В чем заключается идея симплекс метода. Симплексный метод решения ЗЛП. Общая идея симплекс-метода. Из всех отношений выберем наименьшее. Пусть это будет

Определить оптимальную стратегию использования оборудования в период времени длительностью т лет, причем прибыль за каждые i лет, i = от использования оборудования возраста t лет должна быть максимальной.

Известны

r (t )выручка от реализации продукции, произведенной за год на оборудовании возраста t лет;

l (t ) – годовые затраты, зависящие от возраста оборудования t;

с (t ) – остаточная стоимость оборудования возраста t лет;

Р – стоимость нового оборудования.

Под возрастом оборудования понимается период эксплуатации оборудования после последней замены, выраженный в годах.

Воспользуемся приведенными выше этапами составления математической модели задачи.

1. Определение числа шагов. Число шагов равно числу лет, в течение которого эксплуатировалось это оборудование.

2. Определние состояний системы. Состояние системы характеризуется возрастом оборудования t , t= .

3. Определение уравнений. В начале i -го шага, i = может быть выбрано одно из двух управлений: заменять или не заменять оборудование. Каждому варианту управления приписывается число

4. Определение функции выигрыша на i -ом шаге. Функция выигрыша на i -ом шаге – это прибыль от использования оборудования к концу i -го года эксплуатации, t= , i = . Таким образом, если оборудование не продается, то прибыль от его использования – это разность между стоимостью произведенной продукции и эксплуатационными издержками. При замене оборудования прибыль составляет разность между остаточной стоимостью оборудования и стоимостью нового оборудования, к которой прибавляется разность между стоимостью продукции и эксплуатационными издержками для нового оборудования, возраст которого в начале i -го шага составляет 0 лет.

5. Определение функции изменения состояния

(9.7)

Таким образом, если оборудование не меняется х i =0, то возраст оборудования увеличивается на один год t +1, если же оборудование меняется х i =1, то оборудование будет годовалым.

6. Составление функционального уравнения для i =т

Верхняя строка функционального уравнения соответствует ситуации, при которой в последний год оборудование не меняется и предприятие получает выигрыш в размере разницы между выручкой r (t ) и годовыми затратами l (t ).

7. Составление основного функционального уравнения

где W i (t t лет с i -го шага (с конца i -го года) до конца периода эксплуатации;

W i + 1 (t ) – прибыль от использования оборудования возраста t+ 1год с (i +1)-го шага до конца периода эксплуатации.

Математическая модель задачи построена.

Пример

т =12, р= 10, с (t )=0, r (t ) – l (t )=φ (t ).

Значения φ (t ) даны в таблице 9.1.

Таблица 9.1.

t
φ (t )

Для данного примера функциональные уравнения будут иметь вид

Рассмотрим заполнение таблицы для нескольких шагов.

Условная оптимизация начинается с последнего 12-го шага. Для i =12 рассматриваются возможные состояния системы t= 0, 1, 2, …, 12. Функциональное уравнение на 12-ом шаге имеет вид

1) t= 0 х 12 (0)=0.

2) t= 1 х 12 (1)=0.

10) t= 9 х 12 (9)=0.

11) t= 10 х 12 (10)=0; х 12 (10)=1.

13) t= 12 х 12 (12)=0; х 12 (12)=1.

Таким образом, на 12-ом шаге оборудование возраста 0 – 9 лет заменять не надо. Оборудование возраста 10 – 12 лет можно заменить или продолжить его эксплуатировать, так как для t= 10, 11, 12 имеется два условных оптимизационных управления 1 и 0.

По результатам расчетов заполняются два столбца таблицы 9.2, соответствующие i= 12.

Условная оптимизация 11-го шага.

Для i =11 рассматриваются все возможные состояния системы t =0, 1, 2, …, 12. Функциональное уравнение на 11-м шаге имеет вид

1) t= 0 х 11 (0)=0.

2) t= 1 х 11 (1)=0.

6) t= 5 х 11 (5)=0; х 11 (5)=1.

7) t= 6 х 11 (6)=1.

13) t= 12 х 11 (12)=1.

Таким образом на 11-ом шаге не следует заменять оборудование возраста 0 – 4 года. Для оборудования возраста 5 лет возможны две стратегии использования: заменить или продолжать эксплуатировать.

Начиная с 6-го года оборудование следует заменять. По результатам расчетов заполняются два столбца таблицы 9.2, соответствующие i =11.

1) t= 0 х 10 (0)=0.

2) t= 1 х 10 (1)=0.

3) t= 2 х 10 (2)=0.

4) t= 3 х 10 (3)=0.

5) t= 4 х 10 (4)=1.

13) t= 12 х 10 (12)=1.

На 10-ом шаге не следует заменять оборудование возраста 0 – 3 года. Начиная с 4-го года, оборудование следует заменять, так как новое оборудование приносит бóльшую прибыль.

По результатам расчетов заполняются два столбца в 9.2, соответствующие i =10.

Аналогичным образом заполняются остальные девять столбцов таблицы 9.2. При расчетах W i + 1 (t ) на каждом шаге значения φ (t ) для каждого t =0, 1, 2, …, 12 берутся из таблицы 9.1 исходных данных, приведенной в условии задачи, а значения W i (t ) – из последнего, заполненного на предыдущем шаге столбца в 9.2.

Этап условной оптимизации заканчивается после заполнения таблицы 9.2.

Безусловная оптимизация начинается с первого шага.

Предположим, что на первом шаге i =1 имеется новое оборудование, возраст которого 0 лет.

Для t=t 1 =0 оптимальный выигрыш составляет W 1 (0)=82. Это значение соответствует максимальной прибыли от использования нового оборудования в течение 12 лет.

W*=W 1 (0)=82.

Выигрышу W 1 (0)=82 соответствует х 1 (0)=0.

Для i =2 по формуле (9.7) t 2 =t 1 +1=1.

Безусловное оптимальное управление х 2 (1)=0.

Для i =3 по формуле (9.7) t 3 =t 2 +1=2.

Безусловное оптимальное управление х 3 (2)=0.

i =4 t 4 =t 3 +1=3 х 4 (3)=0
i =5 t 5 =t 4 +1=4 х 5 (4)=1
i =6 t 6 = 1 х 6 (1)=0
i =7 t 7 =t 6 +1=2 х 7 (2)=0
i =8 t 8 =t 7 +1=3 х 8 (3)=0
i =9 t 9 =t 8 +1=4 x 9 (4)=1
i =10 t 10 = 1 х 10 (1)=0
i =11 t 11 =t 10 +1=2 х 11 (2)=0
i =12 t 12 =t 11 +1=3 х 12 (3)=0

В рамках данной задачи оптимальная стратегия заключается в замене оборудования при достижении им возраста 4-х лет. Аналогичным образом можно определить оптимальную стратегию использования оборудования любого возраста.

В левой колонке таблицы 9.2 записываются возможные случаи системы t = , в верхней строке – номера шагов i = . Для каждого шага определяются условные оптимальные управления х i (t ) и условный оптимальный выигрыш W i (t ) c i -го шага и до конца для оборудования возраста t лет.

Управления, составляющие оптимальную стратегию использования оборудования, выделены в таблице 9.2 жирным шрифтом.


Таблица 9.2.

t i =12 i =11 i =10 i =9 i =8 i =7 i =6 i =5 i =4 i =3 i =2 i =1
x 12 W 12 x 11 W 11 x 10 W 10 x 9 W 9 x 8 W 8 x 7 W 7 x 6 W 6 x 5 W 5 x 4 W 4 x 3 W 3 x 2 W 2 x 1 W 1
0/1 0/1
0/1 0/1 0/1 0/1
0/1 0/1 0/1
0/1
0/1
0/1

Оптимальная стратегия замены оборудования

Одной из важных экономических проблем является определение оптимальной стратегии в замене старых станков, агрегатов, машин на новые.

Старение оборудования включает его физический и моральный износ, в результате чего растут производственные затраты по выпуску продукции на старом оборудовании, увеличиваются затраты на его ремонт и обслуживание, снижаются производительность и ликвидная стоимость.

Наступает время, когда старое оборудование выгоднее продать, заменить новым, чем эксплуатировать ценой больших затрат; причем его можно заменить новым оборудованием того же вида или новым, более совершенным.

Оптимальная стратегия замены оборудования состоит в определении оптимальных сроков замены. Критерием оптимальности при этом может служить прибыль от эксплуатации оборудования, которую следует оптимизировать, или суммарные затраты на эксплуатацию в течение рассматриваемого промежутка времени, подлежащие минимизации.

Введем обозначения: r(t) - стоимость продукции, производимой за один год на единице оборудования возраста t лет;

u(t) - ежегодные затраты на обслуживание оборудования возраста t лет;

s(t) - остаточная стоимость оборудования возраста t лет;

Р - покупная цена оборудования.

Рассмотрим период N лет, в пределах которого требуется определить оптимальный цикл замены оборудования.

Обозначим через fN(t) максимальный доход, получаемый от оборудования возраста t лет за оставшиеся N лет цикла использования оборудования при условии оптимальной стратегии.

Возраст оборудования отсчитывается в направлении течения процесса. Так, t = 0 соответствует случаю использования нового оборудования. Временные же стадии процесса нумеруются в обратном направлении по отношению к ходу процесса. Так, N = 1 относится к одной временной стадии, остающейся до завершения процесса, а N = N - к началу процесса.

На каждом этапе N–стадийного процесса должно быть принято решение о сохранении или замене оборудования. Выбранный вариант должен обеспечивать получение максимальной прибыли.

Функциональные уравнения, основанные на принципе оптимальности, имеют вид:

Первое уравнение описывает N–стадийный процесс, а второе- одностадийный. Оба уравнения состоят из двух частей: верхняя строка определяет доход, получаемый при сохранении оборудования; нижняя - доход, получаемый при замене оборудования и продолжении процесса работы на новом оборудовании.

В первом уравнении функция r(t) - u(t) есть разность между стоимостью произведенной продукции и эксплуатационными издержками на N–й стадии процесса.

Функция fN–1 (t + 1) характеризует суммарную прибыль от (N - 1) оставшихся стадий для оборудования, возраст которого в начале осуществления этих стадий составляет (t + 1) лет.

Нижняя строка в первом уравнении характеризуется следующим образом: функция s(t) - Р представляет чистые издержки по замене оборудования, возраст которого t лет.

Функция r(0) выражает доход, получаемый от нового оборудования возраста 0 лет. Предполагается, что переход от работы на оборудовании возраста t лет к работе на новом оборудовании совершается мгновенно, т.е. период замены старого оборудования и переход на работу на новом оборудовании укладываются в одну и ту же стадию.

Последняя функция fN–1 представляет собой доход от оставшихся N - 1 стадий, до начала осуществления которых возраст оборудования составляет один год.

Аналогичная интерпретация может быть дана уравнению для одностадийного процесса. Здесь нет слагаемого вида f0(t + 1), так как N принимает значение 1, 2,..., N. Равенство f0(t) = 0 следует из определения функции fN(t).

Уравнения являются рекуррентными соотношениями, которые позволяют определить величину fN(t) в зависимости от fN–1(t + 1). Структура этих уравнений показывает, что при переходе от одной стадии процесса к следующей возраст оборудования увеличивается с t до (t + 1) лет, а число оставшихся стадий уменьшается с N до (N - 1).

Расчет начинают с использования первого уравнения. Уравнения позволяют оценить варианты замены и сохранения оборудования, с тем чтобы принять тот из них, который предполагает больший доход. Эти соотношения дают возможность не только выбрать линию поведения при решении вопроса о сохранении или замене оборудования, но и определить прибыль, получаемую при принятии каждого из этих решений.

Пример. Определить оптимальный цикл замены оборудования при следующих исходных данных: Р = 10, S(t) = 0, f(t) = r(t) - u(t), представленных в таблице.

Решение. Уравнения запишем в следующем виде:

Вычисления продолжаем до тех пор, пока не будет выполнено условие f1(1) > f2(2), т.е. в данный момент оборудование необходимо заменить, так как величина прибыли, получаемая в результате замены оборудования, больше, чем в случае использования старого. Результаты расчетов помещаем в таблицу, момент замены отмечаем звездочкой, после чего дальнейшие вычисления по строчке прекращаем.

Можно не решать каждый раз уравнение, а вычисления проводить в таблице. Например, вычислим f4(t):

Дальнейшие расчеты для f4(t) прекращаем, так как f4(4) = 23 По результатам вычислений и по линии, разграничивающей области решений сохранения и замены оборудования, находим оптимальный цикл замены оборудования. Для данной задачи он составляет 4 года.

Ответ. Для получения максимальной прибыли от использования оборудования в двенадцатиэтапном процессе оптимальный цикл состоит в замене оборудования через каждые 4 года.

Оптимальное распределение ресурсов

Пусть имеется некоторое количество ресурсов х, которое необходимо распределить между п различными предприятиями, объектами, работами и т.д. так, чтобы получить максимальную суммарную эффективность от выбранного способа распределения.

Введем обозначения: xi - количество ресурсов, выделенных i–му предприятию (i = );

gi(xi) - функция полезности, в данном случае это величина дохода от использования ресурса xi, полученного i–м предприятием;

fk(x) - наибольший доход, который можно получить при использовании ресурсов х от первых k различных предприятий.

Сформулированную задачу можно записать в математической форме:

при ограничениях:

Для решения задачи необходимо получить рекуррентное соотношение, связывающее fk(x) и fk–1(x).

Обозначим через хk количество ресурса, используемого k–м способом (0 ≤ xk ≤ х), тогда для (k - 1) способов остается величина ресурсов, равная (x - xk). Наибольший доход, который получается при использовании ресурса (x - xk) от первых (k - 1) способов, составит fk–1(x - xk).

Для максимизации суммарного дохода от k–гo и первых (k - 1) способов необходимо выбрать xk таким образом, чтобы выполнялись соотношения

Рассмотрим конкретную задачу по распределению капиталовложений между предприятиями.

Распределение инвестиций для эффективного использования потенциала предприятия

Совет директоров фирмы рассматривает предложения по наращиванию производственных мощностей для увеличения выпуска однородной продукции на четырех предприятиях, принадлежащих фирме.

Для расширения производства совет директоров выделяет средства в объеме 120 млн р. с дискретностью 20 млн р. Прирост выпуска продукции на предприятиях зависит от выделенной суммы, его значения представлены предприятиями и содержатся в таблице.

Найти распределение средств между предприятиями, обеспечивающее максимальный прирост выпуска продукции, причем на одно предприятие можно осуществить не более одной инвестиции.

Решение. Разобьем решение задачи на четыре этапа по количеству предприятий, на которых предполагается осуществить инвестиции.

Рекуррентные соотношения будут иметь вид:

для предприятия № 1

для всех остальных предприятий

Решение будем проводить согласно рекуррентным соотношениям в четыре этапа.

1–й этап. Инвестиции производим только первому предприятию. Тогда

2–й этап. Инвестиции выделяем первому и второму предприятиям. Рекуррентное соотношение для 2–го этапа имеет вид

при х = 20 f2(20) = max (8 + 0,0 + 10) = max (8, 10) = 10,

при x = 40 f2(40) = max (16,8 + 10,20) = max (16, 18, 20) =20,

при х = 60 f2(60) = max (25,16 + 10, 8 + 20,28) = max (25,26, 28,28) =28,

при х = 80 f2(80) = max (36,25 + 10,16 + 20,8 + 28,40) = max (36, 35, 36, 36, 40) = 40,

при х = 100 f2(100) = max (44,36 + 10,25 + 20,16 + 28,8 + 40,48) = max (44, 46, 45, 44, 48, 48) = 48,

при х = 120 f2(120) = max (62,44 + 10,36 +20,25 + 28,16 + 40,8 + 48,62) = max (62, 54, 56, 53, 56, 56, 62) = 62.

3–й этап. Финансируем 2–й этап и третье предприятие. Расчеты проводим по формуле

при х = 20 f3(20) = mах (10, 12) = 12,

при x = 40 f3(40) = max (20,10 + 12,21) = max (20, 22, 21) = 22,

при х = 60 f3(60) = max (28,20 + 12,10 + 21,27) = max (28, 32, 31, 27) = 32,

при х = 80 f3(80) = max (40,28 + 12,20 + 21,10 + 27,38) = max (40, 40, 41, 37, 38) = 41,

при x = 100 f3(100) = max (48,40 + 12,28 + 21,20 + 27,10 + 38,50) = max (48, 52, 49, 47, 48, 50) = 52,

при х = 120 f3(120) = max (62,48 + 12,40 + 21,28 + 27,20 + 38,10 + 50,63) = max (62, 60, 61, 55, 58, 60, 63) = 63.

4–й этап. Инвестиции в объеме 120 млн р. распределяем между 3–м этапом и четвертым предприятием.

При х = 120 f4(120) = max (63,52 + 11,41 + 23,32 + 30,22 + 37,12 + 51,63) = max (63, 63, 64, 62, 59, 63, 63) = 64.

Получены условия управления от 1–го до 4–го этапа. Вернемся от 4–го к 1–му этапу. Максимальный прирост выпуска продукции в 64 млн р. получен на 4–м этапе как 41 + 23, т.е. 23 млн р. соответствуют выделению 40 млн р. четвертому предприятию (см. табл. 29.3). Согласно 3–му этапу 41 млн р. получен как 20 + 21, т.е. 21 млн р. соответствует выделеник 40 млн р. третьему предприятию. Согласно 2–этапу 20 млн р. получено при выделении 40 млн р. второму предприятию.

Таким образом, инвестиции в объеме 120 млн р. целесообразно выделить второму, третьему и четвертому предприятиям по 40 млн р. каждому, при этом прирост продукции будет максимальным и составит 64 млн р.

Минимизация затрат на строительство и эксплуатацию предприятий

Задача по оптимальному размещению производственных предприятий может быть сведена к задаче распределения ресурсов согласно критерию минимизации с учетом условий целочисленности, накладываемых на переменные.

Пусть задана потребность в пользующемся спросом продукте на определенной территории. Известны пункты, в которых можно построить предприятия, выпускающие данный продукт. Подсчитаны затраты на строительство и эксплуатацию таких предприятий.

Необходимо так разместить предприятия, чтобы затраты на их строительство и эксплуатацию были минимальные.

Введем обозначения:

х - количество распределяемого ресурса, которое можно использовать п различными способами,

xi - количество ресурса, используемого по i–му способу (i = );

gi(xi) - функция расходов, равная, например, величине затрат на производство при использовании ресурса xi по i–му способу;

φk(x) - наименьшие затраты, которые нужно произвести при использовании ресурса х первыми k способами.

Необходимо минимизировать общую величину затрат при освоении ресурса x всеми способами:

при ограничениях

Экономический смысл переменных xi состоит в нахождении количества предприятий, рекомендуемого для строительства в i–м пункте. Для удобства расчетов будем считать, что планируется строительство предприятий одинаковой мощности.

Рассмотрим конкретную задачу по размещению предприятий.

Пример. В трех районах города предприниматель планирует построить пять предприятий одинаковой мощности по выпуску хлебобулочных изделий, пользующихся спросом.

Необходимо разместить предприятия таким образом, чтобы обеспечить минимальные суммарные затраты на их строительство и эксплуатацию. Значения функции затрат gi(x) приведены в таблице.

В данном примере gi(х) - функция расходов в млн р., характеризующая величину затрат на строительство и эксплуатацию в зависимости от количества размещаемых предприятий в i–м районе;

φk(x) - наименьшая величина затрат в млн. р., которые нужно произвести при строительстве и эксплуатации предприятий в первых k районах.

Решение. Решение задачи проводим с использованием рекуррентных соотношений: для первого района

для остальных районов

Задачу будем решать в три этапа.

1–й этап. Если все предприятия построить только в первом районе, то

минимально возможные затраты при х = 5 составляют 76 млн р.

2–й этап. Определим оптимальную стратегию при размещении предприятий только в первых двух районах по формуле

Найдем φ2(l):

g2(1) + φ1(0) = 10 + 0 = 10,

g2(0) + φ1(l)= 0 +11 = 11,

φ2(l) = min (10, 11) = 10.

Вычислим φ2(2):

g2(2) + φ1(0) = 19 + 0 = 19,

g2(l) + φ1(l) = 10 + 11 = 21,

g2(0) + φ1 (2) = 0 + 18 = 18,

φ2(2) = min (19, 21, 18) = 18.

Найдем φ2(3):

g2(3) + φ1 (0) = 34 + 0 = 34,

g2(2) + φ1(l) = 19 + 11 = 30,

g2(1) + φ1(2) = 10 + 18 = 28,

g2(0) + φ1(3) = 0 + 35 = 35,

φ2(3) = min (34, 30, 28, 35) = 28.

Определим φ2(4):

g2(4) + φ1(0) = 53 + 0 = 53,

g2(3) + φ1(l) = 34 + 11 = 45,

g2(2) + φ1(2) = 19 + 18 = 37,

g2(l) + φ1(3) = 10 + 35 = 45,

g2(0) +φ1(4) = 0 + 51 = 51,

φ2(4) = min (53, 45, 37, 45, 51) = 37.

Вычислим φ2(5):

g2(5) + φ1(0) = 75 + 0 = 75,

g2(4) + φ1(l) = 53 + 11 = 64,

g2(3) + φ1(2) = 34 + 18 = 52,

g2(2) + φ1(3) = 19 + 35 = 54,

g2(1) + φ1(4) = 10 + 51 = 61,

g2(0) + φ1(5) = 0 + 76 = 76,

φ2(5) = min (75, 64, 52, 54, 61, 76) = 52.

3–й этап. Определим оптимальную стратегию при размещении пяти предприятий в трех районах по формуле

φ3(x) = min{g3(x3) + φ2(x – х3)}.

Найдем φ3(5):

g3(5) + φ2(0) = 74 + 0 = 74,

g3(4) + φ2(1) = 54 + 10 = 64,

g3(3) + φ2(2) = 36 + 18 = 54,

g3(2) +φ2(3) = 20 + 28 = 48,

g3(1) + φ2(4) = 9 + 37 = 46,

g3(0) + φ2(5) = 0 + 52 = 52,

φ3(5) = min (74, 64, 54, 48, 46, 52) = 46.

Минимально возможные затраты при х = 5 составляют 46 млн р.

Определены затраты на строительство предприятий от 1–го до 3–го этапа. Вернемся 3–го к 1–му этапу. Минимальные затраты в 46 млн р. на 3–м этапе получены как 9 + 37, т.е. 9 млн р. соответствуют строительству одного предприятия в третьем районе (см. табл. 29.4). Согласно 2–му этапу 37 млн р. получены как 19 + 18, т.е. 19 млн р. соответствуют строительству двух предприятий во втором районе. Согласно 1–му этапу 18 млн р. соответствуют строительству двух предприятий в первом районе.

Ответ. Оптимальная стратегия состоит в строительстве одного предприятия в третьем районе, по два предприятия во втором и первом районах, при этом минимальная стоимость строительства и эксплуатации составит 46 ден. ед.

Нахождение рациональных затрат при строительстве трубопроводов и транспортных артерий

Требуется проложить путь (трубопровод, шоссе) между двумя пунктами А и В таким образом, чтобы суммарные затраты на его сооружение были минимальные.

Решение. Разделим расстояние между пунктами А и В на шаги (отрезки). На каждом шаге можем двигаться либо строго на восток (по оси X), либо строго на север (по оси Y). Тогда путь от А в В представляет ступенчатую ломаную линию, отрезки которой параллельны одной из координатных осей. Затраты на сооружение каждого из отрезков известны (рис. 29.2) в млн р.

Разделим расстояние от А до В в восточном направлении на 4 части, в северном – на 3 части. Путь можно рассматривать как управляемую систему, перемещающуюся под влиянием управления из начального состояния А в конечное В. Состояние этой системы перед началом каждого шага будет характеризоваться двумя целочисленными координатами х и у. Для каждого из состояний системы (узловой точки) найдем условное оптимальное управление. Оно выбирается так, чтобы стоимость всех оставшихся шагов до конца процесса была минимальна. Процедуру условной оптимизации проводим в обратном направлении, т.е. от точки В к точке А.

Найдем условную оптимизацию последнего шага.

Введение………………...………………………………………………...……….3

Глава 1. Теоретическое описание модели замены оборудования…………..….4

1.1. Характеристика состояния хозяйствующего субъекта и выявление тенденций его развития…………...………………………………..……...4

1.2. Информационно-методическое обеспечение экономического моделирования……………...……...…………………………………...…..4

1.2.1. Методическая база решения модели………………….…………....4

1.2.2. Информационно-методическое обеспечение метода…………..…9

Глава 2. Расчет показателей экономико-математической модели и экономическая интерпретация результатов………………………….………...13

2.1. Нахождение условного оптимального решение задачи…………...15

2.2. Составление оптимального плана замены оборудования…………21

Заключение…………………………………………………………………….....24

Список литературы…………………………………………………………..…..26

Приложения…………………………...………………………………………....27

Введение

Во всем мире существует множество предприятий, которые используют для производства своей продукции машинное оборудование. Поэтому при его внедрении нужно составлять оптимальный план использования и замены оборудования. Задачи по замене оборудования рассматриваются как многоэтаповый процесс, который характерен для динамического программирования.

Многие предприятия сохраняют или заменяют оборудование по своей интуиции, не применяя методы динамического программирования. Применять эти методы целесообразно, так как это позволяет наиболее четко максимизировать прибыль или минимизировать затраты.

Целью данной работы является определение оптимальных сроков замены старого оборудования.

Задачи этой работы состоят:

· в нахождении условного оптимального решения задачи;

· в составлении оптимального плана замены оборудования.

Старение оборудования включает его физический и моральный износ. В результате чего увеличиваются производственные затраты, растут затраты на обслуживание и ремонт, снижается производительность труда и ликвидная стоимость. Критерием оптимальности является либо прибыль от эксплуатации оборудования, либо суммарные затраты на эксплуатацию в течение планируемого периода.

Курсовая содержит 2 главы, 12 таблиц, 1 приложение, 5 рисунков и оформлена на 30 страницах.

Глава 1. Теоретическое описание модели замены оборудования

1.1. Характеристика состояния хозяйствующего субъекта и выявление тенденций его развития

Для осуществления своей эффективной деятельности производственные объединения и предприятия должны периодически производить замену используемого ими оборудования. При этой замене учитывается производительность используемого оборудования и затраты, связанные с содержанием и ремонтом оборудования.

Характерным для динамического программирования является подход к решению задачи по этапам, с каждым из которых ассоциирована одна управляемая переменная. Набор рекуррентных вычислительных процедур, связывающих различные этапы, обеспечивает получение допустимого решения задачи в целом при достижении последнего этапа.

() (1.1)

(1.1) - принцип оптимальности Беллмана.

(1.2)

где t – возраст оборудования к началу k-го года ( k=1,2,3,4,5,6,7,8,9,10);

– управление, реализуемое к началу k-го года; P 0 – стоимость нового оборудования.

(1.2) - функциональное уравнение Беллмана.

1.2. Информационно-методическое обеспечение экономического моделирования

1.2.1. Методическая база решения модели

В задачах динамического программирования экономический процесс зависит от времени (от нескольких периодов (этапов) времени), поэтому находится ряд оптимальных решений (последовательно для каждого этапа), обеспечивающих оптимальное развитие всего процесса в целом. Задачи динамического программирования называются многоэтапными или многошаговыми. Динамическое программирование представляет собой математический аппарат, позволяющий осуществлять оптимальное планирование многошаговых управляемых процессов и процессов, зависящих от времени. Экономический процесс называется управляемым, если можно влиять на ход его развития. Управлением называется совокупность решений, принимаемых на каждом этапе для влияния на ход процесса. В экономических процессах управление заключается в распределении и перераспределении средств на каждом этапе. Например, выпуск продукции любым предприятием – управляемый процесс, так как он определяется изменением состава оборудования, объемом поставок сырья, величиной финансирования и т.д. Совокупность решений, принимаемых в начале каждого года планируемого периода по обеспечению предприятия сырьем, замене оборудования, размерам финансирования и т.д., является управлением. Казалось бы, для получения максимального объема выпускаемой продукции проще всего вложить максимально возможное количество средств и использовать на полную мощность оборудование. Но это привело бы к быстрому изнашиванию оборудования и, как следствие, к уменьшению выпуска продукции. Следовательно, выпуск продукции надо спланировать так, чтобы избежать нежелательных эффектов. Необходимо предусмотреть мероприятия, обеспечивающие пополнение оборудования по мере изнашивания, т.е. по периодам времени. Последнее хотя и приводит к уменьшению первоначального объема выпускаемой продукции, но обеспечивает в дальнейшем возможность расширения производства. Таким образом, экономический процесс выпуска продукции можно считать состоящим из нескольких этапов (шагов), на каждом из которых осуществляется влияние на его развитие.

Началом этапа (шага) управляемого процесса считается момент принятия решения (о величине капитальных вложений, о замене оборудования определенного вида и т.д.). Под этапом обычно понимают хозяйственный год.

Динамическое программирование, используя поэтапное планирование, позволяет не только упростить решение задачи, но и решить те из них, к которым нельзя применить методы математического анализа. Упрощение решения достигается за счет значительного уменьшения количества исследуемых вариантов, так как вместо того, чтобы один раз решать сложную многовариантную задачу, метод поэтапного планирования предполагает многократное решение относительно простых задач.

Планируя поэтапный процесс, исходят из интересов всего процесса в целом, т.е. при принятии решения на отдельном этапе всегда необходимо иметь в виду конечную цель.

Предположим, какая-то система S находится в некотором начальном состоянии S 0 и является управляемой. Таким образом, благодаря осуществлению некоторого управления U указанная система переходит из начального состояния S 0 в конечное состояние S к. При этом качество каждого из реализуемых управлений U характеризуется соответствующим значением функции W(U). Задача состоит в том, чтобы из множества возможных управлений U найти такое U*, при котором функция W(U) принимает экстремальное (максимальное или минимальное) значение W(U*).

Задачи динамического программирования имеют геометрическую интерпретацию. Состояние физической системы S можно описать числовыми параметрами, например расходом горючего и скоростью, количеством вложенных средств и т.д. Назовем эти параметры координатами системы; тогда состояние системы можно изобразить точкой S, а переход из одного состояния S 1 в другое S 2 – траекторией точки S. Управление U означает выбор определенной траектории перемещения точки S из S 1 в S 2 , т.е. установление определенного закона движения точки S.

ВВЕДЕНИЕ

Тема моей работы касается решения задач, возникающих в экономике. При этом встает вопрос о выборе наилучшего в некотором смысле варианта решения. А на поиск возможного варианта часто влияют разного рода факторы, сужающие рамки выбора. Иначе говоря, требуется решить задачу оптимизации, которая состоит в необходимости выбора наилучшего варианта решений среди некоторого, как правило, ограниченного множества возможных вариантов.

Задача оптимизации может быть сформулирована на языке математики, если множество доступных вариантов удается описать с помощью математических соотношений (равенств, неравенств, уравнений), а каждое решение - оценить количественно с помощью некоторого показателя, называемого критерием оптимальности или целевой функцией. Тогда наилучшим решением будет то, которое доставляет целевой функции наибольшее или наименьшее значение, в зависимости от содержательного смысла задачи. Так, например, при инвестировании ограниченной суммы средств в несколько проектов естественной является задача выбора тех проектов, которые могут принести в будущем наибольшую прибыль. При доставке в магазины продукции от различных поставщиков возникает задача минимизации транспортных затрат.

Процесс формализации задачи называется построением ее математической модели. Он состоит из трех этапов.

1. Выбор параметров задачи, от которых зависит решение. Эти параметры называют управляющими переменными и обозначают , формируя из них вектор . Принять решение – это значит задать конкретные значения переменных.

2. Построение числового критерия, по которому можно сравнивать различные варианты решений. Такой критерий принято называть целевой функцией и обозначать через .

3. Описание всего множества X допустимых значений переменных – ограничений, связанных с наличием материальных ресурсов, финансовых средств, технологическими возможностями и т.п..

Математическая задача оптимизации состоит в нахождении такого допустимого решения , которое доставляет целевой функции наибольшее или наименьшее значение среди всех возможных решений.

1. Геометрический метод решения задач ЛП

Этот метод часто используется при решении задач, в которых только две неизвестных величины. Разберем его на следующих примерах:

Пример 1.1 . (Задача о производстве красок).

Небольшая фабрика изготовляет два вида красок: INT - для внутренних работ и EXT - для наружных работ. В производстве красок используются два исходных продукта А и В . Из-за малой площади склада максимально возможные суточные запасы этих продуктов равны 6 т. и 8 т. соответственно. На производство 1 тонны краски INT расходуется 1 тонна продукта А и 2тонны продукта В , а на изготовление 1 тонны краски EXT идет 2 тонны продукта А и 1 тонна продукта В . Фабрика продает краску по цене 3тыс. долл. за тонну краски INT и 2 тыс. долл. за тонну краски EXT . Исходные данные удобно свести в таблицу:

Изучение рынка сбыта показало, что суточный спрос на краску EXT никогда не превышает спрос на краску INT , более чем на 1 тонну. Какое количество краски каждого вида должна производить фабрика в сутки, чтобы доход от реализации продукции был максимален?

Построим математическую модель задачи. Для этого надо определить переменные задачи, целевую функцию и ограничения, которым удовлетворяют переменные. Обозначим через x 1 - планируемый суточный объем производства краски INT, а через x 2 - суточный объем производства краски EXT. Целевая функция f(x) будет выражать суточный доход от продажи краски, равный 3x 1 + 2x 2 (тыс. долл.). Этот доход подлежит максимизации

f( x)= 3 x 1 + 2 x 2 ® max.

Построим ограничения задачи, связанные с ограниченными запасами продуктов А и В . На производство краски INT в количестве x 1 (т) будет использовано 1x 1 (т) продукта А , а на производство краски EXT в объеме x 2 (т) будет затрачено 2x 2 (т) продукта А . Поскольку суточный запас продукта А равен 6 т., то расход продукта А на изготовление красок двух видов не может превышать в сутки этой величины: 1x 1 + 2x 2 £ 6 . Аналогично получим ограничение, связанное с запасом продукта В : 2x 1 +1x 2 £ 8 . Ограничение по соотношению спроса на краски можно описать неравенством: x 2 - x 1 £ 1 . Учитывая естественные условия неотрицательности объемов выпуска продукции, окончательно получим следующую задачу линейного программирования

f(x) = 3 x 1 + 2 x 2 ® max (1.1)

1 x 1 + 2 x 2 £ 6 , (1.2)

2 x 1 + 1 x 2 £ 8 , (1.3)

- x 1 + x 2 £ 1 , (1.4)

x 1 ³ 0, x 2 ³ 0 . (1.5)

Построим множество планов задачи, описываемое ограничениями (1.2)-(1.5). Рассмотрим первое неравенство. Оно задает некоторую полуплоскость, расположенную по одну сторону от граничной прямой

p 1 : 1x 1 +2x 2 =6

Построим эту прямую на плоскости с координатными осями x 1 и x 2 . Для проведения прямой достаточно знать две ее точки. Проще всего найти точки пересечения прямой с осями координат. Полагая x 1 = 0 , из уравнения прямой получим x 2 = 3 , а при x 2 = 0 найдем x 1 = 6 . Таким образом прямая p 1 пройдет через точки (0,3) и (6,0) . Чтобы определить, по какую сторону от прямой расположена искомая полуплоскость, достаточно подставить в неравенство (1.2) координаты любой точки плоскости. Если прямая не проходит через начало координат, то удобнее всего взять точку (0, 0) . Очевидно, что в этой точке неравенство (1.2) строго выполняется (1* 0 + 2* 0 < 6) , значит полуплоскость, определяемая этим неравенством, лежит ниже прямой p 1 , включая в себя начало координат. Искомую полуплоскость отметим штриховкой (рис.1.1 ).

Аналогично построим полуплоскость, задаваемую неравенством (1.3). Для этого нанесем на координатную плоскость граничную прямую

p 2 : 2x 1 +x 2 =8 ,

найдя ее точки пересечения с осями координат: (0,8) и (4,0) .

Подставляя координаты точки (0,0) в неравенство (2.3), видим, что начало координат лежит в искомой полуплоскости (2* 0 + 1* 0 < 8) , значит все точки, удовлетворяющие неравенству (2.3), расположены левее прямой p 2 . Отметим эту область штриховкой (рис.1.1 ).

Точки, задаваемые ограничением (4 ), находятся ниже прямой

p 3 : -x 1 +x 2 =1,

проходящей через точки (0, 1) и (-1, 0) .

Наконец, условия неотрицательности: x 1 ³ 0, x 2 ³0 задают все точки первой четверти, что также отметим штриховкой.

Выделяя теперь точки плоскости, удовлетворяющие всем ограничениям задачи (1.1)-(1.5), то есть расположенные одновременно во всех заштрихованных полуплоскостях, получаем множество планов X . Оно представляет собой многоугольник (в данной задаче - пятиугольник). Его стороны лежат на прямых, уравнения которых получаются из исходной системы неравенств (1.2)-(1.5) заменой знаков неравенств на строгие равенства.

Для графического представления целевой функции введем понятие линии уровня (изолинии функции).

Определение. Линией уровня (изолинией) функции f(x) называется множество точек x = (x 1, x 2) , в которых она принимает одно и то же постоянное значение f(x) = h , где h - некоторое число. Для линейной функции двух переменных f(x) = c 1 x 1 + c 2 x 2 линия уровня, соответствующая числу h , будет представлять прямую с уравнением

c 1 x 1 + c 2 x 2 = h (1.6)

При изменении числа h будем получать семейство линий уровня (параллельных прямых) с одним и тем же направляющим вектором c = =(c 1 , c 2) , перпендикулярным всем прямым. Известно, что вектор c = (c 1 , c 2) для линейной функции f(x) = c 1 x 1 +c 2 x 2 указывает направление ее возрастания. Геометрически это означает, что при параллельном перемещении прямой (1.6) в направлении целевого вектора c значение целевой функции возрастает.

Построим линии уровня целевой функции f(x) = 3x 1 + 2 x 2 в нашей задаче. Их уравнения будут иметь вид 3x 1 + 2 x 2 = h. Они задают семейство параллельных прямых, зависящих от параметра h . Все прямые перпендикулярны целевому вектору c = (3, 2) , составленному из коэффициентов целевой функции, поэтому для построения семейства линий уровня целевой функции достаточно построить ее целевой вектор, и провести несколько прямых, перпендикулярных этому вектору. Линии уровня будем проводить на множестве планов X , помня при этом, что при параллельном перемещении прямых в направлении целевого вектора c = (3, 2) значение функции f(x)= 3x 1 + 2x 2 будет возрастать. Поскольку в задаче оптимальный план должен доставлять целевой функции максимально возможное значение, то для решения задачи графически надо среди всех точек x = (x 1, x 2) множества планов X найти такую точку x* = (x 1 * , x 2 *) , через которую пройдет последняя линия уровня в направлении целевого вектора c = (3,2) . Из рисунка 1.2 видно, что искомой точкой будет точка, лежащая в вершине множества X , образованной пересечением прямых p 1 и p 2 . Решая систему уравнений, описывающих эти прямые найдем оптимальный план x 1 * = 3 1 / 3 , x 2 * = 1 1 / 3 . При этом максимальное значение целевой функции будет равно f(x*) = 12 2 / 3 . Таким образом, ежесуточно фабрика должна производить 3 1 / 3 тонн краски INT и 1 1 / 3 тонн краски EXT , получая при этом доход 12 2 / 3 тыс. долларов.

x 1 + 2 x 2 = 6,

2 x 1 + x 2 = 8,

Пример 1.2. Лечебное предприятие закупает два вида мультивитаминных комплексов «Здоровье» и «Долголетие» с содержанием витаминов трех видов. Количество единиц этих витаминов в одном грамме мультикомплексов, необходимая их норма при профилактическом приеме и стоимость одного грамма комплексов «Здоровье» и «Долголетие» отражены в таблице

Сколько граммов мультивитаминных комплексов каждого вида требуется на один профилактический прием, чтобы были получены все витамины не меньше требуемой нормы, и при этом их суммарная стоимость была минимальной.

Составим математическую модель задачи. Для этого введем переменные: x 1 – количество комплекса «Здоровье» (гр.) , x 2 – количество комплекса «Долголетие» (гр.) , необходимое для профилактического приема. Целевая функция выражает суммарную стоимость витаминных комплексов, которая должна быть минимально возможной

f( x)= 5 x 1 + 4 x 2 ® min (1.7)

Ограничения, описывающие выполнение норм по витаминам, имеют вид:


По витамину V 1 : 3x 1 + x 2 ³9 , (1.8)

По витамину V 2 : x 1 + 2x 2 ³ 8, (1.9)

По витамину V 3 : x 1 + 6x 2 ³12 . (1.10)

При этом переменные должны быть неотрицательны: x j ³0, j = 1, 2.

Снова начнем решение с построения множества планов X , для чего проведем граничные прямые, уравнения которых получаются при замене в ограничениях знаков неравенств на равенства

p 1 : 3 x 1 + x 2 = 9,

p 2 : x 1 + 2 x 2 = 8,

p 3 : x 1 + 6 x 2 = 12.

Подставляя координаты точки (0,0) в неравенства (1.8)-(1.10) видим, что начало координат им не удовлетворяет и, следовательно, не входит в множество планов Х . Поэтому штриховки направлены выше и правее граничных прямых. Выделяя точки, удовлетворяющие всем неравенствам и условиям неотрицательности, получаем множество планов, изображенное на рис. 1.2. В данном примере оно не ограничено.

Изобразим целевую функцию (1.7) с помощью линий уровня. Для этого достаточно построить целевой вектор c = (5, 4) и перпендикулярно ему провести несколько прямых на множестве Х. Поскольку целевой вектор указывает направление возрастания целевой функции, а в задаче о рационе требуется найти ее минимум, то для нахождения оптимального решения будем перемещать линию уровня параллельно самой себе по множеству Х в направлении, противоположном целевому вектору.

Последней точкой множества планов, через которую еще проходит линия уровня будет точка пересечения прямых p 1 и p 2 . Решая систему уранений (рис. 1.3).

3 x 1 + x 2 = 9

x 1 + 2 x 2 = 8

получим оптимальный план x 1 * = 2, x 2 * = 3. Минимальное значение целевой функции при этом будет равно

f(x*) = 5∙2 + 4∙3 = 22.

Следовательно, самый дешевый набор для профилактического приема состоит из 2 гр . комплекса А и 3 гр . комплекса В , и его стоимость равна 22 руб.

Теперь несложно сформулировать геометрический способ решения стандартных задач ЛП с двумя переменными:

· изображается допустимый многоугольник – пересечение полуплоскостей, являющихся решениями соответствующих неравенств;

· изображается целевой вектор ;

· через допустимое множество проводится перпендикуляр к целевому вектору – это линия уровня целевой функции;

· путем перемещения линии уровня параллельно самой себе в направлении целевого вектора до тех пор, пока не окажется по одну сторону от перемещаемой прямой, визуально определяется точка (или точки) максимума;

· вычисляются координаты точки максимума (решением соответствующей системы уравнений, задающих прямые, точка пересечения которых и есть искомая точка) и максимальное значение целевой функции.

Замечание. Для определения точки минимума следует перемещать изолинию против направления целевого вектора.

В разобранных примерах оптимальный план находился в единственной вершине многоугольника допустимых планов. Однако при решении задач ЛП могут встретиться и другие случаи.

Бесконечное множество оптимальных планов. На рис.1.4 целевая функция принимает одно и то же максимальное значение в любой точке отрезка AB , соединяющего две вершины множества планов Х . Такая ситуация возникает, если линии уровня параллельны граничной прямой.

Отсутствие ограниченного решения . На рис.1.5 изображен случай, когда целевая функция не ограничена сверху на множестве планов и решение задачи на максимум не существует. При этом решение задачи на минимум может существовать, (как в задаче о витаминах).

Отсутствие допустимых планов. На рис.1.6 области, допустимые по каждому из ограничений, не имеют общих точек. В этом случае говорят, что ограничения несовместны, множество планов пусто и задача ЛП решения не имеет.

Рис. 1.4 Рис. 1.5 Рис. 1.6

2. Симплекс-метод

2.1 Идея симплекс-метода

Рассмотрим универсальный метод решения канонической задачи линейного программирования

, , ,

с n переменными и m ограничениями-равенствами, известный как симплекс-метод.

Множество планов канонической задачи – выпуклое многогранное множество, имеющее конечное число угловых точек. И если эта задача имеет оптимальное решение, то оно достигается хотя бы в одной угловой точке.

С любой угловой точкой связан базисный план задачи, в котором переменных равны нулю, а оставшимся переменным соответствуют линейно независимые столбцы матрицы условий . Эти линейно независимые столбцы образуют невырожденную базисную матрицу .

Перебор всех угловых точек сопряжен с большими вычислительными затратами и поэтому не эффективен. В 1947 году Дж. Данциг предложил упорядоченную процедуру перебора угловых точек, при которой для нахождения оптимального решения достаточно исследовать лишь небольшую их часть. Эта процедура называется симплекс-методом .

Дж. Данциг предложил при переходе от одной крайней точки к другой заменять в базисной матрице всего один вектор. Это означает, что при таком переходе мы должны одну из базисных переменных исключить – сделать ее небазисной (равной нулю), а на ее место ввести новую переменную из числа небазисных (нулевых) – сделать ее базисной (положительной).

Оказывается, геометрически такая замена приводит к переходу от одной угловой точки к смежной (соседней), связанной с предыдущей точкой общим ребром.

Из всех соседних точек выбирается та, в которой целевая функция возрастает более всего. Поскольку число угловых точек конечно, через конечное число переходов будет найдена вершина с наибольшим значением целевой функции, либо будет установлена неограниченность целевой функции на неограниченном множестве планов.

Общая схема симплекс-метода состоит из следующих основных шагов.

· шаг 0 . Определение начального базиса и соответствующей ему начальной угловой точки (базисного плана) .

· шаг 1 . Проверка текущего базисного плана на оптимальность. Если критерий оптимальности выполнен,топлан оптимален и решение закончено. Иначе переход на шаг 2.

· шаг 2 . Нахождение переменной, вводимой в состав базисных. (Из условия увеличения целевой функции).

· шаг 3 . Нахождение переменной, исключаемой из состава базисных переменных (Из условия сохранения ограничений задачи).

· шаг 4 . Нахождение координат нового базисного плана (смежной угловой точки). Переход на шаг 1.

Повторяющиеся шаги 1–4 образуют одну итерацию симплекс-метода.

Из этой схемы следует, что во-первых, для начала работы симплекс-метода надо иметь какую-то угловую точку – начальный базисный план, а во-вторых, надо уметь исследовать текущую угловую точку на оптимальность, не вычисляя всех смежных вершин. Эти проблемы легко решаются, если каноническая задача ЛП имеет некий специальный вид.

Определение . Будем говорить, что каноническая задача ЛП имеет "предпочтительный вид", если

1. правые части уравнений , .

2. матрица условий содержит единичную подматрицу размера

.

Другими словами, в любом уравнении есть переменная с коэффициентом равным единице, отсутствующая в остальных уравнениях. Первое условие не является обременительным, так как в случае отрицательной правой части некоторого уравнения, достаточно умножить его на (–1). В задаче предпочтительного вида начальный базисный план находится очень просто.

Пример 2.1.

Матрица условий A и вектор правых частей ограничений b имеют вид

, ,

а целевой вектор с = (1, -3, 0, 4, 2).

Сразу очевидна одна базисная матрица: с единичными векторами условий.

Следовательно, выбирая в качестве базисных переменных x 1 , x 3 ,x 5 , и полагая в системе уравнений x 2 = x 4 = 0 (небазисные переменные), немедленно находим x 1 = 10,x 3 = 20,x 5 = 8, так что начальный базисный план x 0 = (10, 0, 20, 0, 8).Видим, что значения базисных переменных равны правым частям ограничений. Из этого понятно требование положительности правых частей b i .

В дальнейшем, базисные переменные будем объединять в вектор x Б.

Таким образом, в канонической задаче предпочтительного вида в качестве начальной базисной матрицы берется единичная подматрица A Б = E , а соответствующие ей базисные переменные равны правым частям ограничений:

x Б = b .

Для базисного плана такого вида может быть сформулирован достаточно простой для проверки критерий оптимальности. Введем величины

∆ j = < с Б, A j > – c j , j = 1,...,n, (2.1)

где с Б – вектор из коэффициентов целевой функции при базисных переменных x Б , A j – j- йстолбец матрицы условий, c j – j- й коэффициент целевой функции. Разности ∆ j называются симплексными разностями или симплексными оценками.

Критерий оптимальности базисного плана . Если для базисного плана с единичной базисной матрицей все симплексные оценки неотрицательны, то этот план оптимален.

Применим данный критерий для проверки на оптимальность базисного плана x 0 = (10, 0, 20, 0, 8) из примера 2.1.

Так как в этом плане вектор базисных переменных x Б =(x 1 , x 3 ,x 5 ), то с Б = (c 1 , c 3 ,c 5 ) = (1, 0, 2).

.

Следовательно,

∆ 1 = < с Б, A 1 > – c 1 =1∙1 + 0∙0 + 2∙0 – 1= 0,


∆ 2 = < с Б, A 2 > – c 2 =1∙3 + 0∙1 + 2∙2 – (-3) = 10,

∆ 3 = < с Б, A 3 > – c 3 =1∙0 + 0∙1 + 2∙0 – 0= 0,

∆ 4 = < с Б, A 4 > – c 4 =1∙(-1) + 0∙5 + 2∙1 – 4= -3,

∆ 5 = < с Б, A 5 > – c 5 =1∙0 + 0∙0 + 2∙1 – 2= 0.

Так как оценка ∆ 4 < 0, то базисный план x 0 не оптимален. Заметим, что симплексные оценки, соответствующие базисным переменным, всегда равны нулю, так что достаточно проверять только небазисные оценки.

2.2 Реализация симплекс-метода на примере

Продемонстрируем применение симплекс-метода на примере. Рассмотрим каноническую задачу ЛП

f(x) = x 1 + 2x 2 + 0 x 3 + 0 x 4 →max (2.2)
x 1 + 2x 2 + x 3 = 4, (2.3)
3 x 1 + 2x 2 + x 4 = 12, (2.4)
x j ≥ 0, j = 1,2,3,4. (2.5)

Матрица условий A = (A 1 , A 2 , A 3 , A 4), где

Целевой вектор c =(c 1 , c 2 , c 3 , c 4 ) = (1, 2, 0, 0); вектор правых частей b =(b 1 , b 2) = (4, 12).

Шаг 0. Нахождение начальной угловой точки (базисного плана).

Задача имеет предпочтительный вид, так как правые части уравнений положительны, а столбцы матрицы условий A 3, A 4 образуют единичную подматрицу. Значит начальная базисная матрица = (A 3 , A 4); x 3 иx 4 базисные переменные,x 1 иx 2 - небазисные переменные, c Б = (c 3, c 4) = = (0, 0).

Начальный базисный план имеет вид x 0 = (0, 0, x 3 , x 4) = (0, 0, 4, 12); f( x o )= 0.

Шаг 1. Проверка базисного плана на оптимальность.

Подсчитаем симплексные оценки для небазисных переменных по формуле (5.1)

1 = < c Б, A 1 > – c 1 = 0 ·(–1) + 0 ·3 – 1 = –1.

2 = < c Б, A 2 > – c 2 = 0 ·2 + 0 · 2 – 2 = –2.

Так как оценки отрицательны, то план x – не оптимален. Будем искать новый базисный план (смежную угловую точку) с большим значением целевой функции.

Шаг 2 . Нахождение переменной вводимой в базис.

Целевую функцию можно увеличить, если ввести в состав базисных переменных (сделать положительной) одну из небазисных переменных x 1 илиx 2 , поскольку обе оценки  j < 0. Обычно в состав базисных вводят небазисную переменную с наибольшей по модулю отрицательной оценкой, поэтому будем вводить в базис переменную x 2.

Шаг 3. Определение переменной выводимой из базиса.

После ввода в базис переменной x 2 новый план будет иметь вид

x" = (0, x 2, x 3 , x 4).

Этот план не является базисным, так как он содержит только одну нулевую координату, значит надо сделать нулевой (исключить из базиса) одну из переменных x 3 или x 4 . Подставим координаты плана x" = (0, x 2, x 3 , x 4) в ограничения задачи. Получим


2x 2 + x 3 = 4,

2x 2 + x 4 = 12.

Выразим отсюда базисные переменные x 3 и x 4 через переменную x 2 , вводимую в базис.

Чем больше значение x 2 , тем больше возрастает целевая функция. Найдем максимальное значение новой базисной переменной, не нарушающее ограничения задачи, то есть удовлетворяющее условиям (2.8), (2.9).

Перепишем последние неравенства в виде

2x 2 ≤ 4,

2x 2 ≤ 12,

откуда максимальное значение x 2 = min { 4/2, 12/2 } = 2. Подставляя это значение в выражения (2.6), (2.7) для x 3 и x 4 ,получаем x 3 = 0.Следовательно x 3 выводится из базиса.

Шаг 4. Определение координат нового базисного плана.

Новый базисный план (смежная угловая точка) имеет вид

x" = (0, x 2, 0, x 4)

Базис этой точки состоит из столбцов A 2 и A 4 , так что = (A 2, A 4). Этот базис не является единичным, так как вектор A 2 = (2,2),и следовательно задача (2.2)–(2.5) не имеет предпочтительного вида относительно нового базиса. Преобразуем условия задачи (2.3), (2.4) таким образом, чтобы она приняла предпочтительный вид относительно новых базисных переменных x 2, x 4, то есть чтобы переменная x 2 входила в первое уравнение с коэффициентом, равным единице, и не присутствовала во втором уравнении. Перепишем уравнения задачи

x 1 + 2 x 2 + x 3 = 4, (p 1)

3x 1 +2 x 2 + x 4 = 12. (p 2)

Поделим первое уравнение на коэффициент при x 2 .Получим новое уравнение = p 1 / 2, эквивалентное исходному

– 1/2 x 1 + x 2 + 1/2 x 3 = 2. ( )

Используем это уравнение, которое назовем разрешающим, для исключения переменной x 2 из второго уравнения. Для этого надо уравнение умножить на 2 и вычесть из p 2 . Получим = p 2 2 = p 2 – p 1:

4 x 1 – x 3 + x 4 = 8. ( )

В итоге получили новое "предпочтительное" представление исходной задачи относительно новых базисных переменных x 2 , x 4:

f (x ) = x 1 + 2 x 2 + 0 x 3 + 0 x 4  max

– 1/2 x 1 + x 2 + 1/2 x 3 = 2 ( )

4 x 1 – x 3 + x 4 = 8 ( )

x j 0, j = 1,2,3,4


Подставляя сюда представление нового базисного плана x 1 = (0, x 2, 0, x 4), сразу найдем его координаты, так как значения базисных переменных равны правым частям уравнений

x" = (0, 2, 0, 8); f (x 1)=4.

На этом завершается первая итерация простого симплекс-метода. Далее процесс решения задачи продолжается с шага 1, состоящем в проверке найденного плана на оптимальность. Решение заканчивается тогда, когда все симплексные оценки текущего базисного плана окажутся неотрицательными.

Мы не будем проводить вторую итерацию по схеме первой, поскольку все вычисления симплекс-метода удобнее проводить в табличном виде.

2.3 Табличная реализация простого симплекс-метода

Табличную реализацию продемонстрируем на том же примере (2.2)–(2.5).

Шаг 0 . Решение начинается с построения начальной симплекс-таблицы. Сначала заполняется правая часть таблицы с третьей колонки. В двух верхних строках записываются имена переменных задачи (x 1, ...,x 4) и коэффициенты целевой функции при этих переменных. Ниже записываются коэффициенты уравнений – элементы матрицы условий А , так что под переменной x 1 располагаетсястолбец A 1 , под переменной x 2 столбец A 2 и т.д. В правый столбец заносятся правые части ограничений (числа b i > 0).

Затем находим столбцы матрицы условий, образующие единичный базис – в нашем примере это A 3 и A 4 и соответствующие им базисные переменные x 3, x 4 записываем во вторую колонку. Наконец, в первом столбце записываем коэффициенты целевой функции при базисных переменных.


Таблица 1 - Начальная симплекс-таблица

С Б Базисные переменные с 1 =1 с 2 =2 с 3 =0 с 4 =0 Значения базисных перем. (x Б = b )
x 1 x 2 x 3 x 4
c 3 =0 x 3 a 11 =-1 a 12 =2 a 13 =1 a 14 =0 b 1 =4
c 4 =0 x 4 a 21 =3 a 22 =2 a 23 =0 a 24 =1 b 2 =12
Строка оценок  j  1 = -1  2 = -2  3 = 0  4 = 0 f(x)= 0

Так как задача имеет предпочтительный вид, то значения базисных переменных равны правым частям уравнений, расположенным в последнем столбце. Поскольку небазисные переменные равны нулю, то начальный базисный план равен

x o = (0, 0, x 3 , x 4) = (0, 0, 4, 12).

Шаг 1. Для проверки плана x o на оптимальность подсчитаем симплексные оценки для небазисных переменных x 1 и x 2 по формуле

j =< c Б , A j > – c j .

1 = < c Б , A 1 > – c 1 = 0 ·(–1) + 0 ·3 – 1 = –1.

При табличной реализации для подсчета оценки  1 надо найти сумму произведений элементов первого столбца (c Б) на соответствующие элементы столбца A 1 при небазисной переменной x 1 . Аналогично подсчитывается оценка  2 , как скалярное произведение первого столбца (c Б) на столбец при переменной x 2 .

2 = < c Б, A 2 > – c 2 = 0 ·2 + 0 · 2 – 2 = –2.

Симплексные оценки записываются в последней строке симплекс-таблицы, которая называется дельта-строкой. При этом заполняются не только клетки при небазисных переменных, но и базисные клетки. Легко проверить, что для базисных единичных столбцов матрицы условий симплексные оценки равны нулю. В последней клетке строки оценок записываем значение целевой функции в точке x o . Заметим, что, так как небазисные координаты базисного плана равны нулю, то подсчет целевой функции удобно производить по формуле

f (x )= < c Б , x Б >,

перемножая скалярно первый и последний столбцы таблицы.

Так как среди оценок  j естьотрицательные, то план x o – не оптимальный, и надо найти новый базисный план, заменив одну из базисных переменных на новую из числа небазисных.

Шаг 2. Поскольку обе оценки 1 и 2 < 0,то в базис можно включить любую из переменных x 1, x 2 . Введем в базис переменную с наибольшей по модулю отрицательной оценкой, то есть x 2 .

Столбец симплекс-таблицы, в котором находится вводимая в базис переменная называется ведущим столбцом .

В примере ведущим будет столбец при x 2 .

Шаг 3. Если в ведущем столбце все элементы отрицательны, то решения задачи не существует и max f (x ) . В примере все элементы ведущего столбца положительны, следовательно, можно найти максимальное значение x 2 , при котором одна из старых базисных переменных обратится в ноль. Напомним, что максимальное значение x 2 = min{4/2, 12/2}=2.

По таблице это значение вычисляется как наименьшее из отношений компонент базисного плана (из последнего столбца) к соответствующим положительным элементам ведущего столбца.

Наименьшее отношение находится в строке с базисной переменной x 3. Значит переменная x 3 исключается из состава базисных переменных (x 3 = 0).

Строка, содержащая переменную, исключаемую из базиса, называется ведущей строкой.

В примере ведущей строкой будет первая строка.

Элемент, находящийся на пересечение ведущей строки и ведущего столбца, называется ведущим элементом.

В нашем случае ведущий элемент a 12 = 2.

Табл. 2 - Начальная симплекс-таблица с ведущими строкой и столбцом

c Б Базисные перемен. с 1 =1 с 2 =2 с 3 =0 С 4 =0 Значения базисных перем. Уравнения
x 1 x 2 x 3 x 4
c 3 =0 x 3 –1 2 1 0 4 p 1
c 4 =0 x 4 3 2 0 1 12 p 2
Строка оценок  j  1 = –1 2 = –2  3 = 0  4 = 0 f(x)= 0

Шаг 4 . Для получения нового базисного плана приведем задачу к новому предпочтительному виду относительно новых базисных переменных.

Для этого построим новую симплекс-таблицу, во втором столбце которой вместо исключаемой переменной x 3 запишем новую базисную переменную x 2 , а в первом столбце (с Б ) вместо с 3 запишем коэффициент целевой функции при x 2 : c 2 =2 . В новой симплекс таблице столбец при x 2 долженстать единичным (ведущий элемент должен равняться единице, а все остальные элементы должны обратиться в ноль). Это достигается следующими преобразованиями строк таблицы.

a. Все элементы ведущей строки делим на ведущий элемент и записываем в той же строке новой симплекс- таблицы.

Полученную строку p 1 " назовем разрешающей.

b. К оставшейся второй строке прибавим разрешающую строку, умноженную на такое число, чтобы элемент, стоящий в ведущем столбце обратился в ноль.


p 2 "= p 2 + (- 2) p 1 "= p 2 - p 1.

c. Заполним последнюю строку, вычислив оценки  j " = < c Б ", A j " > - - c j ,где c Б ", A j " - соответствующие столбцы новой симплекс-таблицы, и значение целевой функции f(x)= < c Б ", x Б " >.

Получим вторую симплекс-таблицу с новым базисом.

Таблица 3 - Результат первой итерации

c Б " Базисные перемен. с 1 =1 с 2 =2 с 3 =0 с 4 =0 Значения базисных перем. Уравнения
x 1 x 2 x 3 x 4
c 2 =2 x 2 –1/2 1 1/2 0 2 p 1 " =p 1 /2
c 4 =0 x 4 4 0 -1 1 8 p 2 " =p 2 - p 1
оценки  j " –2 0 1 0 f(x")=4

Новый базисный план x " = (0, x 2 , 0, x 4) = (0, 2, 0, 8 ).

Поскольку оценка  1 = -2 < 0, то план x " не оптимален. Для перехода к новому базисному плану (соседней угловой точки) проведем еще одну итерацию симплекс - метода.

Так как 1 < 0, то в базис вводится переменная x 1 . Первый столбец, содержащий x 1 - ведущий.

Находим отношения компонент базисного плана к соответствующим положительным элементам ведущего столбца и в качестве ведущей строки берем строку с наименьшим отношением. В таблице 2 в ведущем столбце только второй элемент больше нуля (= 4), следовательно, вторая строка будет ведущей , а расположенная в ней базисная переменная x 4 подлежит исключению из базиса .

Выделяем ведущий столбец и ведущую строку и на их пересечении находим ведущий элемент (= 4) .

Строим новую (третью) симплекс-таблицу, заменяя в ней базисную переменную x 4 на x 1 , и снова преобразуя строки таблицы таким образом, чтобы ведущий элемент стал равным единице, а остальные элементы ведущего столбца обратились в ноль. Для этого ведущую (вторую) строку делим на 4, а к первой строке прибавляем полученную вторую строку, деленную на 2. Последнюю строку вычисляем по формулам для симплексных оценок  j "" = < c Б "", A j "" > - c j ,где c Б "", A j "" - соответствующие столбцы новой симплекс-таблицы. Значение целевой функции на новом базисном плане находим по формуле f(x "")= < c Б "", x Б "" >.

Таблица 4 - Результат второй итерации

c Б "" Базисн. перемен. с 1 =1 с 2 =2 с 3 =0 с 4 =0 Значения базисных перем. уравнения
x 1 x 2 x 3 x 4
c 2 =2 x 2 0 1 3/8 1/8 3 p 1 ""= p 1 "+p 2 ""/2
c 1 =1 x 1 1 0 -1/4 1/4 2 p 2 "" = p 2 "/4
оценки  j "" 0 0 1/2 1/2 f(x "")= 8

Новый базисный план x "" = (x 1 , x 2 , 0, 0) = (2, 3, 0, 0 ). Поскольку все оценки неотрицательны, то план x "" - оптимальный план.

Таким образом, x* = (2, 3, 0, 0 ), f(x*) = 8.

ЗАКЛЮЧЕНИЕ

Рассмотренные способы решения задач линейного программирования широко используются на практике. Однако следует отметить, что математическая модель всегда беднее реальной экономической системы. Она описывает эту систему лишь приблизительно, выделяя одни свойства и пренебрегая другими. Для компенсации указанного недостатка в математической экономике разрабатывается несколько типов моделей, каждый из которых призван отразить какую-то одну определённую сторону экономической действительности с тем, чтобы при решении конкретной экономической задачи можно было подобрать такую модель, которая лучше всего к ней подходит.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

1. Ашманов С.А. Линейное программирование. – М.: Наука, 1981.

2. Кузнецов Ю.Н., Кузубов В.И., Волощенко А.Б. Математическое программирование. – М.: Высшая школа, 1980.

3. Калихман И.Л. Линейная алгебра и программирование. – М.: Высшая школа, 1967.

4. Нит И.В. Линейное программирование. – М.: Изд-во МГУ, 1978.

5. Юдин Д.Б., Гольштейн Е.Г. Линейное программирование. Теория и конечные методы. – М.: Физматиз, 1963.

6. Тарасенко Н.В. Математика-2. Линейное программирование: курс лекций. – Иркутск: изд-во БГУЭП, 2003.

7. Математическое программирование в примерах и задачах: Учеб. пособие. – 2-е изд., испр. и доп. – М.: Высш. шк., 1993. – 336 с.

8. www.yandex.ru

9. www.mathematica.ru

  • Ранее было показано, что если задача линейного программирования имеет оптимальное решение, то одним из оптимальных решений является допустимое базисное решение ее системы ограничений, которое соответствует некоторой угловой точке многогранника допустимых решений системы.

  • Было показано, как с помощью конечного перебора базисных решений системы ограничений задачи, найти это оптимальное решение. Однако с ростом размерности n системы ограничений задачи объем вычислений решения задачи методом полного перебора базисных решений растет экспоненциально и становится непригодным на практике.

  • Можно организовать перебор только допустимых базисных решений и число перебираемых решений резко сократить, если каждое следующее допустимое базисное решение выбирать так, чтобы соответствующее значение целевой функции улучшалось или хотя бы не ухудшалось. Такой подход позволяет сократить число шагов при отыскании оптимального базисного решения. Эту идею поясним графически.


Пусть многоугольник ABCDEFGH изображает множество допустимых решений ЗЛП с двумя переменными, а вектор N - градиент целевой функции.

  • Нужно найти точку этого многоугольника, в которой целевая функция принимает наименьшее значение.

  • Пусть определено начальное допустимое базисное решение задачи, соответствующее угловой точке B.

  • При полном переборе всех допустимых базисных решений придется исследовать восемь таких решений, соответствующих восьми угловым точкам многоугольника.

  • Однако из рисунка видно, что, учитывая направление градиента N, выгоднее перейти к соседней вершине C, затем к соседней вершине D, которой соответствует оптимальное базисное решение задачи.

  • Таким образом, вместо восьми решений придется перебрать только три допустимых базисных решения.


  • Идея последовательного улучшения решения и положена в основу универсального метода решения задач линейного программирования –симплекс–метода.

  • Геометрический смысл симплекс–метода состоит в том, что выполняется последовательный переход от одной вершины многогранника допустимых решений задачи к соседней, в которой целевая функция принимает значение не худшее, чем в предыдущей вершине. Этот переход продолжается до тех пор, пока не будет найдено оптимальное решение или не будет обнаружено, что задача его не имеет.

  • Впервые симплекс–метод и его название были предложены американским математиком Джоном Данцигом в 1947 году, хотя идеи метода были опубликованы российским математиком Л.В. Канторовичем еще в 1939 году в статье «Математические методы организации и планирования производства».


Симплекс–метод состоит из трех основных элементов:

  • определения некоторого первоначального допустимого базисного решения задачи;

  • правила перехода к следующему не худшему допустимому базисному решению;

  • проверки оптимальности найденного решения.

  • Симплекс–метод применяется к задаче линейного программирования, записанной в канонической форме.


Симплексные преобразования системы линейных уравнений

  • Рассмотрим ЗЛП в канонической форме. Пусть задана система линейных уравнений:

  • Нужно найти неотрицательное решение этой системы, которое минимизирует линейную функцию

  • Обозначим – матрицу системы уравнений (1),

  • – расширенную матрицу этой системы.


Будем рассматривать случай, когда ранги матриц A и B равны: , т.е. когда система (1) имеет бесконечное множество решений. Наша задача заключается в том, чтобы выяснить, есть ли в этом случае оптимальные решения задачи и как их найти.

  • Для определенности предположим, что линейно независимыми являются первые r столбцов матрицы A, тогда систему (1) можно, применяя метод исключения Гаусса, преобразовать к виду:

  • Эта система равносильна системе уравнений (1). Столбцы коэффициентов

  • образуют базис системы столбцов матрицы системы (2) и поэтому переменные являются базисными, а набор – базисным набором.

  • Для краткости базисный набор переменных также будем называть базисом, имея в виду соответствующий базис столбцов коэффициентов. Остальные переменные являются свободными.


Выразим в системе (3) базисные переменные через свободные, получим систему (4):

  • (4)

  • Принято говорить, что (4) – общее решение системы уравнений (1). Придавая свободным переменным нулевые значения, определим значения базисных переменных и построим базисное решение, соответствующее построенному базисному набору переменных.

  • Итак, базисное решение системы (1).

  • В дальнейшем будет показано, что, если система (1) имеет допустимые решения, то ее можно так преобразовать к виду (3), что будет выполняться условие (5)

  • Поэтому мы будем считать, что условие (5) выполняется. Тогда базисное решение является допустимым базисным решением.


Используя равенства (4), можно функцию f выразить через свободные переменные: (6) Теперь можно вычислить значение функции f, соответствующее базисному решению

  • Осуществляя идею симплекс–метода, научимся переходить от одного допустимого базисного решения к другому. Для этого одна из базисных переменных xi удаляется из базиса и заменяется некоторой свободной переменной xj .

  • При этом изменении базиса система уравнений (4) и линейная функция (6) преобразуются. Для этого i-ое уравнений системы (3) нужно разрешить относительно xj.

  • Получится уравнение:

  • Подставив вместо xj его выражение из (7) в остальные уравнения системы (4) и в функцию (6), мы получим новую систему, равносильную системе (1), которая будет разрешена относительно нового базиса


Коэффициент aij, указывающий, что в базисе происходит замена xi на свободную переменную xj, называют разрешающим элементом симплекс-таблицы. Из равенства (7) следует, что

  • Так как новое базисное решение должно быть допустимым (неотрицательным),

  • то должно выполняться условие, а значит, . Иначе говоря, разрешающий элемент aij (xi – свободная переменная) в j–том столбце надо выбирать положительным. Описанное преобразование назовем симплексным, если разрешающий элемент aij выбирается по следующему правилу:

  • 1. Элемент aij выберем из такого j – ого столбца, в котором есть положительные элементы.

  • 2. Если в этом столбце есть несколько положительных элементов, то составим отношения свободных членов bk к коэффициентам akj>0.

  • Из всех отношений выберем наименьшее. Пусть это будет :

  • (8)

  • Знаменатель этой дроби и выберем разрешающим элементом. Если несколько из этих отношений будут минимальными (равными), то выберем любой из этих знаменателей.


Теорема. Если в системе линейных уравнений (4) все свободные члены неотрицательны, то после применения симплексного преобразования они останутся неотрицательными.

  • Доказательство. Обозначим новые свободные члены после симплексного преобразования в (4) через

  • Тогда при

  • Если akj>0, то из (8) следует, что

  • Если akj

  • Если akj =0, то

  • Следствие. С помощью симплексного преобразования можно перейти от одного допустимого базисного решения ЗЛП к другому допустимому базисному решению этой задачи.




Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: