особенно это становится существенным для матриц высоких порядков. В этой связи на практике ранг матрицы вычисляют на основании применения теорем 10.2 - 10.4, а также использования понятий эквивалентности матриц и элементарных преобразований.

Определение 1.15. Две матрицы
иназываются эквивалентными, если их ранги равны, т.е.
.

Если матрицы
иэквивалентны, то отмечают
.

Теорема 1.5. Ранг матрицы не меняется от элементарных преобразований.

Будем называть элементарными преобразованиями матрицы
любые из следующих действий над матрицей:

Замену строк столбцами, а столбцов соответствующими строками;

Перестановку строк матрицы;

Вычеркивание строки, все элементы которой равны нулю;

Умножение какой-либо строки на число, отличное от нуля;

Прибавление к элементам одной строки соответствующих элементов другой строки умноженных на одно и то же число
.

Следствие теоремы 1.5. Если матрица
получена из матрицыпри помощи конечного числа элементарных преобразований, то матрицы
иэквивалентны.

При вычислении ранга матрицы ее следует привести при помощи конечного числа элементарных преобразований к трапециевидной форме.

Определение 1.16. Трапециевидной будем называть такую форму представления матрицы, когда в окаймляющем миноре наибольшего порядка отличного от нуля все элементы, стоящие ниже диагональных, обращаются в нуль. Например:

.

Здесь
, элементы матрицы
обращаются в нуль. Тогда форма представления такой матрицы будет трапециевидной.

Как правило, матрицы к трапециевидной форме приводят при помощи алгоритма Гаусса. Идея алгоритма Гаусса состоит в том, что, умножая элементы первой строки матрицы на соответствующие множители, добиваются, чтобы все элементы первого столбца, расположенные ниже элемента
, превращались бы в нуль. Затем, умножая элементы второго столбца на соответствующие множители, добиваются, чтобы все элементы второго столбца, расположенные ниже элемента
, превращались бы в нуль. Далее поступают аналогично.

Задача 1.5. Определить ранг матрицы путем сведения ее к трапециевидной форме.

.

Для удобства применения алгоритма Гаусса можно поменять местами первую и третью строки.






.

Очевидно, что здесь
. Однако, для приведения результата к более изящному виду можно далее продолжить преобразования над столбцами.








.

Элементарными называются следующие преобразования матрицы:

1) перестановка двух любых строк (или столбцов),

2) умножение строки (или столбца) на отличное от нуля число,

3) прибавление к одной строке (или столбцу) другой строки (или столбца), умноженной на некоторое число.

Две матрицы называются эквивалентными , если одна из них получается из другой с помощью конечного множества элементарных преобразований.

Эквивалентные матрицы не являются, вообще говоря, равными, но их ранги равны. Если матрицы А и В эквивалентны, то это записывается так: A ~ B.

Канонической матрицей называется матрица, у которой в начале главной диагонали стоят подряд несколько единиц (число которых может равняться нулю), а все остальные элементы равны нулю, например,

При помощи элементарных преобразований строк и столбцов любую матрицу можно привести к канонической. Ранг канонической матрицы равен числу единиц на ее главной диагонали.

Пример 2 Найти ранг матрицы

А=

и привести ее к каноническому виду.

Решение. Из второй строки вычтем первую и переставим эти строки:

.

Теперь из второй и третьей строк вычтем первую, умноженную соответственно на 2 и 5:

;

из третьей строки вычтем первую; получим матрицу

В = ,

которая эквивалентна матрице А, так как получена из нее с помощью конечного множества элементарных преобразований. Очевидно, что ранг матрицы В равен 2, а следовательно, и r(A)=2. Матрицу В легко привести к канонической. Вычитая первый столбец, умноженный на подходящие числа, из всех последующих, обратим в нуль все элементы первой строки, кроме первого, причем элементы остальных строк не изменяются. Затем, вычитая второй столбец, умноженный на подходящие числа, из всех последующих, обратим в нуль все элементы второй строки, кроме второго, и получим каноническую матрицу:

.

Теоре́ма Кро́некера - Капе́лли - критерий совместности системы линейных алгебраических уравнений:

Для того чтобы линейная система являлась совместной, необходимо и достаточно, что бы ранг расширенной матрицы этой системы был равен рангу ее основной матрицы.

Доказательство (условия совместности системы)

Необходимость

Пусть система совместна. Тогда существуют числа такие, что . Следовательно, столбец является линейной комбинацией столбцов матрицы . Из того, что ранг матрицы не изменится, если из системы его строк (столбцов) вычеркнуть или приписать строку (столбец), которая является линейной комбинацией других строк (столбцов) следует, что .

Достаточность

Пусть . Возьмем в матрице какой-нибудь базисный минор. Так как , то он же и будет базисным минором и матрицы . Тогда, согласно теореме о базисном миноре , последний столбец матрицы будет линейной комбинацией базисных столбцов, то есть столбцов матрицы . Следовательно, столбец свободных членов системы является линейной комбинацией столбцов матрицы .

Следствия

    Количество главных переменных системы равно рангу системы.

    Совместная система будет определена (её решение единственно), если ранг системы равен числу всех её переменных.

Однородная система уравнений

Предложение 15 . 2 Однородная система уравнений

всегда является совместной.

Доказательство . Для этой системы набор чисел , , , является решением.

В этом разделе мы будем использовать матричную запись системы: .

Предложение 15 . 3 Сумма решений однородной системы линейных уравнений является решением этой системы. Решение, умноженное на число, тоже является решением.

Доказательство . Пусть и служат решениями системы . Тогда и . Пусть . Тогда

Так как , то -- решение.

Пусть -- произвольное число, . Тогда

Так как , то -- решение.

Следствие 15 . 1 Если однородная система линейных уравнений имеет ненулевое решение, то она имеет бесконечно много различных решений.

Действительно, умножая ненулевое решение на различные числа, будем получать различные решения.

Определение 15 . 5 Будем говорить, что решения системы образуют фундаментальную систему решений , если столбцы образуют линейно независимую систему и любое решение системы является линейной комбинацией этих столбцов.

«Если Вы хотите научиться плавать, то смело входите в воду, а если хотите научиться решать задачи , то решайте их
Д. Пойа (1887-1985 г.)

(Математик. Внёс большой вклад в популяризацию математики. Написал несколько книг о том, как решают задачи и как надо учить решать задачи.)

Рассмотрим матрицу

Выделим в ней k-строк и k-столбцов (k≤(min(m,n)) ). Из элементов, стоящих на пересечении выделенных строк и столбцов, составим определитель k-го порядка. Все такие определители называются минорами этой матрицы.

Рассмотрим всевозможные миноры матрицы А , отличные от нуля.

Рангом матрицы А называется наибольший порядок минора этой матрицы, отличного от нуля.

Если все элементы матрицы равны нулю, то ранг этой матрицы принимают равным нулю.

Минор, порядок которого определяет ранг матрицы, называется базисным.

У матрицы может быть несколько базисных миноров.

Ранг матрицы А обозначается r(A) . Если r(A)=r(B) , то матрицы А и В называются эквивалентными. Пишут A̴∼В .

Свойства ранга матрицы:

  1. При транспонировании матрицы ее ранг не меняется.
  2. Если вычеркнуть из матрицы нулевую строку (столбец), то ранг матрицы не изменится.
  3. Ранг матрицы не изменяется при элементарных преобразованиях матрицы.

Под элементарными преобразованиями понимают:

  • Перестановку строк матрицы;
  • Умножение какой-либо строки на число, отличное от нуля;
  • Прибавление к элементам одной строки соответствующих элементов другой строки, умноженной на произвольное число.

При вычислении ранга матрицы могут быть использованы элементарные преобразования, метод приведения матрицы к ступенчатому виду, метод окаймляющих миноров.

Метод приведения матрицы к ступенчатому виду заключается в том, что при помощи элементарных преобразований данная матрица приводится к ступенчатой.

Матрица называется ступенчатой , если в каждой ее строке первый ненулевой элемент стоит правее, чем в предыдущей (т. е. получаются ступеньки, высота каждой ступеньки должна быть равна единице).

Примеры ступенчатых матриц:

Примеры не ступенчатых матриц:

ПРИМЕР: Найти ранг матрицы:

РЕШЕНИЕ:

Приведем данную матрицу к ступенчатой с помощью элементарных преобразований.

1.Поменяем местами первую и третью строки.

2. Получим в первом столбце нули под единицей.

Прибавив ко второй строке первую, умноженную на (-3), к третьей – первую, умноженную на (-5), к четвертой – первую, умноженную на (-3), получим

Для того чтобы было понятней где еще нужно получить нули, нарисуем ступеньки в матрице. (Матрица будет ступенчатой, если везде под ступеньками будут нули)

3. Прибавив к третьей строке вторую, умноженную на (-1), к четвертой – вторую, умноженную на (-1), получим нули под ступеньками во втором столбце.

Если нарисовать опять ступеньки, увидим, что матрица ступенчатая.

Ее ранг равен r=3 (число строк ступенчатой матрицы, в каждой из которых хотя бы один элемент отличен от нуля). Следовательно, ранг данной матрицы r=3.

Решение можно записать так:

(римскими цифрами обозначены номера строк)

Ответ: r=3.

Минор порядка k+1 , содержащий в себе минор порядка k называется окаймляющим минор.

Метод окаймляющих миноров основан на том, что ранг данной матрицы равен порядку такого минора этой матрицы, который отличен от нуля, а все окаймляющие его миноры равны нулю.


Пусть A - матрица размеров m\times n , а k - натуральное число, не превосходящее m и n : k\leqslant\min\{m;n\} . Минором k-го порядка матрицы A называется определитель матрицы k-го порядка, образованной элементами, стоящими на пересечении произвольно выбранных k строк и k столбцов матрицы A . Обозначая миноры, номера выбранных строк будем указывать верхними индексами, а выбранных столбцов - нижними, располагая их по возрастанию.


Пример 3.4. Записать миноры разных порядков матрицы


A=\begin{pmatrix}1&2&1&0\\ 0&2&2&3\\ 1&4&3&3\end{pmatrix}\!.


Решение. Матрица A имеет размеры 3\times4 . Она имеет: 12 миноров 1-го порядка, например, минор M_{{}_2}^{{}_3}=\det(a_{32})=4 ; 18 миноров 2-го порядка, например, M_{{}_{23}}^{{}^{12}}=\begin{vmatrix}2&1\\2&2\end{vmatrix}=2 ; 4 минора 3-го порядка, например,


M_{{}_{134}}^{{}^{123}}= \begin{vmatrix}1&1&0\\0&2&3\\ 1&3&3 \end{vmatrix}=0.

В матрице A размеров m\times n минор r-го порядка называется базисным , если он отличен от нуля, а все миноры (r+1)-ro порядка равны нулю или их вообще не существует.


Рангом матрицы называется порядок базисного минора. В нулевой матрице базисного минора нет. Поэтому ранг нулевой матрицы, по определению полагают равным нулю. Ранг матрицы A обозначается \operatorname{rg}A .


Пример 3.5. Найти все базисные миноры и ранг матрицы


A=\begin{pmatrix}1&2&2&0\\0&2&2&3\\0&0&0&0\end{pmatrix}\!.


Решение. Все миноры третьего порядка данной матрицы равны нулю, так как у этих определителей третья строка нулевая. Поэтому базисным может быть только минор второго порядка, расположенный в первых двух строках матрицы. Перебирая 6 возможных миноров, отбираем отличные от нуля


M_{{}_{12}}^{{}^{12}}= M_{{}_{13}}^{{}^{12}}= \begin{vmatrix}1&2\\0&2 \end{vmatrix}\!,\quad M_{{}_{24}}^{{}^{12}}= M_{{}_{34}}^{{}^{12}}= \begin{vmatrix}2&0\\2&3\end{vmatrix}\!,\quad M_{{}_{14}}^{{}^{12}}= \begin{vmatrix}1&0\\0&3\end{vmatrix}\!.


Каждый из этих пяти миноров является базисным. Следовательно, ранг матрицы равен 2.

Замечания 3.2


1. Если в матрице все миноры k-го порядка равны нулю, то равны нулю и миноры более высокого порядка. Действительно, раскладывая минор (k+1)-ro порядка по любой строке, получаем сумму произведений элементов этой строки на миноры k-го порядка, а они равны нулю.


2. Ранг матрицы равен наибольшему порядку отличного от нуля минора этой матрицы.


3. Если квадратная матрица невырожденная, то ее ранг равен ее порядку. Если квадратная матрица вырожденная, то ее ранг меньше ее порядка.


4. Для ранга применяются также обозначения \operatorname{Rg}A,~ \operatorname{rang}A,~ \operatorname{rank}A .


5. Ранг блочной матрицы определяется как ранг обычной (числовой) матрицы, т.е. не обращая внимания на ее блочную структуру. При этом ранг блочной матрицы не меньше рангов ее блоков: \operatorname{rg}(A\mid B)\geqslant\operatorname{rg}A и \operatorname{rg}(A\mid B)\geqslant\operatorname{rg}B , поскольку все миноры матрицы A (или B ) являются также минорами блочной матрицы (A\mid B) .

Теоремы о базисном миноре и о ранге матрицы

Рассмотрим основные теоремы, выражающие свойства линейной зависимости и линейной независимости столбцов (строк) матрицы.


Теорема 3.1 о базисном миноре. В произвольной матрице A каждый столбец {строка) является линейной комбинацией столбцов (строк), в которых расположен базисный минор.


Действительно, без ограничения общности предполагаем, что в матрице A размеров m\times n базисный минор расположен в первых r строках и первых r столбцах. Рассмотрим определитель


D=\begin{vmatrix}~ a_{11}&\cdots&a_{1r}\!\!&\vline\!\!&a_{1k}~\\ ~\vdots&\ddots &\vdots\!\!&\vline\!\!&\vdots~\\ ~a_{r1}&\cdots&a_{rr}\!\!&\vline\!\!&a_{rk}~\\\hline ~a_{s1}&\cdots&a_{sr}\!\!&\vline\!\!&a_{sk}~\end{vmatrix},


который получен приписыванием к базисному минору матрицы A соответствующих элементов s-й строки и k-го столбца. Отметим, что при любых 1\leqslant s\leqslant m и этот определитель равен нулю. Если s\leqslant r или k\leqslant r , то определитель D содержит две одинаковых строки или два одинаковых столбца. Если же s>r и k>r , то определитель D равен нулю, так как является минором (r+l)-ro порядка. Раскладывая определитель по последней строке, получаем


a_{s1}\cdot D_{r+11}+\ldots+ a_{sr}\cdot D_{r+1r}+a_{sk}\cdot D_{r+1\,r+1}=0,


где D_{r+1\,j} - алгебраические дополнения элементов последней строки. Заметим, что D_{r+1\,r+1}\ne0 , так как это базисный минор. Поэтому


a_{sk}=\lambda_1\cdot a_{s1}+\ldots+\lambda_r\cdot a_{sr} , где \lambda_j=-\frac{D_{r+1\,j}}{D_{r+1\,r+1}},~j=1,2,\ldots,r.


Записывая последнее равенство для s=1,2,\ldots,m , получаем

\begin{pmatrix}a_{1k}\\\vdots\\a_{mk}\end{pmatrix}= \lambda_1\cdot\! \begin{pmatrix}a_{11}\\\vdots\\a_{m1}\end{pmatrix}+\ldots \lambda_r\cdot\! \begin{pmatrix}a_{1r}\\\vdots\\a_{mr}\end{pmatrix}\!.


т.е. k -й столбец (при любом 1\leqslant k\leqslant n ) есть линейная комбинация столбцов базисного минора, что и требовалось доказать.


Теорема о базисном миноре служит для доказательства следующих важных теорем.

Условие равенства нулю определителя

Теорема 3.2 (необходимое и достаточное условие равенства нулю определителя). Для того чтобы определитель был равен нулю необходимо и достаточно, чтобы один из его столбцов {одна из его строк) был линейной комбинацией остальных столбцов (строк).


В самом деле, необходимость следует из теоремы о базисном миноре. Если определитель квадратной матрицы n-го порядка равен нулю, то ее ранг меньше n , т.е. хотя бы один столбец не входит в базисный минор. Тогда этот выбранный столбец по теореме 3.1 является линейной комбинацией столбцов, в которых расположен базисный минор. Добавляя, при необходимости, к этой комбинации другие столбцы с нулевыми коэффициентами, получаем, что выбранный столбец есть линейная комбинация остальных столбцов матрицы. Достаточность следует из свойств определителя. Если, например, последний столбец A_n определителя \det(A_1~A_2~\cdots~A_n) линейно выражается через остальные


A_n=\lambda_1\cdot A_1+\lambda_2\cdot A_2+\ldots+\lambda_{n-1}\cdot A_{n-1},


то прибавляя к A_n столбец A_1 , умноженный на (-\lambda_1) , затем столбец A_2 , умноженный на (-\lambda_2) , и т.д. столбец A_{n-1} , умноженный на (-\lambda_{n-1}) , получим определитель \det(A_1~\cdots~A_{n-1}~o) с нулевым столбцом, который равен нулю (свойство 2 определителя).

Инвариантность ранга матрицы при элементарных преобразованиях

Теорема 3.3 (об инвариантности ранга при элементарных преобразованиях). При элементарных преобразованиях столбцов (строк) матрицы ее ранг не меняется.


Действительно, пусть . Предположим, что в результате одного элементарного преобразования столбцов матрицы A получили матрицу A" . Если было выполнено преобразование I типа (перестановка двух столбцов), то любой минор (r+l)-ro порядка матрицы A" либо равен соответствующему минору (r+l)-ro порядка матрицы A , либо отличается от него знаком (свойство 3 определителя). Если было выполнено преобразование II типа (умножение столбца на число \lambda\ne0 ), то любой минор (г+l)-ro порядка матрицы A" либо равен соответствующему минору (r+l)-ro порядка матрицы A , либо отличается от него множителем \lambda\ne0 (свойство 6 определителя). Если было выполнено преобразование III типа (прибавление к одному столбцу другого столбца, умноженного на число \Lambda ), то любой минор (г+1)-го порядка матрицы A" либо равен соответствующему минору (г+1) -го порядка матрицы A (свойство 9 определителя), либо равен сумме двух миноров (r+l)-ro порядка матрицы A (свойство 8 определителя). Поэтому при элементарном преобразовании любого типа все миноры (r+l)-ro порядка матрицы A" равны нулю, так как равны нулю все миноры (г+l)-ro порядка матрицы A . Таким образом, доказано, что при элементарных преобразованиях столбцов ранг матрицы не может увеличиться. Так как преобразования, обратные к элементарным, являются элементарными, то ранг матрицы при элементарных преобразованиях столбцов не может и уменьшиться, т.е. не изменяется. Аналогично доказывается, что ранг матрицы не изменяется при элементарных преобразованиях строк.


Следствие 1. Если одна строка (столбец) матрицы является линейной комбинацией других ее строк (столбцов), то эту строку (столбец) можно вычеркнуть из матрицы, не изменив при этом ее ранга.


Действительно, такую строку при помощи элементарных преобразований можно сделать нулевой, а нулевая строка не может входить в базисный минор.


Следствие 2. Если матрица приведена к простейшему виду (1.7), то


\operatorname{rg}A=\operatorname{rg}\Lambda=r\,.


Действительно, матрица простейшего вида (1.7) имеет базисный минор r-го порядка.


Следствие 3. Любая невырожденная квадратная матрица является элементарной, другими словами, любая невырожденная квадратная матрица эквивалентна единичной матрице того же порядка.


Действительно, если A - невырожденная квадратная матрица n-го порядка, то \operatorname{rg}A=n (см. п.З замечаний 3.2). Поэтому, приводя элементарными преобразованиями матрицу A к простейшему виду (1.7), получим единичную матрицу \Lambda=E_n , так как \operatorname{rg}A=\operatorname{rg}\Lambda=n (см. следствие 2). Следовательно, матрица A эквивалентна единичной матрице E_n и может быть получена из нее в результате конечного числа элементарных преобразований. Это означает, что матрица A элементарная.

Теорема 3.4 (о ранге матрицы). Ранг матрицы равен максимальному числу линейно независимых строк этой матрицы.


В самом деле, пусть \operatorname{rg}A=r . Тогда в матрице A имеется r линейно независимых строк. Это строки, в которых расположен базисный минор. Если бы они были линейно зависимы, то этот минор был бы равен нулю по теореме 3.2, а ранг матрицы A не равнялся бы r . Покажем, что r - максимальное число линейно независимых строк, т.е. любые p строк линейно зависимы при p>r . Действительно, образуем из этих p строк матрицу B . Поскольку матрица B - это часть матрицы A , то \operatorname{rg}B\leqslant \operatorname{rg}A=r

Значит, хотя бы одна строка матрицы B не входит в базисный минор этой матрицы. Тогда по теореме о базисном миноре она равна линейной комбинации строк, в которых расположен базисный минор. Следовательно, строки матрицы B линейно зависимы. Таким образом, в матрице A не более, чем r линейно независимых строк.


Следствие 1. Максимальное число линейно независимых строк в матрице равно максимальному числу линейно независимых столбцов:


\operatorname{rg}A=\operatorname{rg}A^T.


Это утверждение вытекает из теоремы 3.4, если ее применить к строкам транспонированной матрицы и учесть, что при транспонировании миноры не изменяются (свойство 1 определителя).


Следствие 2. При элементарных преобразованиях строк матрицы линейная зависимость (или линейная независимость) любой системы столбцов этой матрицы сохраняется.


В самом деле, выберем любые k столбцов данной матрицы A и составим из них матрицу B . Пусть в результате элементарных преобразований строк матрицы A была получена матрица A" , а в результате тех же преобразований строк матрицы B была получена матрица B" . По теореме 3.3 \operatorname{rg}B"=\operatorname{rg}B . Следовательно, если столбцы матрицы B были линейно независимы, т.е. k=\operatorname{rg}B (см. следствие 1), то и столбцы матрицы B" также линейно независимы, так как k=\operatorname{rg}B" . Если столбцы матрицы B были линейно зависимы (k>\operatorname{rg}B) , то и столбцы матрицы B" также линейно зависимы (k>\operatorname{rg}B") . Следовательно, для любых столбцов матрицы A линейная зависимость или линейная независимость сохраняется при элементарных преобразованиях строк.


Замечания 3.3


1. В силу следствия 1 теоремы 3.4 свойство столбцов, указанное в следствии 2, справедливо и для любой системы строк матрицы, если элементарные преобразования выполняются только над ее столбцами.


2. Следствие 3 теоремы 3.3 можно уточнить следующим образом: любую невырожденную квадратную матрицу, используя элементарные преобразования только ее строк (либо только ее столбцов), можно привести к единичной матрице того же порядка.


В самом деле, используя только элементарные преобразования строк, любую матрицу A можно привести к упрощенному виду \Lambda (рис. 1.5) (см. теорему 1.1). Поскольку матрица A невырожденная (\det{A}\ne0) , то ее столбцы линейно независимы. Значит, столбцы матрицы \Lambda также линейно независимы (следствие 2 теоремы 3.4). Поэтому упрощенный вид \Lambda невырожденной матрицы A совпадает с ее простейшим видом (рис. 1.6) и представляет собой единичную матрицу \Lambda=E (см. следствие 3 теоремы 3.3). Таким образом, преобразовывая только строки невырожденной матрицы, ее можно привести к единичной. Аналогичные рассуждения справедливы и для элементарных преобразований столбцов невырожденной матрицы.

Ранге произведения и суммы матриц

Теорема 3.5 (о ранге произведения матриц). Ранг произведения матриц не превышает ранга множителей:


\operatorname{rg}(A\cdot B)\leqslant \min\{\operatorname{rg}A,\operatorname{rg}B\}.


В самом деле, пусть матрицы A и B имеют размеры m\times p и p\times n . Припишем к матрице A матрицу C=AB\colon\,(A\mid C) . Разумеется, что \operatorname{rg}C\leqslant\operatorname{rg}(A\mid C) , так как C - это часть матрицы (A\mid C) (см. п.5 замечаний 3.2). Заметим, что каждый столбец C_j , согласно операции умножения матриц, является линейной комбинацией столбцов A_1,A_2,\ldots,A_p матрицы A=(A_1~\cdots~A_p):


C_{j}=A_1\cdot b_{1j}+A_2\cdot b_{2j}+\ldots+A_{p}\cdot b_pj},\quad j=1,2,\ldots,n.


Такой столбец можно вычеркнуть из матрицы (A\mid C) , при этом ее ранг не изменится (следствие 1 теоремы 3.3). Вычеркивая все столбцы матрицы C , получаем: \operatorname{rg}(A\mid C)=\operatorname{rg}A . Отсюда, \operatorname{rg}C\leqslant\operatorname{rg}(A\mid C)=\operatorname{rg}A . Аналогично можно доказать, что одновременно выполняется условие \operatorname{rg}C\leqslant\operatorname{rg}B , и сделать вывод о справедливости теоремы.


Следствие. Если A невырожденная квадратная матрица, то \operatorname{rg}(AB)= \operatorname{rg}B и \operatorname{rg}(CA)=\operatorname{rg}C , т.е. ранг матрицы не изменяется приумножении ее слева или справа на невырожденную квадратную матрицу.


Теорема 3.6 о ранге суммы матриц. Ранг суммы матриц не превышает суммы рангов слагаемых:


\operatorname{rg}(A+B)\leqslant \operatorname{rg}A+\operatorname{rg}B.


Действительно, составим матрицу (A+B\mid A\mid B) . Заметим, что каждый столбец матрицы A+B есть линейная комбинация столбцов матриц A и B . Поэтому \operatorname{rg}(A+B\mid A\mid B)= \operatorname{rg}(A\mid B) . Учитывая, что количество линейно независимых столбцов в матрице (A\mid B) не превосходит \operatorname{rg}A+\operatorname{rg}B , a \operatorname{rg}(A+B)\leqslant \operatorname{rg}(A+B\mid A\mid B) (см. п.5 замечаний 3.2), получаем доказываемое неравенство.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: