Модифицированный симплекс метод пример. Модифицированный симплекс метод. Переход к новому опорному плану


Введение

1. Теоретическая часть 6

1.1 Основные понятия теории графов 6

1.2 Формулировка и некоторые свойства решений задачи коммивояжера. 8

1.3 Постановка задачи коммивояжера как задачи на графе 10

1.4 Условия существования Гамильтонова контура 10

1.5 Метод ветвей и границ…………………………………………………. 11

1.6 Практическое применение задачи коммивояжера…………………… 17

2. Практическая часть 20

Заключение

Список используемой литературы

Введение

Теория принятия решений - область исследования, вовлекающая понятия и методы математики, экономики, менеджмента и психологии. Изучает закономерности выбора людьми путей решения разного рода задач, а также исследует способы поиска наиболее выгодных из возможных решений.

В курсовой работе рассмотрены некоторые методы решения задачи коммивояжера, алгоритмы решения.

Многие задачи, с которыми приходится иметь дело в повседневной практике, являются многовариантными. Среди множества возможных вариантов в условиях рыночных отношений приходится отыскивать наилучшие решения при ограничениях, налагаемых на природные, экономические и технологические возможности. В связи с этим возникла необходимость применять для анализа и синтеза экономических ситуаций и систем математические методы и современную вычислительную технику.

Целью данной курсовой работы является рассмотрение задачи коммивояжера, способов её решения.

Рассмотрена задача коммивояжёра, а также приведён алгоритм метода ветвей и границ для решения задачи коммивояжёра.

    Теоретическая часть

1.1 Основные понятия теории графов

Многие задачи принятие решений можно решить с помощью теории графов.

Графические представления – наглядные отображения исследуемой системы процесса или явления на плоскость: рисунки, чертежи, схемы и блок-схемы, диаграммы, графы. На языке теории графов формируются и решаются многие технические задачи, задачи из области экономики, социологии, менеджмента и т.д. Графы используются для наглядного представления объектов и связи между ними.

Пусть G -неориентированный граф. Геометрически граф можно представить как набор вершин (точек), определенные пары которых соединены линиями. Например, сеть дорог, соединяющих города ,,,,, можно представить в виде графа следующим образом. Города обозначены точками (вершинами), а дороги – неориентированными линиями (рис 1.1).

рис 1.1 Сеть дорог между городами.

Неориентированные линии означают наличие двустороннего движения между соответствующей парой городов. Пересечения линий не считаются вершинами.

При изображении графа не имеет значение расположение вершин на плоскости, кривизна и длина ребер (рис 1.2).

рис 1.2 Изображение графов

Вершины графов обозначаются буквами или натуральными числами. Ребра графа – пары чисел.

Маршрутом в G называется такая конечная или бесконечная последовательность ребер, что каждые два соседних ребра имеют концевую точку. Причем, одно и то же ребро Е может встречаться в маршруте несколько раз.

Циклическим маршрутом называется такой маршрут, начальная и конечная точки которого совпадают.

Цепью называют маршрут, в котором каждое его ребро встречается не более одного раза; вершины в цепи могут повторяться не более одного раза. Любой участок цепи является цепью. Нециклическая цепь является простой цепью, если в ней никакая вершина не повторяется.

Граф называется сильно связным, если между каждой парой его вершин , , , существует путь () такой, что является начальной вершиной пути, а - конечной.

Граф называется связным, если между парой его вершин , , существует такая последовательность элементов (дуг или ребер, или же и дуг, и ребер), что любая соседних элементов в этой последовательности имеет общую вершину. Очевидно, что любой сильно связный граф является связным. Связный неориентированный граф называется деревом, если он не имеет циклов. В дереве любые две вершины связаны единственной цепью.

1.2 Формулировка и некоторые свойства решений задачи коммивояжера

Коммивояжер (бродячий торговец) должен выйти из первого города, посетить по разу в неизвестном порядке города 2,1,3.. n и вернуться в первый город. Расстояния между городами известны. В каком порядке следует обходить города, чтобы замкнутый путь (тур) коммивояжера был кратчайшим?

Чтобы привести задачу к научному виду, введём некоторые термины. Города перенумерованы числами j Т=(1,2,3.. n ) . Тур коммивояжера может быть описан циклической перестановкой t =(j 1 , j 2 ,.., j n , j 1 ) , причём все j 1 .. j n разные номера; повторяющийся в начале и в конце j 1 , показывает, что перестановка зациклена. Расстояния между парами вершин С ij образуют матрицу С . Задача состоит в том, чтобы найти такой тур t :

(1)

Относительно математизированной формулировки задачи коммивояжера уместно сделать два замечания.

1) В постановке С ij означали расстояния, поэтому они должны быть неотрицательными, т.е. для всех j Т :

С ij 0; C jj = (2)

(последнее равенство означает запрет на петли в туре), симметричными, т.е. для всех i , j :

С ij = С ji (3)

и удовлетворять неравенству треугольника, т.е. для всех:

С ij + С jk C ik (4)

В математической постановке говорится о произвольной матрице. Сделано это потому, что имеется много прикладных задач, которые описываются основной моделью, но всем условиям (2)-(4) не удовлетворяют. Особенно часто нарушается условие (3) (например, если С ij – не расстояние, а плата за проезд: часто туда билет стоит одну цену, а обратно – другую). Поэтому мы будем различать два варианта задачи коммивояжера: симметричную задачу, когда условие (3) выполнено, и несимметричную - в противном случае. Условия (2)-(4) по умолчанию мы будем считать выполненными.

2) В несимметричной задаче коммивояжера все туры t =(j 1 , j 2 ,.., j n , j 1 ) и t ’=(j 1 , j n ,.., j 2 , j 1 ) имеют разную длину и должны учитываться оба. Разных туров очевидно (n -1)! .

Зафиксируем на первом и последнем месте в циклической перестановке номер j 1 , а оставшиеся n -1 номеров переставим всеми (n -1)! возможными способами. В результате получим все несимметричные туры. Симметричных туров имеется в

два раза меньше, т.к. каждый засчитан два раза: как t и как t . Можно представить, что С состоит только из единиц и нулей. Тогда С можно интерпретировать, как граф, где ребро (i , j ) проведено, если С ij =0 и не проведено, если С ij =1 . Тогда, если существует тур длины 0, то он пройдёт по циклу, который включает все вершины по одному разу. Такой цикл называется гамильтоновым циклом. Незамкнутый гамильтонов цикл называется гамильтоновой цепью (гамильтоновым путём).

В терминах теории графов симметричную задачу коммивояжера можно сформулировать так:

Дана полная сеть с n вершинами, длина ребра (i , j )= С ij . Найти гамильтонов цикл минимальной длины. В несимметричной задаче коммивояжера вместо «цикл» надо говорить «контур», а вместо «ребра» - «дуги» или «стрелки».

Некоторые прикладные задачи формулируются как задачи коммивояжера, но в них нужно минимизировать длину не гамильтонова цикла, а гамильтоновой цепи. Такие задачи называются незамкнутыми. Некоторые модели сводятся к задаче о нескольких коммивояжерах, но мы здесь их рассматривать не будем.

1.3 Постановка задачи коммивояжера как задачи на графе

Формулировка: Множество городов:
. Расстояние между городами i и j:
. П – множество перестановок элементов А, перестановка

Если городам поставить в соответствии вершины графа, а соединяющих их дорогам дуги, то в терминах теории графов задача заключается в определении гамильтонова контура минимальной длины. Гамильтоновым контуром называется путь, проходящий через все вершины графа, у которого начальная вершина совпадает с конечной. Здесь под длиной контура понимают не количество дуг, входящих в контур, а сумму их длин. Длина соответствующей дороги – вес ребра. Граф должен быть полным, т.е. в нем имеются все возможные ребра. Если же граф не является полным, то его можно дополнить недостающими ребрами с весом равным
.

1.4 Условия существования Гамильтонова контура

Последовательность (путь), который требуется найти – ориентированный остовный простой цикл минимального веса в орграфе; такие циклы также называют гамильтоновыми. Очевидно, что в полном орграфе циклы указанного выше типа есть. Заметим, что вопрос о наличии в орграфе гамильтонова цикла достаточно рассмотреть как частный случай задачи о коммивояжере для полных орграфов. Действительно, если данный орграф не является полным, то его можно дополнить до полного недостающими ребрами и каждому из добавленных ребер приписать вес - это «компьютерная бесконечность», т.е. максимальное из всех возможных в рассмотрениях чисел. Если во вновь построенном полном орграфе найти теперь легчайший гамильтонов цикл, то при наличии у него ребер с весом можно будет говорить, что в данном, исходном графе «цикла коммивояжера» нет. Если же в полном орграфе легчайший гамильтонов цикл окажется конечным по весу, то он и будет искомым циклом в исходном графе. Гамильтоновым контуром называется путь, проходящий через все вершины графа, у которого начальная вершина совпадает с конечной. Здесь под длиной контура понимают не количество дуг, входящих в контур, а сумму их длин.

Цикл Гамильтона.

Пусть G -граф. Циклом Гамильтона называется простой цикл, который содержит все вершины данного графа.

Теорема 1.

Для того, чтобы в графе существовал цикл Гамильтона, необходимо, чтобы этот граф был связным.

Теорема 2.

В полном графе , если n>=3, цикл Гамильтона есть в полном двудольном
при m>=1, цикл Гамильтона есть.

1.5 Метод ветвей и границ

Графом называется непустое конечное множество, состоящее из двух подмножеств и . Первое подмножество
(вершины) состоит из любого множества элементов. Второе подмножество (дуги) состоит из упорядоченных пар элементов первого подмножества
. Если вершины
и
такие, что
, то это вершины смежные.

Маршрутом в графе называется последовательность вершин
не обязательно попарно различных, где для любого
смежно с . Маршрут называется цепью, если все его ребра попарно различны. Если
то маршрут называется замкнутым. Замкнутая цепь называется циклом.

Постановка задачи

Коммивояжер должен объездить n городов. Для того чтобы сократить расходы, он хочет построить такой маршрут, чтобы объездить все города точно по одному разу и вернуться в исходный с минимумом затрат.

В терминах теории графов задачу можно сформулировать следующим образом. Задано n вершин и матрица {c ij }, где c ij ≥0 – длинна (или цена) дуги (i , j ),
. Под маршрутом коммивояжера z будем понимать цикл i 1 , i 2 ,…, i n , i 1 точек 1,2,…, n. Таким образом, маршрут является набором дуг. Если между городами i и j нет перехода, то в матрице ставится символ «бесконечность». Он обязательно ставится по диагонали, что означает запрет на возвращение в точку, через которую уже проходил маршрут коммивояжера , длина маршрута l (z ) равна сумме длин дуг, входящих в маршрут. Пусть Z – множество всех возможных маршрутов. Начальная вершина i 1 – фиксирована. Требуется найти маршрут z 0  Z , такой, что l (z 0)= min l (z ), z Z .

Решение задачи

Основная идея метода ветвей и границ состоит в том, что вначале строят нижнюю границу φ длин множества маршрутов Z. Затем множество маршрутов разбивается на два подмножества таким образом, чтобы первое подмножество состояло из маршрутов, содержащих некоторую дугу (i, j), а другое подмножество не содержало этой дуги. Для каждого из подмножеств определяются нижние границы по тому же правилу, что и для первоначального множества маршрутов. Полученные нижние границы подмножеств и оказываются не меньше нижней границы множества всех маршрутов, т.е. φ(Z)≤ φ (), φ(Z) ≤ φ ().

Сравнивая нижние границы φ () и φ (), можно выделить то, подмножество маршрутов, которое с большей вероятностью содержит маршрут минимальной длины.

Затем одно из подмножеств или по аналогичному правилу разбивается на два новых и . Для них снова отыскиваются нижние границы φ (), и φ () и т.д. Процесс ветвления продолжается до тех пор, пока не отыщется единственный маршрут. Его называют первым рекордом. Затем просматривают оборванные ветви. Если их нижние границы больше длины первого рекорда, то задача решена. Если же есть такие, для которых нижние границы меньше, чем длина первого рекорда, то подмножество с наименьшей нижней границей подвергается дальнейшему ветвлению, пока не убеждаются, что оно не содержит лучшего маршрута .

Если же такой найдется, то анализ оборванных ветвей продолжается относительно нового значения длины маршрута. Его называют вторым рекордом. Процесс решения заканчивается, когда будут проанализированы все подмножества.

Для практической реализации метода ветвей и границ применительно к задаче коммивояжера укажем прием определения нижних границ подмножеств и разбиения множества маршрутов на подмножества (ветвление).

Для того чтобы найти нижнюю границу воспользуемся следующим соображением: если к элементам любого ряда матрицы задачи коммивояжера (строке или столбцу) прибавить или вычесть из них некоторое число, то от этого оптимальность плана не изменится. Длина же любого маршрутом коммивояжера изменится на данную величину.

Вычтем из каждой строки число, равное минимальному элементу этой строки. Вычтем из каждого столбца число, равное минимальному элементу этого столбца. Полученная матрица называется приведенной по строкам и столбцам. Сумма всех вычтенных чисел называется константой приведения.

Константу приведения следует выбирать в качестве нижней границы длины маршрутов.

Разбиение множества маршрутов на подмножества

Для выделения претендентов на включение во множество дуг, по которым производится ветвление, рассмотрим в приведенной матрице все элементы, равные нулю. Найдем степени Θ ij нулевых элементов этой матрицы. Степень нулевого элемента Θ ij равна сумме минимального элемента в строке i и минимального элемента в столбце j (при выборе этих минимумов c ij – не учитывается). С наибольшей вероятностью искомому маршруту принадлежат дуги с максимальной степенью нуля.

Для получения платежной матрицы маршрутов, включающей дугу (i , j ) вычеркиваем в матрице строку i и столбец j , а чтобы не допустить образования цикла в маршруте, заменяем элемент, замыкающий текущую цепочку на бесконечность.

Множество маршрутов, не включающих дугу (i , j ) получаем путем замены элемента c ij на бесконечность.

Пример решения задачи коммивояжера методом ветвей и границ

Коммивояжер должен объездить 6 городов. Для того чтобы сократить расходы, он хочет построить такой маршрут, чтобы объездить все города точно по одному разу и вернуться в исходный с минимумом затрат. Исходный город A. Затраты на перемещение между городами заданы следующей матрицей:

Решение задачи

Для удобства изложения везде ниже в платежной матрице заменим имена городов (A, B, …, F) номерами соответствующих строк и столбцов (1, 2, …, 6).

Найдем нижнюю границу длин множества всех маршрутов. Вычтем из каждой строки число, равное минимальному элементу этой строки, далее вычтем из каждого столбца число, равное минимальному элементу этого столбца, и таким образом приведем матрицу по строкам и столбцам. Минимумы по строкам: r 1 =15, r 2 =1, r 3 =0, r 4 =16, r 5 =5, r 6 =5.

После их вычитания по строкам получим:

Минимумы по столбцам: h 1 =5, h 2 =h 3 =h 4 =h 5 =h 6 .

После их вычитания по столбцам получим приведенную матрицу:

Найдем нижнюю границу φ (Z ) = 15+1+0+16+5+5+5 = 47.

Для выделения претендентов на включение во множество дуг, по которым производится ветвление, найдем степени Θ ij нулевых элементов этой матрицы (суммы минимумов по строке и столбцу). Θ 14 = 10 + 0,
Θ 24 = 1 + 0, Θ 36 = 5+0, Θ 41 = 0 + 1, Θ 42 = 0 + 0, Θ 56 = 2 + 0, Θ 62 = 0 + 0,
Θ 63 = 0 + 9, Θ 65 = 0 + 2. Наибольшая степень Θ 14 = 10. Ветвление проводим по дуге (1, 4).

Нижняя граница для множества
остается равной 47. Для всех маршрутов множества из города A мы не перемещаемся в город D. В матрице это обозначается выставлением в ячейку (1, 4) знака ∞. В этом случае выход из города A добавляет к оценке нижней границы по крайней мере наименьший элемент первой строки. φ () = 47 + 10.

В матрице, соответствующей полагаем c 14 = ∞.

После проведения процедуры приведения с r 1 =10 получим новую нижнюю границу 57 + 10 = 67.

В матрице, соответствующей , вычеркиваем первую строку и четвертый столбец и положим c 41 = ∞, чтобы предотвратить появления цикла 1→ 4 → 1. Получим новую платежную матрицу {c 1 ij }:

Для приведения надо вычесть минимум по первому столбцу: h 1 =1. При этом нижняя граница станет равной 47+1 = 48. Сравнивая нижние границы
φ () = 67 и φ () = 48 < 67 выделяем подмножество маршрутов , которое с большей вероятностью содержит маршрут минимальной длины.

Рис. 1.4 Ветвление на первом шаге

Далее продолжаем процесс ветвления. Найдем степени Θ ij нулевых элементов этой матрицы Θ 21 =16, Θ 36 = 5, Θ 42 = 2, Θ 56 = 2, Θ 62 = 0, Θ 63 =9, Θ 65 = 2. Наибольшая степень Θ 21 . Затем множество разбивается дуге (2, 1) на два новых
и .

В матрице для вычеркиваем строку 2 и столбец 1. дуги (1, 4) и (2, 1) образуют связный путь (2, 1, 4), положим c 42 = ∞, чтобы предотвратить появления цикла 2→1→ 4 → 2.

Для приведения надо вычесть минимум по строке 4: r 4 =2. При этом нижняя граница станет равной 48+2 = 50.

Нижняя граница для , полученная как на предыдущем шаге ветвления, равна 48 + 16 = 64. Сравнивая нижние границы φ () = 64 и φ () = 50 < 64 выбираем для дальнейшего разбиения подмножество маршрутов .

Рис. 1.5 Ветвление на втором шаге

Приведенная платежная матрица для

Степени Θ ij нулевых элементов этой матрицы Θ 36 = 5, Θ 45 = 0, Θ 56 = 22, Θ 62 = 13, Θ 63 =7, Θ 65 = 0. Наибольшая степень Θ 56. Затем множество разбивается дуге (2, 1) на два новых и .

Нижняя граница для равна 50 + 22 = 72. В матрице для вычеркиваем строку 5 и столбец 6 и полагаем c 65 = ∞. Получим матрицу:

Для приведения надо вычесть минимум по строке 3: r 3 =5. При этом нижняя граница станет равной 50+5 = 55. Выбираем для дальнейшего разбиения подмножество маршрутов.

Рис. 1.6 Ветвление на третьем шаге

Приведенная платежная матрица для

Для приведения надо вычесть минимум по строке 4: r4=7. При этом нижняя граница станет равной 55+7 = 62. После приведения получим

Из матрицы 22 получаем два перехода с нулевой длинной: (4, 3) и (6, 2).

Рис. 1.7 Ветвление на четвертом шаге

Рис. 1.8 Дерево ветвления с оценками

Полученный маршрутом коммивояжера z 0 = (1, 4, 3, 5, 6, 2, 1) или (A-D-C-E-F-B-A).

1.6 Практическое применение задачи коммивояжера

Кроме очевидного применения задачи коммивояжера на практике, существует ещё ряд задач, сводимых к решению задачи коммивояжера.

Задача о производстве красок .

Имеется производственная линия для производства n красок разного цвета; обозначим эти краски номерами 1,2… n. Всю производственную линию будем считать одним процессором.. Будем считать также, что единовременно процессор производит только одну краску, поэтому краски нужно производить в некотором порядке Поскольку производство циклическое, то краски надо производить в циклическом порядке =(j 1 ,j 2 ,..,j n ,j 1). После окончания производства краски i и перед началом производства краски j надо отмыть оборудование от краски i. Для этого требуется время C. Очевидно, что C зависит как от i, так и от j, и что, вообще говоря,C≠C. При некотором выбранном порядке придется на цикл производства красок потратить время:

Где t k - чистое время производства k-ой краски (не считая переналадок). Однако вторая сумма в правой части постоянна, поэтому полное время на цикл производства минимизируется вместе с общим временем на переналадку.

Таким образом, задача коммивояжера и задача о минимизации времени переналадки – это просто одна задача, только варианты ее описаны разными словами.

Задача о дыропробивном прессе .

Дыропробивной пресс производит большое число одинаковых панелей – металлических листов, в которых последовательно по одному пробиваются отверстия разной формы и величины. Схематически пресс можно представить в виде стола, двигающегося независимо по координатам x, y, и вращающегося над столом диска, по периметру которого расположены дыропробивные инструменты разной формы и величины. Каждый инструмент присутствует в одном экземпляре. Диск может вращаться одинаково в двух направлениях (координата вращения z). Имеется собственно пресс, который надавливает на подвешенный под него инструмент тогда, когда под инструмент подведена нужная точка листа.

Операция пробивки j-того отверстия характеризуется четверкой чисел (x j ,y j ,z j ,t j), где x j ,y j - координаты нужного положения стола, z j - координата нужного положения диска и t j - время пробивки j-того отверстия.

Производство панелей носит циклический характер: в начале и конце обработки каждого листа стол должен находиться в положениях (x 0 , y 0) диск в положении z 0 причем в этом положении отверстие не пробивается. Это начальное состояние системы можно считать пробивкой фиктивного нулевого отверстия. С параметрами (x 0 ,y 0 ,z 0 ,0).

Чтобы пробить j-е отверстие непосредственно после i-того необходимо произвести следующие действия:

    Переместить стол по оси x из положения x i в положение x j , затрачивая при этом время t (x) (|x i -x j |)=t i , j (x) .

    Проделать то же самое по оси y, затратив время t i , j (y) .

    Повернуть головку по кратчайшей из двух дуг из положения z i в положение z j , затратив время t i , j (z) .

    Пробить j-тое отверстие, затратив время t j .

Конкретный вид функций t (x) , t (y) , t (z) зависит от механических свойств пресса и достаточно громоздок. Явно выписывать эти функции нет необходимости

Действия 1-3 (переналадка с i-того отверстия j-тое) происходит одновременно, и пробивка происходит немедленно после завершения самого длительного из этих действий. Поэтому

С = max(t (x) , t (y) , t (z))

Теперь, как и в предыдущем случае, задача составления оптимальной программы для дыропробивного пресса сводится к задаче коммивояжера (здесь - симметричной).

    Практическая часть

Инвестор, располагающий суммой в 300 тысяч денежных единиц, может вложить свой капитал в акции автомобильного концерна А и строительного предприятия В. Чтобы уменьшить риск, акций А должно быть приобретено по крайней мере в два раза больше, чем акций В, причём последних можно купить не более чем на 100 тысяч денежных единиц. Дивиденды по акциям А составляют 8% в год, по акциям В – 10%. Какую максимальную прибыль можно получить в первый год?

Пусть цены на акции одинаковы для A и B и равны: ЦA = ЦB = 1 тыс.

  • Решение задачи на нахождение оптимального пути методом ветвей и границ

    Курсовая работа >> Математика

    Математическая постановка задачи коммивояжёра 5 1.2.Метод ветвей и границ. 5 1.3. Алгоритм решения 6 1.4. Схема решения задачи 6 ... множество допустимых решений (планов) некоторым способом разбивается... данной проблемы и её решение с помощью метода ветвей...

  • Применение муравьиных алгоритмов при решении задач оптимизации

    Задача >> Информатика

    Централизованного управления, и её особенностями являются обмен... условиями задачи . Потому что для каждой задачи способ размещение... решении задач оптимизации. 1.1.Применение муравьиных алгоритмов для задачи коммивояжёра . Задача формулируется как задача ...

  • Применение NP-полных задач в ассиметрично-ключевой криптографии

    Курсовая работа >> Информатика

    Представление о способах решения данной задачи и носит... обращающий её в 1. Свидетель – такой набор. Задача о... решение «пятнашек» размера Задача коммивояжёра Проблема раскраски графа Задача о вершинном покрытии Задача о покрытии множества Задача о клике Задача ...

  • Языки программирования (6)

    Реферат >> Информатика

    Виртуальные понятия, существующие в её рамках - таблица, табличное пространство... интеллекта. Это предполагает развитие способов решения задач по аналогии, методов дедукции... привлекаются для решения NP-полных задач , например, задачи коммивояжёра . ИИ занимается...

  • 1.9 ООП 14090 – 07 КР ПЗ

    Лист

    докумен.

    Подпись

    Дата

    Разраб.

    Ковешников Д.В.

    Решение задач коммивояжера

    Литера

    Лист

    Листов

    Руков.

    Селютина О.Н.

    Голосование: 25, 14

    Что это такое?

    Иногда возникшую NP-полную задачу приходится решать. В таком случае, во-первых, иногда возможно сократить полный перебор так, что алгоритм, оставаясь в худшем случае экспоненциальным, будет работать за приемлемое время на реальных данных. Во-вторых, не точное решение, а некоторое приближение к нему может оказаться удовлетворительным. Алгоритмы, дающие такие решения, называются приближенными.

    Способы решения "переборных" задач можно разбить на несколько общих методов улучшения полного перебора.

    Методы решения труднорешаемых задач

    • Метод ветвей и границ состоит в отбрасывании заведомо неоптимальных решений целыми классами в соответствии с некоторой оценкой
    • состоит в поиске более оптимального решения в окрестности некоторого текущего решения
    • Приближенные и эвристические методы состоят в применении эвристик для выбора элементов решения
    • Псевдополиномиальные алгоритмы представляют собой подкласс динамического программирования
    • Метод случайного поиска состоит в представлении выбора последовательностью случайных выборов

    Оценки качества приближенных алгоритмов

    Пусть мы решаем оптимизационную задачу, то есть ищем объект с наибольшей или наименьшей стоимостью среди множества объектов, на которых задана функция стоимости. Обозначим оптимальное решение как С *. А решение, которое дает нам алгоритм как С.

    Мы будем говорить, что алгоритм решает задачу с ошибкой не более чем в ρ (n) раз, если

    Max(C ⁄ C *, C * ⁄ C) ≤ ρ (n)

    Заметим, что поскольку максимум из двух взаимно обратных величин не меньше 1, то

    Иногда удобнее использовать относительную ошибку, которая определяется как | C − C *| ⁄ C *

    Мы будем говорить, что алгоритм имеет ошибку не более ε (n), если

    | C − C *| ⁄ C * ≤ ε (n)

    Легко проверить, что ε (n) может быть ограничена сверху через функцию ρ (n), а именно ε (n) ≤ ρ (n) − 1. В самом деле для задач на минимум это неравенство превращается в равенство. Для задач на максимум ε (n) = (ρ (n) − 1) ⁄ ρ (n) (далее нужно вспомнить, что ρ (n) ≥ 1.

    Для многих задач известны приближенные алгоритмы, решающие задачу с ошибкой не более чем в некоторое фиксированное число раз (независимо от длины входа). В других случаях такие алгоритмы неизвестны, и приходится довольствоваться алгоритмами, в которых оценка ошибки растет с ростом n .

    Для некоторых задач можно улучшать качество приближения (уменьшать относительную ошибку) ценой увеличения времени работы. Схемой приближения для данной оптимизационной задачи называется алгоритм, который, помимо условия задачи получает положительное число ε , и дает решение с относительной ошибкой не более ε .

    Схема приближения называется полиномиальной, если для любого фиксированного ε > 0 время её работы не превосходит некоторого полинома от n . Схема приближения называется полностью полиномиальной, если время её работы ограничено некоторым полиномом от n и от 1 ⁄ ε .

    Задача коммивояжера — полигон для испытания оптимизационных методов

    Формулировка задачи коммивояжера (1934 г.):

    Коммивояжер должен выйти из первого города, посетить по разу в неизвестном порядке города 2, 3, …, n и вернуться в первый город. Расстояния между городами известны. В каком порядке следует обходить города, чтобы замкнутый путь (тур) коммивояжера был кратчайшим?

    В терминах теории графов задачу можно сформулировать так: имеется полный ориентированный граф G = (V , E), каждой дуге (u , v) которого сопоставлен вес c (u , v). Требуется найти в этом графе гамильтонов контур наименьшей стоимости.

    Обратим внимание на детали, которые будут очень существенными для алгоритмов решения задачи:

    1. В обеих формулировках предполагается c (u , v) ≥ 0; c (u , u) = ∞ для всех u , v ∈ V .
    2. В наивной формулировке предполагается c (u , v) = c (v , u) для всех u , v ∈ V , т. е. граф можно считать неориентированным. Такая задача называется симметричной задачей коммивояжера. Однако, в общем случае, это необязательно.
    3. В наивной формулировке предполагаем, что для всех u , v , w ∈ V с (u , v) ≤ c (u , w) + c (w , v) (неравенство треугольника), что нередко выполняется в практических задачах. Однако вообще говоря, это неверно.

    Теорема

    Пусть P ≠ NP , ρ ≥ 1. Тогда не существует полиномиального приближенного алгоритма, решающего общую (более того, симметричную) задачу коммивояжера с ошибкой не более чем в ρ раз.

    Доказательство. Для доказательства заметим, что взяв произвольный граф G = (V , E) и сопоставив ему полный граф G ′ с функцией стоимости c (u , v) = 1, если (u , v) ∈ E и ρ | V | + 1 иначе. Убедимся, что наш полиномиальный алгоритм будет определять, есть ли в графе G гамильтонов цикл, что невозможно.

    Метод ветвей и границ ("поиск с возвратом", "backtracking")

    Данный метод является одной из первых эффективных схем неявного (улучшенного) перебора, идея которого состоит в том, что при решении экстремальной задачи можно избежать полного перебора путем отбрасывания заведомо неоптимальных решений.

    Идея метода состоит в следующем: решая дискретную экстремальную задачу, разобьем множество всех возможных вариантов на классы и построим оценки для них. В результате становится возможным отбрасывать решения целыми классами, если их оценка хуже некоторого рекордного значения.

    Рассмотрим дискретную экстремальную (для определенности — на минимум) задачу в общем виде:

    Пусть задано дискретное множество A и определенная на нем функция f . Обозначим минимум функции f на X как F (X).

    Требуется найти x 0 ∈ A: f (x 0) = F (A)

    Замечание 1

    Пусть A = A 0 ∪ A 1 ∪ … ∪ A k , A i ∩ A j = Ø, i ≠ j . Причем F (A) < F (A 0), т. е. на A 0 минимум не достигается.

    Тогда справедливо следующее: F (A) = min { F (A i) | i ∈ 1: k }

    Замечание 2

    Пусть Φ — функция, заданная на совокупности подмножеств множества A так, что Φ (X) ≤ F (X) ∀ X ⊂ A

    Пусть x * — произвольный элемент A и пусть f * = f (x *).

    Тогда справедливо следующее: F (A) = min { f *, min { F (A i) | i ∈ 1: k , Φ (A i) ≤ f *} }

    Эти два соображения позволяют предложить следующую технологию поиска минимума. Разобьем множество A на какие-либо подмножества A i и на каждом из них найдем нижнюю оценку Φ . Для элементов множества A будем вычислять значения функции f и запоминать наименьшее в качестве рекордного значения. Все подмножества, у которых оценка выше рекордного значения функции (f *), объединим в подмножество A 0 , чтобы в дальнейшем не рассматривать.

    Теперь выберем какое-либо из множеств A i , i > 0. Разобьем это множество на несколько более мелких подмножеств. При этом мы будем продолжать улучшать рекордное значение f *. Этот процесс продолжается до тех пор, пока не будут просмотрены все множества A i , i > 0.

    Более наглядно метод ветвей и границ (поиск с возвратом) можно объяснить с помощью дерева возможностей. Узлы такого дерева можно рассматривать как совокупности конфигураций (подмножества A i множества A), а каждый потомок некоторого узла представляет подмножество этой совокупности. Наконец, каждый лист представляет собой отдельную конфигурацию.

    Пример 1. Задача коммивояжера (алгоритм Литтла)

    Рассмотрим работу этого алгоритма на конкретном примере.

    Пусть имеется граф, заданный матрицей смежности:

    6 4 8 7 14
    6 7 11 7 10
    4 7 4 3 10
    8 11 4 5 11
    7 7 3 5 7
    14 10 10 11 7

    Справедливо следующее: вычитая любую константу из всех элементов любой строки или столбца матрицы С, оставляем минимальный тур минимальным. В связи с этим, процесс вычитания из каждой строки ее минимального элемента (приведение по строкам) не влияет на минимальный тур. Аналогично вводится понятие приведения по столбцам, обладающее тем же свойством.

    Приведем исходную матрицу по строкам

    Исходная

    6 4 8 7 14
    6 7 11 7 10
    4 7 4 3 10
    8 11 4 5 11
    7 7 3 5 7
    14 10 10 11 7

    Приведенная по строкам

    2 0 4 3 10 |4
    0 1 5 1 4 |6
    1 4 1 0 7 |3
    4 7 0 1 7 |4
    4 4 0 2 4 |3
    7 3 3 4 0 |7

    Выделенные жирным шрифтом числа в исходной матрице — это идеальный тур, полученный лексикографическим перебором.

    (Отметим, что сумма констант приведения есть 4 + 6 + 3 + 4 + 3 + 7 = 27)

    А затем по столбцам:

    0 0 3 3 6
    0 1 4 1 0
    1 2 0 0 3
    4 5 0 1 3
    4 2 0 1 0
    7 1 3 3 0
    0 2 0 1 0 4

    (Отметим, что сумма констант приведения здесь есть 0 + 2 + 0 + 1 + 0 + 4 = 7, а всех констант: 27 + 7 = 34)

    Теперь, тур, проходящий только через ребра нулевой стоимости, будет, очевидно, минимальным. Для того, чтобы определить его стоимость, прибавим к нулю только что вычисленную константу 34:

    Таким образом, мы получили нижнюю оценку стоимости класса всех возможных туров. Т. е. минимальный тур в данной задаче не может стоить меньше, чем 34.

    Назовем оценкой нуля в позиции (i , j) в матрице сумму минимальных элементов в i -й строке и j -м столбце (не считая сам этот ноль). Оценим теперь каждый ноль в приведенной матрице:

    1 2 3 4 5 6
    1 0 1 0 3 3 6
    2 0 1 1 4 1 0
    3 1 2 0 1 0 3
    4 4 5 0 1 1 3
    5 4 2 0 1 0
    6 7 1 3 3 0 1

    Оценки, равные нулю, не указаны. Оценка k нуля, в позиции (i , j) означает буквально следующее: если в тур не будет включен путь из i в j (стоимостью 0), то придется доплатить как минимум k. Поэтому, можно разделить класс всех возможных туров на два: туры, содержащие ребро (i , j) и туры, не содержащие его. Для последних минимальная оценка увеличится на k .

    Рассмотрим ребро, соответствующее нулю с максимальной оценкой. В данном случае это ребро (1, 2). Таким образом, как только что было замечено, класс всех туров разбивается на два: содержащих ребро (1, 2) и не содержащих его. Нижняя оценка стоимости второго класса туров увеличивается до 35. Чтобы определить оценку для первого класса туров удалим из матрицы строку 1 и столбец 2 (Обозначим ее как C [(1,2)]):

    Т. к. матрицу удалось привести на 1 (по 1-му столбцу), то оценка класса туров с ребром (1, 2) увеличивается на 1 и становится равной 35.

    Разбиение на классы и сами оценки можно представить в виде дерева:

    Таким образом, класс (ВСЕ) был разбит на два и были вычислены соответствующие оценки.

    Выберем теперь класс с наименьшей оценкой и повторим этот процесс для него. Затем из двух полученных классов выберем тот, у которого оценка минимальна и разобьем его. Так будем повторять до тех пор, пока не достигнем листа дерева. Т. е. пока не получим матрицу 0×0:

    C [(1, 2); [−](a 1 , b 1); [−](a 2 , b 2); … [−](a k , b k)]

    Где (каждое) −(x , y) означает, что матрица соответствует классу, не содержащему ребро (x , y) Удалив из обозначения матрицы элементы вида −(x , y), получим следующее:

    (c 0 , d 0); (c 1 , d 1); … (c n , d n)

    Вершина (5, 4) дерева будет соответствовать классу, содержащему ребра: (1, 2); (3, 1); (6, 5); (2, 6); (4, 3); (5, 4). Этот класс, очевидно, состоит из одного полного тура (1, 2, 6, 5, 4, 3, 1) со стоимостью = 36 (для полного тура его минимальная оценка равна точной стоимости)


    Запомним этот результат как рекордный и пройдем по дереву вверх, "вычеркивая" все вершины (т. е. исключая из дальнейшего рассмотрение все классы), оценки которых больше или равны только что найденной. Кроме того, будем вычеркивать вершину и в том случае, если у нее оба потомка вычеркнуты, несмотря на ее оценку. Получим следующее:


    Матрица, соответствующая классу туров, не содержащих ребро (1, 2), приведенная по второму столбцу, будет выглядеть так:

    1 2 3 4 5 6
    1 0 3 3 3 6
    2 0 1 1 4 1 0
    3 1 1 0 1 0 3
    4 4 4 0 1 1 3
    5 4 1 0 1 0
    6 7 0 1 3 3 0

    Она была получена из матрицы, соответствующей классу всех туров путем установки прочерка (обозначающего бесконечную стоимость перелета) вместо элемента (1, 2). Т.е. с 1,2 = ∞. Обозначим ее как C [−(1,2)]

    Т. к. максимальная оценка нуля 3 (элемент 1,3) получаем, что оценка для ветви −(1,3) равна 38.

    Вычеркивая первую строку и первый столбец, получим матрицу, приводимую на 1 по четвертой строке. То есть оценка ветви −(1,2)(1,3) становится равной 36. Дальнейшее ветвление будем продолжать уже с учетом найденного рекордного значения (36):

    Таким образом, вершин не осталось, перебор завершен. А найденное в ходе него рекордное значение и соответствующий ему тур — решение задачи.

    Удовлетворительных теоретических оценок алгоритма Литтла и ему подобных нет, но практика показывает, что на современных машинах они позволяют решать задачу коммивояжера с количеством вершин ≈ 100. Кроме того, алгоритмы типа ветвей и границ являются эффективными эвристическими процедурами. Если нет возможности доводить их до конца.

    Пример 2. Задача о размыкании контуров

    Тот же подход можно применить к задаче о размыкании контуров. Постановка задачи:

    Пусть задан граф G = (V , E), каждой дуге (u , v) которого сопоставлено положительное число c (u , v) — вес этой дуги.

    Требуется найти E 0 ⊂ E так, чтобы граф (V , E 0) не имел контуров и сумма весов дуг (из E 0) была максимальной.

    Рассмотрим вспомогательную задачу (обозначим ее (E , E *)) аналогичную только что сформулированной, но с дополнительным параметром — множеством E * ⊂ E из которого дуги удалять нельзя (при этом будем требовать, чтобы в графе (V , E *) не было контуров).

    Если имеется задача (E , E *) то возможно все множество ее решений разбить на два класса следующим образом.

    Рассмотрим дугу (u , v) ∈ E \ E * такую, что в графе (V , E * ∪ (u , v)) нет контуров.

    Тогда множество решений задачи можно разбить на два:

    1. множество решений задачи (E \ (u , v), E *)
    2. множество решений задачи (E , E* ∪ (u , v))

    Исходная задача о размыкании контуров, очевидно, является задачей (E , Ø).

    Введем теперь функцию est(E , E 0) следующим образом:

    1. если граф (V , E) не содержит циклов, то est(E , E 0) = 0
    2. иначе, пусть E cyc — цикл, тогда: est(E , E 0) = est(E \ E cyc , E 0) + c cyc , где c cyc = min{ c (u , v) | (u , v) ∈ E cyc \ E 0 } (т. е. мин. вес, которым можно разомкнуть этот цикл)

    Несложно показать, что

    V (E , E 0) ≥ est(E , E 0),

    где v (E , E 0) — минимум суммы весов дуг, удаление которых из E \ E 0 размыкает все контуры графа.

    Метод локальных улучшений ("локальный поиск")

    Идея этого метода заключается в том, что для каждого решения экстремальной задачи x ∈ X определяется окрестность близких решений A (x) и на каждой итерации вычислительного процесса при заданном текущем решении x делается попытка найти в его окрестности решение, которое имело бы лучшее значение целевой функции. Если такое решение удается найти, оно само становится текущим решением, если нет — поиск заканчивается.

    Более конкретно стратегия локального поиска такова:

    • Начните с произвольного решения
    • Для улучшения текущего решения примените к нему какое-либо преобразование из заданной совокупности преобразований. Это улучшенное решение становится текущим решением
    • Повторяйте указанную процедуру до тех пор, пока ни одно из преобразований в заданной совокупности не позволит улучшить текущее решение

    Если заданная совокупность преобразований включает все возможные преобразования (которые из любого решения могут получить любое другое), то мы получим точное (глобально-оптимальное) решение, но трудоемкость такого алгоритма будет не лучше, чем у перебора всех решений.

    На практике при решении задач, точные решения которых требуют экспоненциальных затрат времени, совокупность преобразований ограничивают. С помощью них из ряда произвольных решений получают локально-оптимальные решения и выбирают из них лучшее.


    Рассмотрим точный алгоритм нахождения минимального остовного дерева в графе с помощью метода локального поиска. Локальные преобразования будут таковы: мы берем то или иное ребро, не относящееся к текущему остовному дереву и добавляем его к дереву (получая цикл), а затем убираем из этого цикла одно ребро (с наивысшей стоимостью). Это продолжается, пока все ребра вне дерева не будут иметь наивысшую стоимость среди всех ребер в цикле, который образуется при добавлении его к дереву (одна эта проверка требует времени O (| V || E |)). Этот алгоритм работает медленнее, чем алгоритмы Прима и Крускала, и служит примером нерационального использования локального поиска для не NP-полных задач.


    Пример 2. Задача коммивояжера ("двойной выбор")

    Простейшее преобразование, которым можно воспользоваться в симметричной задаче коммивояжера, является так называемый "двойной выбор" . Он заключается в том, что мы выбираем любые два ребра (например (a , b) и (c , d)), удаляем их и "перекоммутируем" соединявшиеся ими точки так, чтобы образовался новый маршрут. Если сумма стоимостей двух новых ребер оказалась меньше, чем двух старых, то мы нашли улучшенный маршрут.

    Рассмотрим тот же граф, для которого мы строили остовное дерево. Выберем в качестве начального маршрута (a , b , c , d , e) и применим к нему "двойной выбор". Легко убедиться, что на рисунке "в" нельзя удалить ни одну пару ребер, выгодно заменив её другой.


    Двойной выбор можно обобщить на k -выбор. В этом случае мы удаляем до k ребер и "перекоммутируем" оставшиеся элементы в любом порядке, пытаясь получить маршрут. Мы, вообще говоря, не требуем, чтобы удаляемые ребра были несмежными.

    Легко убедиться в том, что количество различных преобразований, которые нужно рассмотреть при k -выборе равно O (| V | k). Однако время, требуемое для получения какого-либо оптимального маршрута, может оказаться значительно больше.

    На практике очень эффективным является "выбор с переменной глубиной". Он с большой вероятностью обеспечивает получение оптимального маршрута для | V | = 40 − 100.

    Пример 3. Задача размещения блоков

    Формулировка задачи одномерного размещения блоков: требуется упорядочить вершины неориентированного графа G = (V , E) с весами на ребрах c (u , v), пронумеровав их числами 1 … n так, чтобы минимизировать ∑ i , j = 1… n | i − j | c (v i , v j); n = | V |.

    Вершины графа обычно называют "блоками", а веса интерпретируют как количество "проводов" между блоками. Тогда суть задачи становится понятна: требуется расположить элементы на прямой так, чтобы длина проводов, требуемая для их соединения была минимальной.

    Эта, а также аналогичная двумерная задача, находят приложение при соединении логических плат и создании интегральных микросхем.

    Для нахождения локально-оптимальных решений задачи размещения блоков можно использовать такие локальные преобразования:

    1. Произвести взаимную перестановку смежных блоков v i и v i +1 , если результирующий порядок имеет меньшую стоимость. Пусть

      L (j) = ∑ k =1… j −1 c (v k , v j);
      R (j) = ∑ k = j +1… n c (v k , v j).

      Улучшение можно выполнить, если

      L (i) − R (i) + R (i +1) − L (i +1) + 2 c (v i , v i +1) < 0

    2. Взять блок v i и вставить его между некоторыми блоками v i и v i +1 при некоторых значениях i и j .
    3. Выполнить взаимную перестановку двух блоков v i и v j .

    Как и в задаче коммивояжера мы не в состоянии точно оценить время, необходимое для нахождения локального оптимума. Можно показать, что, если ограничиться преобразованием (1 ), времени O (| V |) будет достаточно, чтобы проверить, является ли выполняемое преобразование улучшающим, и вычислять L (i) и R (i). Для преобразований (2 ) и (3 ) это время увеличивается до O (| V | 2). Но это не есть оценка времени нахождения локального оптимума, так как каждое улучшение может создавать возможности для новых улучшений.

    Приближенные и эвристические методы

    В этом разделе мы рассмотрим алгоритмы, работающие за известное нам полиномиальное время и решающие "переборные" задачи с некоторой известной нам ошибкой. Грань между приближенными и эвристическими методами размыта. Некоторые выделяют как приближенные алгоритмы те, в которых возможно регулировать погрешность, т. е. схемы приближения.

    В эвристических методах для выбора элементов решения используются те или иные, кажущиеся естественными рекомендательные правила выбора, эвристики. Часто такие правила комбинируются с условием жадности выбора: сделанный выбор в дальнейшем не пересматривается. Более мощной разновидностью такого подхода является сокращенный поиск, в котором дерево вариантов, знакомое нам по методу ветвей и границ, искусственно сокращается исходя из некоторых правил, правдоподобных, но формально не обоснованных.

    Пример 1. Задача коммивояжера (деревянный алгоритм)

    Рассмотрим три эвристических алгоритма, решающих симметричную задачу коммивояжера с неравенством треугольника с ошибкой не более чем в два раза (ρ = 2).

    Первый из них, так называемый деревянный алгоритм, состоит в следующем: построим для нашего графа минимальное покрывающее дерево с помощью алгоритма Прима, а затем совершим обход дерева в порядке root-left-right , удаляя повторяющиеся вершины.

    Время работы этого алгоритма равно Θ(E) = Θ(V 2).

    Пример 1. Задача коммивояжера (жадный алгоритм и алгоритм Карга-Томпсона)

    Самый очевидный алгоритм решения задачи коммивояжера — жадный: из текущего города иди в ближайший из тех, куда ещё не ходил. Если выполняется неравенство треугольника, нетрудно доказать, что этот алгоритм ошибается не более, чем в два раза. Трудоемкость этого алгоритма O (V 2).

    Алгоритм Карга-Томпсона (эвристика ближайшей точки) чуть менее очевиден: сначала возьмем две ближайшие вершины (вырожденный тур), затем в цикле по всем ребрам уже построенного тура для каждого ребра (u , v) выберем из свободных вершин такую w , чтобы c (u , w) + c (w , v) − c (u , v) было минимальным и включим w в тур между u и v . Для этого способа также ρ = 2, однако его трудоемкость составляет уже O (V 3).


    Пример 2. Задача о вершинном покрытии

    Напомним, что вершинным покрытием неориентированного графа G =(V , E) мы называем некоторое семейство его вершин V ′ с таким свойством: для всякого ребра (u , v) графа G хотя бы один из его концов u или v содержится в V ′. Размером вершинного покрытия считаем количество входящих в него вершин.

    Задача о вершинном покрытии состоит в нахождении вершинного покрытия минимального размера. Эта задача NP-трудна, однако приведенный ниже простой алгоритм решает её с ошибкой не более, чем в два раза.

    Пусть С — это уже построенная часть вершинного покрытия, а E ′ содержит непокрытые ребра графа. На каждом шаге мы берем ребро из E ′ и добавляем его концы u и v в C , а из E ′ изымаем все ребра имеющие своим концом u или v . И так пока множество E ′ не станет пустым. Время работы этого алгоритма есть O (E).

    Для доказательства того, что этот алгоритм не более чем вдвое хуже точного, достаточно заметить, что никакие два ребра из выбираемых алгоритмом не имеют общих вершин, а значит число вершин в C вдвое больше числа этих ребер. Оптимальное же покрытие содержит хотя бы одну вершину каждого из них и все эти вершины разные.

    Дано конечно множество X и семейство его подмножеств F . При этом:

    X =∪ S ∈ F S

    Мы ищем минимальное число подмножеств из F , которые вместе покрывают множество X , т. е. семейство С наименьшей мощности, для которого:

    X =∪ S ∈ C S

    Такое семейство С будем называть покрытием множества X . Например, на рисунке черные кружки — элементы множества X , контуры — подмножества из F . Три светлых сплошных контура составляют минимальное покрытие, жадный алгоритм дает покрытие мощностью на единицу больше (включает ещё и пунктирный контур).

    Мы будем решать задачу с помощью жадного приближенного алгоритма. Пусть множество U содержит ещё не покрытые элементы, а семейство C — уже включенные в покрытие подмножества. На каждом шаге производится жадный выбор: в качестве S берется множество, покрывающее наибольшее число ещё не покрытых элементов.

    Так происходит, пока U не пусто. Трудоемкость алгоритма составляет O (| X |·| F |·min(| X |,| F |)).

    Размер покрытия, даваемого этим алгоритмом, превосходит минимально возможный не более чем в H (max{| S |: S ∈ F }) раз (где H (d) — сумма первых d членов гармонического ряда) или, что тоже самое, в (ln| X | + 1) раз.

    Псевдополиномиальные алгоритмы

    Такие алгоритмы часто получаются при применении динамического программирования к NP-полным задачам. У таких алгоритмов экспоненциальная зависимость времени работы (и памяти компьютера) от длины входа, однако существует полиномиальная зависимость от некоторого числа (чисел) на входе задачи. Такие алгоритмы очень полезны, т. к. позволяют точно решать задачи с маленькими числами и приближенно — для больших чисел, каким-либо образом преобразованных в маленькие.

    Пример 1. Задача о суммах подмножеств ("табличный" алгоритм)

    Пусть задана пара (S , t), где S = { x 1 , x 2 , …, x n } представляет собой множество положительных целых чисел, а t — положительное целое число. Требуется отыскать среди подмножеств множества S , сумма которых не превосходит t , такое, у которого сумма ближе всего к t .

    Пусть | S | = n . Обозначим (k , w) — задачу, в которой имеется k первых чисел из S и нужно набрать сумму w . Таким образом исходная задача — это задача (n , t).

    Для решения задачи построим таблицу T [ n , t + 1], в клетку T [ i , j ] которой будем записывать оптимальное решение задачи (i , j).

    Первый столбец заполним нулями. Первую строку заполним сначала нулями, а начиная с клетки (1, x 1) — числами x 1 . Клетку T [ i , j ] (i , j > 1) будем заполнять по правилу:

    1. Если j − x i > 0, то y:= T [ i − 1, j − x i ], иначе y:= 0;
    2. T [ i , j ] := max(T [ i − 1, j ], y + x i)
    0 1 2 3 4 5 6 7 8 9 10 11 12 13
    3 0 0 0 3 3 3 3 3 3 3 3 3 3 3
    5 0 0 0 3 3 5 5 5 8 8 8 8 8 8
    7 0 0 0 3 3 5 5 7 8 8 10 10 12 12
    9 0 0 0 3 3 5 5 7 8 9 10 10 12 12
    11 0 0 0 3 3 5 5 7 8 9 10 11 12 12

    S = {3, 5, 7, 9, 11} t = 13;

    Таблица примет такой вид. Ответ: нет подмножества весом 13, ближе всего снизу 12.

    Условие (2) говорит о том, что оптимальная сумма может достигаться либо без использования x i (T [ i − 1, j ]), либо если x i входит в сумму (y + x i). В этом случае его надо прибавить к решению задачи (i − 1, j − x i), что и сохраняется в переменной y в условии (1). Из получившейся таблицы можно узнать и состав оптимальной суммы.

    Трудоемкость этого алгоритма составляет O (n t) операций. Таким образом, если t будет велико, можно будет все числа поделить, к примеру, на 10, округлить и получить приближенный алгоритм.

    Пример 2. Задача о суммах подмножеств ("списковый" алгоритм)

    Пусть L — набор чисел, а x — некоторое число, тогда через L + x обозначим набор чисел, который получится, если ко всем элементам L прибавить x . В этом алгоритме также используется тот факт, что x i может как входить в сумму, так и не входить, то есть:

    L i = L i −1 ∪ (L i −1 + x i)

    Выкидывая из списка элементы, большие t получим L n — упорядоченный список всех возможных удовлетворяющих нас сумм подмножеств S . Остается взять максимальный (последний) элемент, чтобы получить решение задачи. Список L n может содержать до 2 n элементов (т. е. алгоритм экспоненциален), однако, т.к. все элементы различны, их не может быть более t . Налицо псевдополиномиальность.

    Схемы приближения

    В связи с приближенными алгоритмами возникает вопрос: нельзя ли постепенно усложняя приближенный алгоритм, получать все более точное решение? Такие алгоритмы есть и, как мы уже говорили, они называются схемами приближения. Нужно заметить, что это большая редкость: обычно для труднорешаемой задачи известен простой алгоритм с плохой точностью, перебор на другом конце и ничего посередине.

    Мы рассмотрим две схемы приближения для задачи о сумме подмножеств. Одна из них получается из "спискового" алгоритма, а другая называется алгоритмом Джонсона.

    Пример 1. Задача о суммах подмножеств (полностью полиномиальная схема приближения)

    Такая схема получается из "спискового" алгоритма, если хранить список L в сокращенной форме. Список L ′ называется δ -сокращением списка L , если L ′ является частью L и

    ∀ y ∈ L ∃ z ∈ L ′: z ≤ y , (y − z) ⁄ y ≤ δ

    Например для δ = 0,1 и L = <10, 11, 12, 15, 20, 21, 22, 23, 24, 29> список L ′ = <10, 12, 15, 20, 23, 29> является δ -сокращением. Сокращение упорядоченного списка из m элементов требует Θ (m) операций. Таким образом, можно доказать, что "списковый" алгоритм, хранящий вместо полного списка сокращенный является полностью полиномиальной схемой приближения.

    Пример 2. Задача о суммах подмножеств (алгоритм Джонсона)

    Алгоритм, кроме множества S и числа t принимает на вход целочисленный параметр m > 2. Назовем i -е число большим, если x i > t ⁄(m +1). Описание алгоритма:

    1. Перебрать все подмножества из больших чисел и найти множество больших чисел с суммой t ′: t ′ < t , Δ = t − t ′ min
    2. Если Δ = 0, алгоритм закончен.
    3. Перебрать все малые числа в порядке убывания. Если очередное x i ≤ Δ , то t ′:= t ′ + x i , Δ := Δ − x i ;
    4. Когда перебор по малым числам закончен, выдать t ′ в качестве ответа.

    Пусть k — количество больших чисел. Тогда можно доказать, что количество подходящих нам подмножеств из больших чисел составляет O (k m) ≤ O (n m). Таким образом, перебор имеет полиномиальную, возрастающую с m сложность. Корме того, можно показать, что:

    T ′⁄ t ≥ 1 − 1 ⁄ (m + 1) 1 − 1 ⁄ (m + 1) ≤ t ′⁄ t* ≤ 1

    то есть относительная погрешность ε = 1⁄ (m +1). Таким образом, эта схема приближения является полиномиальной, но не является полностью полиномиальной.

    Метод случайного поиска

    Обычно выбор решения можно представить последовательностью выборов. Если делать эти выборы с помощью какого-либо случайного механизма, то решение находится очень быстро, так что можно находить решение многократно и запоминать "рекорд", т. е. наилучшее из встретившихся решений. Этот наивный подход существенно улучшается, когда удается учесть в случайном механизме перспективность тех или иных выборов, т. е. комбинировать случайный поиск с эвристическим методом и методом локального поиска. Такие методы применяются, например, при составлении расписаний для Аэрофлота.

    Очень бы хотелось побольше информации про метод случайного поиска и увидеть конкретный пример решения какой-либо задачи данным методом..........

    Пожалуйста. На запрос "метод случайного поиска" поисковик Google анонсирует более 300000 ссылок. Этой информации должно хватить..........

    Благодарю за статью, разобрался с алгоритмом Литтла. Хотел запомнить сайт и был удивлен, увидев домен родного университета:)

    Про запрет переходов выше замечено верно - хотелось бы видеть здесь пояснения.

    Спасибо за понятное разъяснение алгоритма Литтла. Но не учтена важная деталь: при выборе следующего ребра нужно учитывать, чтобы путь из набора ребер последовательно охватывал все точки. Так как ребра добавляем в случайном порядке, то приходится отслеживать наличие микроциклов (например выбрали ребро 1,0 - значит 0, 1 уже нельзя выбирать, или выбрали 0,1 и 1,2 - тогда нельзя выбирать 2,0 и 2,1 и т.д.), что отследить не так уж и просто. Я реализовал алгоритм на C#, циклы отслеживал с помощью специального класса, который содержал набор микроциклов и вычеркивал запрещенные ребра при добавлении в него новых и ребер и восстанавливал ребра при удалении ребер.

    Реализация алгоритма оказалась очень сложна на практике, а его отладка просто ад. Код занял 512 строк. 20 точек обрабатывает за 0.1 - 10 секунд - длительность сильно зависит от входного набора. Большее количество уже за адекватное время не решает. Простейший переборщик у меня находит решение для 13 вершин за 1 секунду.

    Если нужна реализация алгоритма на C# - пишите на почту [email protected].

    Решение задачи коммивояжера методом ветвей и границ (алгоритм Литтла)

    http://igorvn.ucoz.ru/load/kursovye/kommivojazher/2-1-0-15

    Метод Литла работает только на небольшом количестве точек поэтому во всех примерах их не более 10 Начиная 15 точек он дает приближенный результат 1-2 % больше минимального и это заложено в порядке определения каждого хода (редукции) непонятно на каком основании это делается.Ведь формально мы получаем другую матрицу.

    Высылаю вам "Русский метод" для подтверждения моего комментария.

    Благодарим. Не сомневаемся в Вашей добросовестности и компетентности. Но файлы *.doc мы не размещаем. Если выложите его содержимое в общедоступное место со статусом постоянного хранения и включите ссылку в текст своего нового комментария, опубликуем для всеобщего обозрения.

    Всем, кто хочет узнать про все теоретические ошибки метода Литтла, прошу сначала объяснить себе, что такое редукция и на каком это математическом основании оно проводится. Кроме того, Русский метод, разработанный мной, могу выслать совершенно бесплатно. Мой email: [email protected]

    К идее метода ветвей и границ приходили многие исследователи, но Литтл с соавторами на основе указанного метода разработали удачный алгоритм решения ЗК и тем самым способствовали популяризации подхода. С тех пор метод ветвей и границ был успешно применен ко многим задачам, для решения ЗК было придумано несколько других модификаций метода, но в большинстве учебников излагается пионерская работа Литтла.

    Общая идея тривиальна: нужно разделить огромное число перебираемых вариантов на классы и получить оценки (снизу - в задаче минимизации, сверху - в задаче максимизации) для этих классов, чтобы иметь возможность отбрасывать варианты не по одному, а целыми классами. Трудность состоит в том, чтобы найти такое разделение на классы (ветви) и такие оценки (границы), чтобы процедура была эффективной.

    Таблица 2

    Таблица 3

    Таблица 4

    Изложим алгоритм Литтла на примере 1 предыдущего раздела. Повторно запишем матрицу:

    Нам будет удобнее трактовать С ij как стоимость проезда из города i в город j. Допустим, что добрый мэр города j издал указ выплачивать каждому въехавшему в город коммивояжеру 5 долларов. Это означает, что любой тур подешевеет на 5 долларов, поскольку в любом туре нужно въехать в город j. Но поскольку все туры равномерно подешевели, то прежний минимальный тур будет и теперь стоить меньше всех. Добрый же поступок мэра можно представить как уменьшение всех чисел j-го столбца матрицы С на 5. Если бы мэр хотел спровадить коммивояжеров из j-го города и установил награду за выезд в размере 10 долларов, это можно было бы выразить вычитанием 10 из всех элементов j-й той строки. Это снова бы изменило стоимость каждого тура, но минимальный тур остался бы минимальным. Итак, доказана следующая лемма.

    Вычитая любую константу из всех элементов любой строки или столбца матрицы С, мы оставляем минимальный тур минимальным.

    Для алгоритма нам будет удобно получить побольше нулей в матрице С, не получая там, однако, отрицательных чисел. Для этого мы вычтем из каждой строки ее минимальный элемент (это называется приведением по строкам, см. табл. 3), а затем вычтем из каждого столбца матрицы, приведенной по строкам, его минимальный элемент, получив матрицу, приведенную по столбцам, см. табл. 4).

    Прочерки по диагонали означают, что из города i в город i ходить нельзя. Заметим, что сумма констант приведения по строкам равна 27, сумма по столбцам 7, сумма сумм равна 34.

    Тур можно задать системой из шести подчеркнутых (выделенных другим цветом) элементов матрицы С, например, такой, как показано на табл. 2. Подчеркивание элемента означает, что в туре из i-го элемента идут именно в j-тый. Для тура из шести городов подчеркнутых элементов должно быть шесть, так как в туре из шести городов есть шесть ребер. Каждый столбец должен содержать ровно один подчеркнутый элемент (в каждый город коммивояжер въехал один раз), в каждой строке должен быть ровно один подчеркнутый элемент (из каждого города коммивояжер выехал один раз); кроме того, подчеркнутые элементы должны описывать один тур, а не несколько меньших циклов. Сумма чисел подчеркнутых элементов есть стоимость тура. На табл. 2 стоимость равна 36, это тот минимальный тур, который получен лексикографическим перебором.

    Теперь будем рассуждать от приведенной матрицы на табл. 2. Если в ней удастся построить правильную систему подчеркнутых элементов, т.е. систему, удовлетворяющую трем вышеописанным требованиям, и этими подчеркнутыми элементами будут только нули, то ясно, что для этой матрицы мы получим минимальный тур. Но он же будет минимальным и для исходной матрицы С, только для того, чтобы получить правильную стоимость тура, нужно будет обратно прибавить все константы приведения, и стоимость тура изменится с 0 до 34. Таким образом, минимальный тур не может быть меньше 34. Мы получили оценку снизу для всех туров.

    Теперь приступим к ветвлению. Для этого проделаем шаг оценки нулей. Рассмотрим нуль в клетке (1,2) приведенной матрицы. Он означает, что цена перехода из города 1 в город 2 равна 0. А если мы не пойдем из города 1 в город 2? Тогда все равно нужно въехать в город 2 за цены, указанные во втором столбце; дешевле всего за 1 (из города 6). Далее, все равно надо будет выехать из города 1 за цену, указанную в первой строке; дешевле всего в город 3 за 0. Суммируя эти два минимума, имеем 1+0=1: если не ехать «по нулю» из города 1 в город 2, то надо заплатить не меньше 1. Это и есть оценка нуля. Оценки всех нулей поставлены на табл. 5 правее и выше нуля (оценки нуля, равные нулю, не ставились).

    Выберем максимальную из этих оценок (в примере есть несколько оценок, равных единице, выберем первую из них, в клетке (1,2)).

    Итак, выбрано нулевое ребро (1,2). Разобьем все туры на два класса - включающие ребро (1,2) и не включающие ребро (1,2). Про второй класс можно сказать, что придется приплатить еще 1, так что туры этого класса стоят 35 или больше.

    Что касается первого класса, то в нем надо рассмотреть матрицу на табл. 6 с вычеркнутой первой строкой и вторым столбцом.

    Таблица 5

    Таблица 7

    Дополнительно в уменьшенной матрице поставлен запрет в клетке (2,1), т.к. выбрано ребро (1,2) и замыкать преждевременно тур ребром (2,1) нельзя. Уменьшенную матрицу можно привести на 1 по первому столбцу, так что каждый тур, ей отвечающий, стоит не меньше 35. Результат наших ветвлений и получения оценок показан на рис. 6.

    Кружки представляют классы: верхний кружок - класс всех туров; нижний левый - класс всех туров, включающих ребро (1,2); нижний правый - класс всех туров, не включающих ребро (1,2). Числа над кружками - оценки снизу.

    Продолжим ветвление в положительную сторону: влево - вниз. Для этого оценим нули в уменьшенной матрице C на табл. 7. Максимальная оценка в клетке (3,1) равна 3. Таким образом, оценка для правой нижней вершины на рис. 7 есть 35+3=38. Для оценки левой нижней вершины на рис. 7 нужно вычеркнуть из матрицы C еще строку 3 и столбец 1, получив матрицу C[(1,2), (3,1)] на табл. 8. В эту матрицу нужно поставить запрет в клетку (2,3), так как уже построен фрагмент тура из ребер (1,2) и (3,1), т.е. , и нужно запретить преждевременное замыкание (2,3). Эта матрица приводится по столбцу на 1 (табл. 9), таким образом, каждый тур соответствующего класса (т.е. тур, содержащий ребра (1,2) и (3,1)) стоит 36 и более.

    Таблица 9

    Таблица 11

    Оцениваем теперь нули в приведенной матрице C[(1,2), (3,1)] нуль с максимальной оценкой 3 находится в клетке (6,5). Отрицательный вариант имеет оценку 38+3=41. Для получения оценки положительного варианта убираем строчку 6 и столбец 5, ставим запрет в клетку (5,6), см. табл. 10. Эта матрица неприводима. Следовательно, оценка положительного варианта не увеличивается (рис. 8).

    Оценивая нули в матрице на табл. 10, получаем ветвление по выбору ребра (2,6), отрицательный вариант получает оценку 36+3=39, а для получения оценки положительного варианта вычеркиваем вторую строку и шестой столбец, получая матрицу на табл. 11.

    В матрицу надо добавить запрет в клетку (5,3), ибо уже построен фрагмент тура и надо запретить преждевременный возврат (5,3). Теперь, когда осталась матрица 2х2 с запретами по диагонали, достраиваем тур ребрами (4,3) и (5,4). Мы не зря ветвились, по положительным вариантам. Сейчас получен тур: 1>2>6>5>4>3>1 стоимостью в 36. При достижении низа по дереву перебора класс туров сузился до одного тура, а оценка снизу превратилась в точную стоимость.

    Итак, все классы, имеющие оценку 36 и выше, лучшего тура не содержат. Поэтому соответствующие вершины вычеркиваются. Вычеркиваются также вершины, оба потомка которой вычеркнуты. Мы колоссально сократили полный перебор. Осталось проверить, не содержит ли лучшего тура класс, соответствующий матрице С , т.е. приведенной матрице С с запретом в клетке 1,2, приведенной на 1 по столбцу (что дало оценку 34+1=35). Оценка нулей дает 3 для нуля в клетке (1,3), так что оценка отрицательного варианта 35+3 превосходит стоимость уже полученного тура 36 и отрицательный вариант отсекается.

    Для получения оценки положительного варианта исключаем из матрицы первую строку и третий столбец, ставим запрет (3,1) и получаем матрицу. Эта матрица приводится по четвертой строке на 1, оценка класса достигает 36 и кружок зачеркивается. Поскольку у вершины «все» убиты оба потомка, она убивается тоже. Вершин не осталось, перебор окончен. Мы получили тот же минимальный тур, который показан подчеркиванием на табл. 2.

    Удовлетворительных теоретических оценок быстродействия алгоритма Литтла и родственных алгоритмов нет, но практика показывает, что на современных ЭВМ они часто позволяют решить ЗК с n = 100. Это огромный прогресс по сравнению с полным перебором. Кроме того, алгоритмы типа ветвей и границ являются, если нет возможности доводить их до конца, эффективными эвристическими процедурами.



    Есть вопросы?

    Сообщить об опечатке

    Текст, который будет отправлен нашим редакторам: