Метод ветвей и границ маткад. Решение задачи коммивояжера с помощью метода ветвей и границ. Общий план решения задачи коммивояжера

Снова напомним ситуацию, которая была названа схемой Бернулли: производится n независимых испытаний, в каждом из которых некоторое событие А может появиться с одной и той же вероятностью р . Тогда для определения вероятности того, что в этих n испытаниях событие А появится ровно k раз (такая вероятность обозначалась P n (k ) ) может быть точно вычислена по формуле Бернулли , гдеq =1− p . Однако при большом числе испытаний n расчеты по формуле Бернулли становятся очень неудобными, так как приводят к действиям с очень большими числами. Поэтому (если помните это когда-то проходилось при изучении схемы и формулы Бернулли при изучении первой части теории вероятностей «Случайные события») при больших n предлагались значительно более удобные (хотя и приближенные) формулы, которые оказывались тем точнее, чем больше n (формула Пуассона, локальная и интегральная формула Муавра-Лапласа). Если в схеме Бернулли число опытов n велико, а вероятность р появления события А в каждом испытании мала, то хорошее приближение дает упомянутая формула Пуассона
, где параметра = n p . Эта формула и приводит к распределению Пуассона. Дадим точные определения

Дискретная случайная величина Х имеет распределение Пуассона , если она принимает значения 0, 1, 2, ... с вероятностями р 0 , р 1 , ... , которые вычисляются по формуле

а число а является параметром распределения Пуассона. Обращаем внимание, что возможных значений с.в. Х бесконечно много это все целые неотрицательные числа. Таким образом, д.с.в Х с распределением Пуассона имеет следующий закон распределения:

При вычислении математического ожидания (по их определению для д.с.в. с известным законом распределения) придется теперь считать не конечные суммы, а суммы соответствующих бесконечных рядов (так как таблица закона распределения имеет бесконечно много столбцов). Если же посчитать суммы этих рядов, то окажется, что и математическое ожидание, и дисперсия случайной величины Х с распределением Пуассона совпадает с параметром а этого распределения:

,
.

Найдем моду d (X ) распределенной по Пуассону случайной величины Х . Применим тот же самый прием, что был использован для вычисления моды биномиально распределенной случайной величины. По определению моды d (X )= k , если вероятность
наибольшая среди всех вероятностей р 0 , р 1 , ... . Найдем такое число k (это целое неотрицательное число). При таком k вероятность p k должна быть не меньше соседних с ней вероятностей: p k −1 p k p k +1 . Подставив вместо каждой вероятности соответствующую формулу, получим, что число k должно удовлетворять двойному неравенству:

.

Если расписать формулы для факториалов и провести простые преобразования, можно получить, что левое неравенство дает k ≤ а , а правое k ≥ а −1 . Таким образом, число k удовлетворяет двойному неравенству а −1 ≤ k ≤ а , т.е. принадлежит отрезку [а −1, а ] . Поскольку длина этого отрезка, очевидно, равна 1 , то в него может попасть либо одно, либо 2 целых числа. Если число а целое, то в отрезке [а −1, а ] имеется 2 целых числа, лежащих на концах отрезка. Если же число а не целое, то в этом отрезке есть только одно целое число.

Таким образом, если число а целое, то мода распределенной по Пуассону случайной величины Х принимает 2 соседних значения: d (X )=а−1 и d (X )=а . Если же число а не целое, то мода имеет одно значение d (X )= k , где k есть единственное целое число, удовлетворяющее неравенству а −1 ≤ k ≤ а , т.е. d (X )= [а ] .

Пример . Завод отправил на базу 5000 изделий. Вероятность того, что в пути изделие повредится, равно 0.0002 . Какова вероятность, что повредится 18 изделий? Каково среднее значение поврежденных изделий? Каково наивероятнейшее число поврежденных изделий и какова его вероятность?

Рассмотрим распределение Пуассона, вычислим его математическое ожидание, дисперсию, моду. С помощью функции MS EXCEL ПУАССОН.РАСП() построим графики функции распределения и плотности вероятности. Произведем оценку параметра распределения, его математического ожидания и стандартного отклонения.

Сначала дадим сухое формальное определение распределения, затем приведем примеры ситуаций, когда распределение Пуассона (англ. Poisson distribution ) является адекватной моделью для описания случайной величины.

Если случайные события происходят в заданный период времени (или в определенном объеме вещества) со средней частотой λ(лямбда ), то число событий x , произошедших за этот период времени, будет иметь распределение Пуассона .

Применение распределения Пуассона

Примеры, когда Распределение Пуассона является адекватной моделью:

  • число вызовов, поступивших на телефонную станцию за определенный период времени;
  • число частиц, подвергнувшихся радиоактивному распаду за определенный период времени;
  • число дефектов в куске ткани фиксированной длины.

Распределение Пуассона является адекватной моделью, если выполняются следующие условия:

  • события происходят независимо друг от друга, т.е. вероятность последующего события не зависит от предыдущего;
  • средняя частота событий постоянна. Как следствие, вероятность события пропорциональна длине интервала наблюдения;
  • два события не могут произойти одновременно;
  • число событий должно принимать значения 0; 1; 2…

Примечание : Хорошей подсказкой, что наблюдаемая случайная величина имеет распределение Пуассона, является тот факт, что приблизительно равно (см. ниже).

Ниже представлены примеры ситуаций, когда Распределение Пуассона не может быть применено:

  • число студентов, которые выходят из университета в течение часа (т.к. средний поток студентов не постоянен: во время занятий студентов мало, а в перерыве между занятиями число студентов резко возрастает);
  • число землетрясений амплитудой 5 баллов в год в Калифорнии (т.к. одно землетрясение может вызвать повторные толчки сходной амплитуды – события не независимы);
  • число дней, которые пациенты проводят в отделении интенсивной терапии (т.к. число дней, которое пациенты проводят в отделении интенсивной терапии всегда больше 0).

Примечание : Распределение Пуассона является приближением более точных дискретных распределений: и .

Примечание : О взаимосвязи распределения Пуассона и Биномиального распределения можно прочитать в статье . О взаимосвязи распределения Пуассона и Экспоненциального распределения можно прочитать в статье про .

Распределение Пуассона в MS EXCEL

В MS EXCEL, начиная с версии 2010, для Распределения Пуассона имеется функция ПУАССОН.РАСП() , английское название - POISSON.DIST(), которая позволяет вычислить не только вероятность того, что за заданный период времени произойдет х событий (функцию плотности вероятности p(x), см. формулу выше), но и (вероятность того, что за заданный период времени произойдет не меньше x событий).

До MS EXCEL 2010 в EXCEL была функция ПУАССОН() , которая также позволяет вычислить функцию распределения и плотность вероятности p(x). ПУАССОН() оставлена в MS EXCEL 2010 для совместимости.

В файле примера приведены графики плотности распределения вероятности и интегральной функции распределения .

Распределение Пуассона имеет скошенную форму (длинный хвост справа у функции вероятности), но при увеличении параметра λ становится все более симметричным.

Примечание : Среднее и дисперсия (квадрат ) равны параметру распределения Пуассона – λ (см. файл примера лист Пример ).

Задача

Типичным применением Распределения Пуассона в контроле качества является модель количества дефектов, которые могут появиться в приборе или устройстве.

Например, при среднем количестве дефектов в микросхеме λ (лямбда) равном 4, вероятность, что случайно выбранная микросхема будет иметь 2 или меньше дефектов, равна: =ПУАССОН.РАСП(2;4;ИСТИНА)=0,2381

Третий параметр в функции установлен = ИСТИНА, поэтому функция вернет интегральную функцию распределения , то есть вероятность того, что число случайных событий окажется в диапазоне от 0 до 4 включительно.

Вычисления в этом случае производятся по формуле:

Вероятность того, что случайно выбранная микросхема будет иметь ровно 2 дефекта, равна: =ПУАССОН.РАСП(2;4;ЛОЖЬ)=0,1465

Третий параметр в функции установлен = ЛОЖЬ, поэтому функция вернет плотность вероятности.

Вероятность того, что случайно выбранная микросхема будет иметь больше 2-х дефектов, равна: =1-ПУАССОН.РАСП(2;4;ИСТИНА) =0,8535

Примечание : Если x не является целым числом, то при вычислении формулы . Формулы =ПУАССОН.РАСП(2 ; 4; ЛОЖЬ) и =ПУАССОН.РАСП(2,9 ; 4; ЛОЖЬ) вернут одинаковый результат.

Генерация случайных чисел и оценка λ

При значениях λ>15 , Распределение Пуассона хорошо аппроксимируется Нормальным распределением со следующими параметрами: μ, σ 2 .

Подробнее о связи этих распределений, можно прочитать в статье . Там же приведены примеры аппроксимации, и пояснены условия, когда она возможна и с какой точностью.

СОВЕТ : О других распределениях MS EXCEL можно прочитать в статье .

Краткая теория

Пусть производится независимых испытаний, в каждом из которых вероятность появления события равна . Для определения вероятности появлений события в этих испытаниях используют формулу Бернулли . Если же велико, то пользуются или . Однако эта формула непригодна, если мала. В этих случаях ( велико, мало) прибегают к асимптотической формуле Пуассона .

Поставим перед собой задачу найти вероятность того, что при очень большом числе испытаний, в каждом из которых вероятность события очень мала, событие наступит ровно раз. Сделаем важное допущение: произведение сохраняет постоянное значение, а именно . Это означает, что среднее число появления события в различных сериях испытаний, т.е. при различных значениях , остается неизменным.

Пример решения задачи

Задача 1

На базе получено 10000 электроламп. Вероятность того, что в пути лампа разобьется, равна 0,0003. Найдите вероятность того, что среди полученных ламп будет пять ламп разбито.

Решение

Условие применимости формулы Пуассона:

Если вероятность появления события в отдельном испытании достаточно близка к нулю, то даже при больших значениях количества испытаний вероятность, вычисляемая по локальной теореме Лапласа, оказывается недостаточно точной. В таких случаях используют формулу, выведенную Пуассоном.

Пусть событие – 5 ламп будет разбито

Воспользуемся формулой Пуассона:

В нашем случае:

Ответ

Задача 2

На предприятии 1000 единиц оборудования определенного вида. Вероятность отказа единицы оборудования в течение часа составляет 0,001. Составить закон распределения числа отказов оборудования в течение часа. Найти числовые характеристики.

Решение

Случайная величина – число отказов оборудования, может принимать значения

Воспользуемся законом Пуассона:

Найдем эти вероятности:

.

Математическое ожидание и дисперсия случайной величины, распределенной по закону Пуассона равна параметру этого распределения:

Средняя стоимость решения контрольной работы 700 - 1200 рублей (но не менее 300 руб. за весь заказ). На цену сильно влияет срочность решения (от суток до нескольких часов). Стоимость онлайн-помощи на экзамене/зачете - от 1000 руб. за решение билета.

Заявку можно оставить прямо в чате, предварительно скинув условие задач и сообщив необходимые вам сроки решения. Время ответа - несколько минут.


Введение

Большой класс прикладных задач оптимизации сводится к задачам целочисленного программирования. Для решения этих задач широко применяются комбинаторные методы, основанные на упорядоченном переборе наиболее перспективных вариантов. Комбинаторные методы решения можно разделить на две группы: методы динамического программирования и методы ветвей и границ.

При решении многомерных задач оптимизации предлагается совместное применение методов ветвей и границ и динамического программирования. На первом этапе задача решается методом динамического программирования отдельно по каждому из ограничений. Последовательности, полученные в результате решения функционального уравнения динамического программирования, в дальнейшем используется для оценки верхней (нижней) границы целевой функции. На втором этапе задача решается методом ветвей и границ. При использовании этого метода определяется способ разбиения всего множества допустимых вариантов на подмножества, то есть способ построения дерева возможных вариантов, и способ оценки верхней границы целевой функции.

Комплексное применение методов динамического программирования и ветвей и границ позволяет повысить эффективность решения дискретных задач оптимизации. При решении задач большой размерности с целью уменьшения членов оптимальной последовательности используются дополнительные условия отсечения.

1. Историческая справка

Впервые метод ветвей и границ был предложен Лендом и Дойгом в 1960 для решения общей задачи целочисленного линейного программирования. Интерес к этому методу и фактически его «второе рождение» связано с работой Литтла, Мурти, Суини и Кэрела, посвященной задаче коммивояжера. Начиная с этого момента, появилось большое число работ, посвященных методу ветвей и границ и различным его модификациям. Столь большой успех объясняется тем, что авторы первыми обратили внимание на широту возможностей метода, отметили важность использования специфики задачи и сами воспользовались спецификой задачи коммивояжера.

Этот метод является наиболее общим среди всех методов дискретного программирования и не имеет принципиальных ограничений по применению. Алгоритм метода ветвей и границ представляет собой эффективную процедуру перебора всех целочисленных допустимых решений.

Метод ветвей и границ - один из комбинаторных методов. Его суть заключается в упорядоченном переборе вариантов и рассмотрении лишь тех из них, которые оказываются по определенным признакам перспективными, и отбрасывании бесперспективных вариантов.

2. Описание метода

В основе метода ветвей и границ лежит идея последовательного разбиения множества допустимых решений на подмножества. На каждом шаге метода элементы разбиения подвергаются проверке для выяснения, содержит данное подмножество оптимальное решение или нет. Проверка осуществляется посредством вычисления оценки снизу для целевой функции на данном подмножестве. Если оценка снизу не меньше рекорда - наилучшего из найденных решений, то подмножество может быть отброшено. Проверяемое подмножество может быть отброшено еще и в том случае, когда в нем удается найти наилучшее решение. Если значение целевой функции на найденном решении меньше рекорда, то происходит смена рекорда. По окончанию работы алгоритма рекорд является результатом его работы.

Если удается отбросить все элементы разбиения, то рекорд - оптимальное решение задачи. В противном случае, из неотброшенных подмножеств выбирается наиболее перспективное (например, с наименьшим значением нижней оценки), и оно подвергается разбиению. Новые подмножества вновь подвергаются проверке и т.д.

При применении метода ветвей и границ к каждой конкретной задаче в первую очередь должны быть определены две важнейшие его процедуры: 1) ветвления множества возможных решений; 2) вычисления нижних и верхних оценок целевой функции.

2.1 Правила ветвления

В зависимости от особенностей задачи для организации ветвления обычно используется один из двух способов:

1. ветвление множества допустимых решений исходной задачи D;

2. ветвление множества D" получаемого из D путем снятия условия целочисленности на переменные.

Первый способ ветвления обычно применяется для задач целочисленного программирования и заключается в выделении подобластей возможных решений путем фиксации значений отдельных компонент целочисленных оптимизационных переменных (рис. 1). На рис. 1-а дана геометрическая интерпретация области допустимых решений задачи целочисленного программирования, определяемой двумя линейными ограничениями и условиями неотрицательности переменных, и образующихся при ветвлении подобластей, а на рис. 1-б показана соответствующая схема ветвления.

Второй способ ветвления - более универсальный, чем первый. Для осуществления ветвления некоторой области D i " этим способом на D i " решается оптимизационная задача с целевой функцией исходной задачи и действительными переменными.

Ветвление осуществляется, если в оптимальном решении значение хотя бы одной целочисленной по исходной постановке задача переменной не является целочисленным. Среди этих переменных выбирается одна, например j - я. Обозначим ее значение в найденном оптимальном решении x 0 [j]. Говорят, что ветвление осуществляется по переменной x[j]. Область D i " разделяется на две подобласти D i1 " и D i2 " следующим образом:

где ] - целая часть значения x 0 [j]

На рис. 2 условно дана геометрическая интерпретация такого ветвления.

Рис. 2. Геометрическая интерпретация ветвления

Видно, что при этом из области D i " удаляется часть между плоскостями вновь введенных ограничений. Так как переменная x[j] по условиям области допустимых решений исходной задачи - целочисленная, то из подобласти допустимых решений исходной задачи. D i (D i D i ") при таком изъятии не исключается ни одного решения.

2.2 Формирование нижних и верхних оценок целевой функции

Прежде чем начать обсуждение данного вопроса, необходимо сказать, что общепринятым является применение метода ветвей и границ для задачи, в которой направление оптимизации приведено к виду минимизации. Для компактности дальнейших обозначений и выкладок запишем задачу дискретного программирования, для которой будем применять метод ветвей и границ, в следующей обобщенной форме:

где х - вектор оптимизационных переменных, среди которых часть действительных, а часть целочисленных; f(x) - в общем случае нелинейная целевая функция; D - область допустимых решений задачи дискретного программирования общего вида.

Нижние оценки целевой дикции в зависимости от выбранного способа ветвления могут определяться либо для подобластей D i D либо для подобластей D i " D" (D i " и D" получены из соответствующих множеств D i и D путем снятия условий целочисленности на дискретные переменные).
Нижней оценкой целевой функции f(x) на множестве D i (или D i ") будем называть величину:

Вычисление нижних оценок в каждом конкретном случае может осуществляться с учетом особенностей решаемой задачи. При этом чтобы оценки наиболее эффективно, выполняли свою функцию, они должны быть как можно большими, т.е. быть как можно ближе к действительным значениям min f(x). Это необходимо в первую очередь для того, чтобы нижние оценки как можно точнее отражали действительное соотношение min f(x) на образовавшихся при ветвлении подмножествах и позволяли более точно определять направление дальнейшего поиска оптимального решения исходной задачи.

На рис. 3 показан такой идеальный случай, когда нижние оценки (соединены ломаной штрихпунктирной линией) правильно отражают соотношения между действительными минимальными значениями f(x) (соединены штриховой линией) для четырех подмножеств допустимых решений D 1 , D 2 , D 3 , D 4 .

Один из универсальных способов вычисления нижних оценок заключается в решении следующей задачи:

Определенная таким образом о i является нижней оценкой f(x) на D i (или D i "), так как D i D i ".

Если при решении задачи (4) установлено, что, то для общности будем полагать, что.

Необходимо отметить одно важное свойство нижних оценок, заключающееся в том, что их значения для образовавшихся при ветвлении подмножеств не могут быть меньше нижней оценки целевой функции на множестве, подвергавшемся ветвлению.

Совместно с нижней оценкой в методе ветвей и границ используются верхние оценки f(x). Как правило, вычисляют лишь одно значение верхней оценки, которую определяют как значение целевой функции для лучшего найденного допустимого решения исходной задачи. Такую верхнюю оценку иногда называют рекордом. Если же можно для решаемой задачи достаточно просто и точно получить верхние оценки f(x) для отдельных множеств, образующихся при ветвлении, то их необходимо использовать в методе для уменьшения вычислительной сложности процесса решения. При использовании единой верхней оценки ее первоначальное значение обычно полагают равным бесконечности (), если, конечно, из априорных соображений не известно ни одного допустимого решения исходной задачи. При нахождении первого допустимого решения:

Затем при определении более лучшего допустимого решения верхнюю оценку корректируют:

Таким образом, значение верхней оценки может лишь уменьшаться в процессе решения задачи.

2.3 Алгоритм метода ветвей и границ

Основные правила алгоритма могут быть сформулированы следующим образом:

1. Ветвлению в первую очередь подвергается подмножество с номером, которому соответствует наименьшее значение нижней оценки целевой функции (I - это множество номеров всех подмножеств, (или), находящихся на концах ветвей и ветвление которых еще не прекращено). Если реализуется изложенный выше способ ветвления множеств, то может возникнуть неоднозначность относительно выбора компоненты, по которой необходимо осуществлять очередной шаг ветвления. К сожалению, вопрос о «наилучшем» способе такого выбора с общих позиций пока не решен, и поэтому в конкретных задачах используются некоторые эвристические правила.

2. Если для некоторого i-го подмножества выполняется условие, то ветвление его необходимо прекратить, так как потенциальные возможности нахождения хорошего решения в этом подмножестве (их характеризует) оказываются хуже, чем значение целевой функции для реального, найденного к данному моменту времени, допустимого решения исходной задачи (оно характеризует).

3. Ветвление подмножества прекращается, если найденное в задаче (4) оптимальное решение. Обосновывается это тем, что, и, следовательно, лучшего допустимого решения, чем в этом подмножестве не существует. В этом случае рассматривается возможность корректировки.

4. Если, где, то выполняются условия оптимальности для найденного к этому моменту лучшего допустимого решения. Обоснование такое же, как и пункта 2 настоящих правил.

5. После нахождения хотя бы одного допустимого решения исходной задачи может быть рассмотрена возможность остановки работы алгоритма с оценкой близости лучшего из полученных допустимых решений к оптимальному (по значению целевой функции):

2.4 Решение задачи методом ветвей и границ

Целые .

Первоначально находим симплексным методом или методом искусственного базиса оптимальный план задачи без учета целочисленности переменных.

Если среди компонент этого плана нет дробных чисел, то тем самым найдено искомое решение данной задачи.

Если среди компонент плана имеются дробные числа, то необходимо осуществить переход к новым планам, пока не будет найдено решение задачи.

Метод ветвей и границ основан на предположении, что наш оптимальный нецелочисленный план дает значение функции, большее, чем всякий последующий план перехода.

Пусть переменная в плане - дробное число. Тогда в оптимальном плане ее значение будет по крайней мере либо меньше или равно ближайшему меньшему целому числу, либо больше или равно ближайшему большему целому числу.

Определяя эти числа, находим симплексным методом решение двух задач линейного программирования

- целые .

Целые .

Возможны четыре случая при решении этой пары задач:

1. Одна из задач неразрешима, а другая имеет целочисленный оптимальный план. Тогда этот план и значение целевой функции дают решение исходной задачи.

2. Одна из задач неразрешима, а другая имеет нецелочисленный оптимальный план. Тогда рассматриваем вторую задачу и в ее оптимальном плане выбираем одну из компонент, значение которой равно дробному числу и строим две задачи, аналогичные предыдущим.

3. Обе задачи разрешимы. Одна из задач имеет оптимальный целочисленный план, а в оптимальном плане другой задачи есть дробные числа. Тогда вычисляем значения целевой функции от планов и сравниваем их между собой. Если на целочисленном оптимальном плане значение целевой функции больше или равно ее значению на плане, среди компонент которого есть дробные числа, то данный целочисленный план является оптимальным для исходной задачи и дает искомое решение.

4. Обе задачи разрешимы, и среди оптимальных планов обеих задач есть дробные числа. Тогда рассматриваем ту из задач, для которой значение целевой функции является наибольшим. И строим две задачи.

Таким образом, при решении задачи получаем схему:

1. Находим решение задачи линейного программирования без учета целочисленности.

2. Составляет дополнительные ограничения на дробную компоненту плана.

3. Находим решение двух задач с ограничениями на компоненту.

4. Строим в случае необходимости дополнительные ограничения, согласно возможным четырем случаям получаем оптимальный целочисленный план либо устанавливаем неразрешимость задачи.

Пример

Найдем решение задачи

Целые .

Решение. Находим решение без учет целочисленности задачи симплексным методом.

Рассмотрим следующую пару задач:

Задача №1

изадача №2

Первая задача имеет оптимальный план

вторая - неразрешима.

Проверяем на целочисленность план первой задачи. Это условие не выполняется, поэтому строим следующие задачи:

Задача №1.1

и задача №1.2

Задача №1.2 неразрешима, а задача №1.1 имеет оптимальный план, на котором значение целевой функции.

В результате получили, что исходная задача целочисленного программирования имеет оптимальный план и.

3. Решение задачи коммивояжера методом ветвей и границ

Рассмотрим теперь класс прикладных задач оптимизации. Метод ветвей и границ используется в очень многих из них. Предлагается рассмотреть одну из самых популярных задач - задача коммивояжера. Вот ее формулировка. Имеется несколько городов, соединенных некоторым образом дорогами с известной длиной; требуется установить, имеется ли путь, двигаясь по которому можно побывать в каждом городе только один раз и при этом вернуться в город, откуда путь был начат («обход коммивояжера»), и, если таковой путь имеется, установить кратчайший из таких путей.

3.1 Постановка задачи

Формализуем условие в терминах теории графов. Города будут вершинами графа, а дороги между городами - ориентированными (направленными) ребрами графа, на каждом из которых задана весовая функция: вес ребра - это длина соответствующей дороги. Путь, который требуется найти, это - ориентированный остовный простой цикл минимального веса в орграфе (напомним: цикл называется остовным, если он проходит по всем вершинам графа; цикл называется простым, если он проходит по каждой своей вершине только один раз; цикл называется ориентированным, если начало каждого последующего ребра совпадает с концом предыдущего; вес цикла - это сумма весов его ребер; наконец, орграф называется полным, если в нем имеются все возможные ребра); такие циклы называются также гамильтоновыми.

Очевидно, в полном орграфе циклы указанного выше типа есть. Заметим, что вопрос о наличии в орграфе гамильтонова цикла достаточно рассмотреть как частный случай задачи о коммивояжере для полных орграфов. Действительно, если данный орграф не является полным, то его можно дополнить до полного недостающими ребрами и каждому из добавленных ребер приписать вес Ґ, считая, что Ґ - это «компьютерная бесконечность», т.е. максимальное из всех возможных в рассмотрениях чисел. Если во вновь построенном полном орграфе найти теперь легчайший гамильтонов цикл, то при наличии у него ребер с весом Ґ можно будет говорить, что в данном, исходном графе «цикла коммивояжера» нет. Если же в полном орграфе легчайший гамильтонов цикл окажется конечным по весу, то он и будет искомым циклом в исходном графе.

Отсюда следует, что задачу о коммивояжере достаточно решить для полных орграфов с весовой функцией. Сформулируем теперь это в окончательном виде:

пусть - полный ориентированный граф и - весовая функция; найти простой остовный ориентированный цикл («цикл коммивояжера») минимального веса.

Пусть конкретный состав множества вершин и - весовая матрица данного орграфа, т.е. , причем для любого.

Рассмотрение метода ветвей и границ для решения задачи о коммивояжере удобнее всего проводить на фоне конкретного примера. Пользуясь введенными здесь обозначениями, мы проводим это описание в следующей лекции.

Введем некоторые термины. Пусть имеется некоторая числовая матрица. Привести строку этой матрицы означает выделить в строке минимальный элемент (его называют константой приведения) и вычесть его из всех элементов этой строки. Очевидно, в результате в этой строке на месте минимального элемента окажется ноль, а все остальные элементы будут неотрицательными. Аналогичный смысл имеют слова привести столбец матрицы.

Слова привести матрицу по строкам означают, что все строки матрицы приводятся. Аналогичный смысл имеют слова привести матрицу по столбцам.

Наконец, слова привести матрицу означают, что матрица сначала приводится по строкам, а потом приводится по столбцам.

Весом элемента матрицы называют сумму констант приведения матрицы, которая получается из данной матрицы заменой обсуждаемого элемента на Ґ. Следовательно, слова самый тяжелый нуль в матрице означают, что в матрице подсчитан вес каждого нуля, а затем фиксирован нуль с максимальным весом.

Приступим теперь к описанию метода ветвей и границ для решения задачи о коммивояжере.

Первый шаг . Фиксируем множество всех обходов коммивояжера (т.е. всех простых ориентированных остовных циклов). Поскольку граф - полный, это множество заведомо не пусто. Сопоставим ему число, которое будет играть роль значения на этом множестве оценочной функции: это число равно сумме констант приведения данной матрицы весов ребер графа. Если множество всех обходов коммивояжера обозначить через G, то сумму констант приведения матрицы весов обозначим через j(G). Приведенную матрицу весов данного графа следует запомнить; обозначим ее через M 1 ; таким образом, итог первого шага:

множеству G всех обходов коммивояжера сопоставлено чис-ло j(G) и матрица M 1 .

Второй шаг. Выберем в матрице M 1 самый тяжелый нуль; пусть он стоит в клетке; фиксируем ребро графа и разделим множество G на две части: на часть, состоящую из обходов, которые проходят через ребро, и на часть, состоящую из обходов, которые не проходят через ребро.

Сопоставим множеству следующую матрицу M 1,1: в матрице M 1 заменим на Ґ число в клетке. Затем в полученной матрице вычеркнем строку номер i и столбец номер j, причем у оставшихся строк и столбцов сохраним их исходные номера. Наконец, приведем эту последнюю матрицу и запомним сумму констант приведения. Полученная приведенная матрица и будет матрицей M 1,1 ; только что запомненную сумму констант приведения прибавим к j(G) и результат, обозначаемый в дальнейшем через j(), сопоставим множеству.

Теперь множеству тоже сопоставим некую матрицу M 1,2 . Для этого в матрице M 1 заменим на Ґ число в клетке и полученную в результате матрицу приведем. Сумму констант приведения запомним, а полученную матрицу обозначим через M 1,2 . Прибавим запомненную сумму констант приведения к числу j(G) и полученное число, обозначаемое в дальнейшем через j(), сопоставим множеству.

Теперь выберем между множествами и то, на котором минимальна функция j (т.е. то из множеств, которому соответствует меньшее из чисел j() и j()).

Заметим теперь, что в проведенных рассуждениях использовался в качестве исходного только один фактический объект - приведенная матрица весов данного орграфа. По ней было выделено определенное ребро графа и были построены новые матрицы, к которым, конечно, можно все то же самое применить.

При каждом таком повторном применении будет фиксироваться очередное ребро графа. Условимся о следующем действии: перед тем, как в очередной матрице вычеркнуть строку и столбец, в ней надо заменить на Ґ числа во всех тех клетках, которые соответствуют ребрам, заведомо не принадлежащим тем гамильтоновым циклам, которые проходят через уже отобранные ранее ребра.

К выбранному множеству с сопоставленными ему матрицей и числом j повторим все то же самое и так далее, пока это возможно.

Доказывается, что в результате получится множество, состоящее из единственного обхода коммивояжера, вес которого равен очередному значению функции j; таким образом, оказываются выполненными все условия, обсуждавшиеся при описании метода ветвей и границ.

После этого осуществляется улучшение рекорда вплоть до получения окончательного ответа.

3.2 Условие задачи

Студенту Иванову поручили разнести некоторые важные документы из 12-ого корпуса. Но, как назло, у него на это очень мало времени, да и еще надо вернуться обратно. Нужно найти кротчайший путь. Расстояния между объектами даны в таблице

3.3 Математическая модель задачи

Для решения задачи присвоим каждому пункту маршрута определенный номер: 12-ый корпус - 1, Белый дом - 2, КРК «Премьер» - 3, Администрация - 4 и 5-ый корпус - 5. Соответственно общее количество пунктов. Далее введем альтернативных переменных, принимающих значение 0, если переход из i-того пункта в j-тый не входит в маршрут и 1 в противном случае. Условия прибытия в каждый пункт и выхода из каждого пункта только по одному разу выражаются равенствами (8) и (9).

Для обеспечения непрерывности маршрута вводятся дополнительно n переменных и дополнительных ограничений (10).

Суммарная протяженность маршрута F , которую необходимо минимизировать, запишется в следующем виде:

В нашем случае эти условия запишутся в следующем виде:

3.4 Решение задачи методом ветвей и границ

задача коммивояжер ветвь граница

1) Анализ множества D.

Найдем оценку снизу Н . Для этого определяем матрицу минимальных расстояний по строкам (1 где расстояние минимально в строке).

Аналогично определяем матрицу минимальных расстояний по столбцам.

Выберем начальный план: . Тогда верхняя оценка:

Очевидно, что, где означает переход из первого пункта в j-тый. Рассмотрим эти подмножества по порядку.

2) Анализ подмножества D 12 .

3) Анализ подмножества D 13 .

4) Анализ подмножества D 14 .

5) Анализ подмножества D 15 .

6) Отсев неперспективных подмножеств.

Подмножества D 13 и D 15 неперспективные. Т.к. , но, то далее будем рассматривать подмножество D 14 .

7) Анализ подмножества D 142 .

8) Анализ подмножества D 143 .

9) Анализ подмножества D 145 .

10) Отсев неперспективных подмножеств

Подмножество D 143 неперспективное. Т.к. , но, то далее будем рассматривать подмножество D 145 .

11) Анализ подмножества D 1452 .

12) Анализ подмножества D 1453 .

Оптимальное решение: .

Таким образом, маршрут студента: 12-ый корпус - Администрация - 5-ый корпус - Белый дом - КРК Премьер - 12-ый корпус.

Список литературы

1. Абрамов Л.А., Капустин В.Ф. Математическое программирование. - Л.: Изд-во ЛГУ, 1981. -328 с.

2. Алексеев О.Г. Комплексное применение методов дискретной оптимизации. - М.: Наука, 1987. -294 с.

3. Корбут А.А., Финкелгейн Ю.Ю. Дискретное программирование. М.: Наука. 1969. -240 с

4. Кузнецов Ю.Н. и др. Математическое программирование: Учебное пособие. - 2-е изд., перераб и доп. - М.: Высшая школа, 1980. -300 с.

5. Пападимитриу Х., Стайглиц К. Комбинаторная оптимизация. Алгоритмы и сложность. - М.: Мир, 1985. -213 с.

Подобные документы

    Методика решения задач высшей математики с помощью теории графов, ее сущность и порядок разрешения. Основная идея метода ветвей и границ, ее практическое применение к задаче. Разбиение множества маршрутов на подмножества и его графическое представление.

    задача , добавлен 24.07.2009

    Сущность и содержание, основные понятия и критерии теории графов. Понятие и общее представление о задаче коммивояжера. Описание метода ветвей и границ, практическое применение. Пример использования данного метода ветвей для решения задачи коммивояжера.

    контрольная работа , добавлен 07.06.2011

    Методы решения задачи коммивояжера. Математическая модель задачи коммивояжера. Алгоритм Литтла для нахождения минимального гамильтонова контура для графа с n вершинами. Решение задачи коммивояжера с помощью алгоритма Крускала и "деревянного" алгоритма.

    курсовая работа , добавлен 30.04.2011

    Суть задачи коммивояжера, ее применение. Общая характеристика методов ее решения: метод полного перебора, "жадные" методы, генетические алгоритмы и их обобщения. Особенности метода ветвей и границ и определение наиболее оптимального решения задачи.

    курсовая работа , добавлен 18.06.2011

    Математическая модель задачи. Решение транспортной задачи методом потенциалов. Значение целевой функции. Система, состоящая из 7 уравнений с 8-ю неизвестными. Решение задач графическим методом. Выделение полуплоскости, соответствующей неравенству.

    контрольная работа , добавлен 12.06.2011

    Теория динамического программирования. Понятие об оптимальной подструктуре. Независимое и полностью зависимое множество вершин. Задача о поиске максимального независимого множества в дереве. Алгоритм Брона-Кербоша как метод ветвей, границ для поиска клик.

    реферат , добавлен 09.10.2012

    Решение двойственной задачи с помощью первой основной теоремы теории двойственности, графическим и симплексным методом. Математическая модель транспортной задачи, расчет опорного плана перевозок методами северо-западного угла и минимального элемента.

    контрольная работа , добавлен 27.11.2011

    Постановка задачи коммивояжера и основные алгоритмы решения. Маршруты и пути. Понятия транспортной сети. Понятие увеличивающая дуга, цепь, разрез. Алгоритм Флойда-Уоршелл. Решение задачи аналитическим методом. Создание приложения для решения задачи.

    курсовая работа , добавлен 08.10.2015

    Решение первой задачи, уравнения Пуассона, функция Грина. Краевые задачи для уравнения Лапласа. Постановка краевых задач. Функции Грина для задачи Дирихле: трехмерный и двумерный случай. Решение задачи Неймана с помощью функции Грина, реализация на ЭВМ.

    курсовая работа , добавлен 25.11.2011

    Последовательность решения линейной краевой задачи. Особенности метода прогонки. Алгоритм метода конечных разностей: построение сетки в заданной области, замена дифференциального оператора. Решение СЛАУ методом Гаусса, конечно-разностные уравнения.

Здравствуй, Хабр! Реализовывая различные алгоритмы для нахождения гамильтонова цикла с наименьшей стоимостью, я наткнулся на публикацию , предлагающую свой вариант. Попробовав в деле, я получил неправильный ответ:

Дальнейшие поиски в Интернете не принесли ожидаемого результата: либо сложное для не-математиков теоретическое описание, либо понятное, но с ошибками.

Под катом вас будет ждать исправленный алгоритм и онлайн-калькулятор.

Сам метод, опубликованный Литтлом, Мерти, Суини, Кэрелом в 1963 г. применим ко многим NP-полным задачам, и представляет собой очень теоритеризованный материал, который без хороших знаний английского языка и математики сразу не применишь к нашей задаче коммивояжера.

Кратко о методе - это полный перебор всех возможных вариантов с отсеиванием явно неоптимальных решений.

Исправленный алгоритм, для нахождения действительно минимального маршрута

Алгоритм состоит из двух этапов:

Первый этап
Приведение матрицы затрат и вычисление нижней оценки стоимости маршрута r.
1. Вычисляем наименьший элемент в каждой строке (константа приведения для строки)
2. Переходим к новой матрице затрат, вычитая из каждой строки ее константу приведения
3. Вычисляем наименьший элемент в каждом столбце (константа приведения для столбца)
4. Переходим к новой матрице затрат, вычитая из каждого столбца его константу приведения.
Как результат имеем матрицу затрат, в которой в каждой строчке и в каждом столбце имеется хотя бы один нулевой элемент.
5. Вычисляем границу на данном этапе как сумму констант приведения для столбцов и строк (данная граница будет являться стоимостью, меньше которой невозможно построить искомый маршрут)
Второй (основной) этап
1.Вычисление штрафа за неиспользование для каждого нулевого элемента приведенной матрицы затрат.
Штраф за неиспользование элемента с индексом (h,k) в матрице, означает, что это ребро не включается в наш маршрут, а значит минимальная стоимость «неиспользования» этого ребра равна сумме минимальных элементов в строке h и столбце k.

А) Ищем все нулевые элементы в приведенной матрице
б) Для каждого из них считаем его штраф за неиспользование.
в) Выбираем элемент, которому соответствует максимальный штраф (любой, если их несколько)

2. Теперь наше множество S разбиваем на множества - содержащие ребро с максимальным штрафом(S w) и не содержащие это ребро(S w/o).
3. Вычисление оценок затрат для маршрутов, входящих в каждое из этих множеств.
а) Для множества S w/o все просто: раз мы не берем соответствующее ребро c максимальным штрафом(h,k), то для него оценка затрат равна оценки затрат множества S + штраф за неиспользование ребра (h,k)
б) При вычислении затрат для множества S w примем во внимание, что раз ребро (h,k) входит в маршрут, то значит ребро (k,h) в маршрут входить не может, поэтому в матрице затрат пишем c(k,h)=infinity, а так как из пункта h мы «уже ушли», а в пункт k мы «уже пришли», то ни одно ребро, выходящее из h, и ни одно ребро, приходящее в k, уже использоваться не могут, поэтому вычеркиваем из матрицы затрат строку h и столбец k. После этого приводим матрицу, и тогда оценка затрат для S w равна сумме оценки затрат для S и r(h,k), где r(h,k) - сумма констант приведения для измененной матрицы затрат.
4. Из всех неразбитых множеств выбирается то, которое имеет наименьшую оценку.

Так продолжаем, пока в матрице затрат не останется одна не вычеркнутая строка и один не вычеркнутый столбец.

Небольшая оптимизация - подключаем эвристику

Да, правда, почему бы нам не ввести эвристику? Ведь в алгоритме ветвей и границ мы фактически строим дерево, в узлах которого решаем брать ребро (h,k) или нет, и вешаем двух детей - Sw(h,k) и Sw/o(h,k). Но лучший вариант для следующей итерации выбираем только по оценке. Так давайте выбирать лучший не только по оценке, но и по глубине в дереве, т.к. чем глубже выбранный элемент, тем ближе он к концу подсчета. Тем самым мы сможем наконец дождаться ответа.

Теперь, собственно, об ошибках в той публикации

Ошибка была одна единственная - следует выбирать для разбиения множество с минимальной границей из всех возможных путей, а не из двух полученных в результате последнего разбиения детей.

Доказательство

Вернемся к картинке в начале поста:


А вот решение с исправленным алгоритмом:

Ответ: путь:3=>4=>2=>1=>5=>3 длина: 41
Как видите, включая ребро 5:2 в решение будет ошибкой. Что и требовалось доказать

График сравнения метода ветвей и границ и потраченного времени для случайной таблицы от 5х5 до 10х10:


График максимального и минимального потраченного времени для матриц от 5х5 до 66х66.


Попробовать с подробным решением можно



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: