Разложение сигналов по гармоническим функциям. Ряды Фурье. Ряд фурье для периодических сигналов

Разложению в ряды Фурье подвергаются периодические сигналы. Как уже было сказано выше, периодическую функцию любой формы, заданную на интервале одного периода Т = b-a и удовлетворяющую на этом интервале условиям Дирихле (ограниченная, кусочно-непрерывная, с конечным числом разрывов 1-го рода), можно представить в виде ряда Фурье:

s(t) = S n exp(jnDwt), S n = S(nDw), Dw = 2p/T, (1)

где весовые коэффициенты S n ряда определяются по формуле:

S n = (1/T) s(t) exp(-jnDwt) dt. (2)

Ряд Фурье представляет собой ансамбль комплексных экспонент exp(jnDwt) с частотами, образующими арифметическую прогрессию. Функцию весовых коэффициентов S(nDw ) принято называть комплексным спектром периодического сигнала или фурье-образом функции s(t). Спектр периодического сигнала является дискретной функцией, т.к. он определен только для целых значений n с шагом по частоте, обратным периоду: Dw = 2p/Т (или Df = 1/T ). Первую частотную составляющую спектра при n = 1, равную w 1 = 1×Dw = 2p/T (или f 1 = 1/T ), называют основной частотой сигнала (первой гармоникой), остальные частоты дискретного спектра nw 1 при n>1 называют гармониками сигнала. Значения S(nDw) по положительным и отрицательным значениям n являются комплексно сопряженными.

С чисто математических позиций множество функций exp(jnDwt) , -¥ < n < ¥ образует бесконечномерный базис линейного пространства L 2 ортогональных синус-косинусных функций, а коэффициенты S n по (2) представляют собой проекции сигнала s(t) на эти базисные функции. Соответственно, сигнал s(t) в форме ряда Фурье (1) – это бесконечномерный вектор в пространстве L 2 , точка с координатами S n по базисным осям пространства exp(jnDwt). Подынтегральную функцию экспоненты в выражении (2) с использованием тождества Эйлера

exp(±jwt) = cos(wt) ± j×sin(wt)

можно разложить на косинусную и синусную составляющие и выразить комплексный спектр в виде действительной и мнимой части:

S n = (1/T) s(t) dt = А n - jB n . (3)

A n ≡ A(nDw) = (1/T) s(t) cos(nDwt) dt, (4)

B n ≡ B(nDw) = (1/T) s(t) sin(nDwt) dt. (5)

На рис. 4 приведен пример периодического сигнала (прямоугольный импульс на интервале (1-3.3), повторяющийся с периодом Т=40) и форма действительной и мнимой части его спектра. Обратим внимание, что действительная часть спектра является четной относительно нуля функцией A(nDw) = A(-nDw), так как при вычислении значений A(nDw) по формуле (4) используется четная косинусная функция cos(nDwt) = cos(-nDwt). Мнимая часть спектра является нечетной функцией B(nDw) = -B(-nDw), так как для ее вычисления по (5) используется нечетная синусная функция sin(nDwt) = - sin(-nDwt).

Рис. 4. Сигнал и его комплексный спектр.

Комплексные числа дискретной функции (3) могут быть представлены в виде модулей и аргументов комплекс. экспоненты, что дает следующую форму записи комплексного спектра:

S n = R n exp(jj n), (3")

R n 2 ≡ R 2 (nDw) = A 2 (nDw)+B 2 (nDw),j n ≡ j(nDw) = arctg(-B(nDw)/A(nDw)).

Рис. 5. Модуль и аргумент спектра.

Модуль спектра R(nDw) называют двусторонним спектром амплитуд или АЧХ - сигнала, а аргумент спектра (последовательность фазовых углов j(nDw)) - двусторонним спектром фаз или ФЧХ. Спектр амплитуд всегда представляет собой четную функцию: R(nDw) = R(-nDw), а спектр фаз нечетную: j(nDw) = -j(-nDw). Пример спектра в амплитудном и фазовом представлении для сигнала, показанного на рис. 4, приведен на рис. 5. При рассмотрении спектра фаз следует учитывать периодичность 2p угловой частоты (при уменьшении фазового значения до величины менее -p происходит сброс значения -2p).

Если функция s(t) является четной, то все значения B(nDw) по (5) равны нулю, т.к. четные функции ортогональны синусным гармоникам и подынтегральное произведение s(t)·sin(nDwt) дает нулевой интеграл. Следовательно, спектр функции будет представлен только вещественными коэффициентами. Напротив, при нечетности функции s(t) обнуляются все значения коэффициентов А(nDw) (нечетные функции ортогональным косинусным гармоникам) и спектр является чисто мнимым. Этот фактор не зависит от выбора границ задания периода функции на числовой оси. На рис. 6(А) можно наглядно видеть ортогональность первой гармоники синуса и четной функции, а на рис. 6(В) соответственно косинуса и нечетной функции в пределах одного периода. Учитывая кратность частот последующих гармоник первой гармонике спектра, ортогональность сохраняется для всех гармоник ряда Фурье.

Рис. 6. Ортогональность функций.

При n = 0 имеем В о = 0, и получаем постоянную составляющую сигнала:

S 0 ≡ A o ≡ R o ≡ (1/T) s(t) dt.

2.5. Тригонометрическая форма рядов Фурье.

Объединяя комплексно сопряженные составляющие (члены ряда, симметричные относительно центрального члена ряда S 0), можно перейти к ряду Фурье в тригонометрической форме:

s(t) = А о +2 (A n cos(nDwt) + B n sin(nDwt)), (6)
s(t) = А о +2 R n cos(nDwt + j n). (6")

Значения A n , B n вычисляются по формулам (4-5), значения R n и j n - по формулам (3").

Ряд (6) представляют собой разложение периодического сигнала s(t) на сумму вещественных элементарных гармонических функций (косинусных и синусных) с весовыми коэффициентами, удвоенные значения которых (т.е. значения 2×A n , 2×B n) не что иное, как амплитуды соответствующих гармонических колебаний с частотами nDw. Совокупность амплитудных значений этих гармоник образует односторонний физически реальный (только для положительных частот nDw) спектр сигнала. Для сигнала на рис. 4, например, он полностью повторяет правую половину приведенных на рисунке спектров с удвоенными значениями амплитуд (за исключением значения А о на нулевой частоте, которое, как это следует из (6), не удваивается). Но такое графическое отображение спектров используется довольно редко (за исключением чисто технических приложений). Более широкое применение для отображения физически реальных спектров находит формула (6"). Спектр амплитуд косинусных гармоник при таком отображении называется амплитудно-частотным составом сигнала, а спектр фазовых углов гармоник – фазовой характеристикой сигнала. Форма спектров повторяет правую половину соответствующих двусторонних спектров (см. рис. 5) также с удвоенными значениями амплитуд. Для четных сигналов отсчеты фазового спектра могут принимать только значения 0 или p, для нечетных соответственно ±p/2.

Ряды Фурье произвольных аналоговых периодических сигналов могут содержать бесконечно большое количество членов. Однако одним из важных достоинств преобразования Фурье является то, что при ограничении (усечении) ряда Фурье до любого конечного числа его членов обеспечивается наилучшее по средней квадратической погрешности приближение к исходной функции (для данного количества членов).

На верхнем графике рисунка 7 приведен реконструированный сигнал при N = 8 (гармоники первого пика спектра, центр которого соответствует главной гармонике сигнала и члену ряда n = w s /Dw), N = 16 (гармоники двух первых пиков) и N=40 (пять первых пиков спектра). Естественно, что чем больше членов ряда включено в реконструкцию, тем ближе реконструированный сигнал к форме исходного сигнала. Принцип последовательного приближения к исходной форме наглядно виден на нижнем графике рисунка. На нем же можно видеть и причины появления пульсаций на реконструкции скачков функций, которые носят название эффекта Гиббса . При изменении количества суммируемых членов ряда эффект Гиббса не исчезает. Не изменяется также относительная амплитуда пульсаций (по отношению к амплитуде скачка) и относительное затухание (по коэффициенту последовательного уменьшения амплитуды пульсаций по отношению к максимальному выбросу), изменяется только частота пульсаций, которая определяется частотой последних суммируемых гармоник.

Эффект Гиббса имеет место всегда при резких нарушениях монотонности функций. На скачках эффект максимален, во всех других случаях амплитуда пульсаций зависит от характера нарушения монотонности функции.

В ряд Фурье может разлагаться и произвольная непериодическая функция, заданная (ограниченная, вырезанная из другого сигнала, и т.п.) на интервале (a,b), если нас не интересует ее поведение за пределами данного интервала. Однако следует помнить, что применение формул (1-6) автоматически означает периодическое продолжение данной функции за пределами заданного интервала (в обе стороны от него) с периодом Т = b-a. Однако при этом на краях интервала может возникнуть явление Гиббса, если уровень сигнала на краях не совпадает и образуются скачки сигнала при его периодическом повторении, как это видно на рис. 8. При разложении исходной функции в ограниченный ряд Фурье и его обработке в частотной области на самом деле при этом обрабатывается не исходная функция, а реконструированная из ограниченного ряда Фурье. При усечении рядов Фурье определенное искажение функций существует всегда. Но при малой доле энергии отсекаемой части сигнала (при быстром затухании спектров функций) этот эффект может быть и мало заметен. На скачках и разрывах функций он проявляется наиболее ярко.

Рис. 7. Реконструкция (восстановление) сигнала

Рис. 8. Проявление эффекта Гиббса


Похожая информация.


Вводные замечания

В данном разделе будет рассмотрено представление периодических сигналов при помощи ряда Фурье. Ряды Фурье являются основой теории спектрального анализа, потому что, как мы увидим позже, преобразование Фурье непериодического сигнала можно получить как предельный переход ряда Фурье при бесконечном периоде повторения. В результате свойства ряда Фурье также справедливы и для преобразования Фурье непериодических сигналов.

Мы рассмотрим выражения ряда Фурье в тригонометрической и комплексной форме, а также уделим внимание условиям Дирихле сходимости ряда Фурье. Кроме того, мы подробно остановимся на пояснении такого понятия как отрицательная частота спектра сигнала, которое часто вызывает сложность при знакомстве с теорией спектрального анализа.

Периодический сигнал. Тригонометрический ряд Фурье

Пусть имеется периодический сигнал непрерывного времени , который повторяется с периодом с, т.е. , где — произвольное целое число.

В качестве примера на рисунке 1 показана последовательность прямоугольных импульсов длительности c, повторяющиеся с периодом с.

Рисунок 1. Периодическая последовательность

Прямоугольных импульсов

Из курса математического анализа известно , что система тригонометрических функций


с кратными частотами , где рад/с, — целое число, образует ортонормированный базис для разложения периодических сигналов с периодом , удовлетворяющих условиям Дирихле .

Условия Дирихле сходимости ряда Фурье требуют, чтобы периодический сигнал был задан на сегменте , при этом удовлетворял следующим условиям:

Например, периодическая функция не удовлетворяет условиям Дирихле, потому что функция имеет разрывы второго рода и принимает бесконечные значения при , где — произвольное целое. Таким образом, функция не может быть представлена рядом Фурье. Также можно привести пример функции , которая является ограниченной, но также не удовлетворяет условиям Дирихле, поскольку имеет бесконечное число точек экстремума при приближении к нулю. График функции показан на рисунке 2.

Рисунок 2. График функции :

А — два периода повторения; б — в окрестности

На рисунке 2а показано два периода повторения функции , а на рисунке 2б — область в окрестности . Можно видеть, что при приближении к нулю, частота колебаний бесконечно возрастает, и такая функция не может быть представлена рядом Фурье, потому что она не является кусочно-монотонной.

Необходимо заметить, что на практике не бывает сигналов с бесконечными значениями тока или напряжения. Функции с бесконечным числом экстремумов типа также в прикладных задачах не встречаются. Все реальные периодические сигналы удовлетворяют условиям Дирихле и могут быть представлены бесконечным тригонометрическим рядом Фурье вида:


В выражении (2) коэффициент задает постоянную составляющую периодического сигнала .

Во всех точках, где сигнал непрерывен, ряд Фурье (2) сходится к значениям данного сигнала, а в точках разрыва первого рода — к среднему значению , где и — пределы слева и справа от точки разрыва соответственно.

Также из курса математического анализа известно , что использование усеченного ряда Фурье, содержащего только первых членов вместо бесконечной суммы, приводит к приближенному представлению сигнала :


при котором обеспечивается минимум среднего квадрата ошибки. Рисунок 3 иллюстрирует приближение периодической последовательности прямоугольных импульсов и периодического пилообразного сигнала при использовании различного количества членов ряда Фурье .

Рисунок 3. Приближение сигналов усеченным рядом Фурье:

А — прямоугольных импульсов; б — пилообразного сигнала

Ряд Фурье в комплексной форме

В предыдущем параграфе мы рассмотрели тригонометрический ряд Фурье для разложения произвольного периодического сигнала , удовлетворяющего условиям Дирихле. Применив формулу Эйлера, можно показать:


Тогда тригонометрический ряд Фурье (2) с учетом (4):

Таким образом, периодический сигнал может быть представлен суммой постоянной составляющей и комплексных экспонент, вращающихся с частотами с коэффициентами для положительных частот , и для комплексных экспонент, вращающихся с отрицательными частотами .

Рассмотрим коэффициенты для комплексных экспонент, вращающихся с положительными частотами :

Выражения (6) и (7) совпадают, кроме того постоянную составляющую также можно записать через комплексную экспоненту на нулевой частоте:

Таким образом, (5) с учетом (6)-(8) можно представить как единую сумму при индексации от минус бесконечности до бесконечности:


Выражение (9) представляет собой ряд Фурье в комплексной форме. Коэффициенты ряда Фурье в комплексной форме связаны с коэффициентами и ряда в тригонометрической форме, и определяются как для положительных, так и для отрицательных частот . Индекс в обозначении частоты указывает номер дискретной гармоники, причем отрицательные индексы соответствуют отрицательным частотам .

Из выражения (2) следует, что для вещественного сигнала коэффициенты и ряда (2) также являются вещественными. Однако (9) ставит в соответствие вещественному сигналу , набор комплексно-сопряженных коэффициентов , относящихся как положительным, так и к отрицательным частотам .

Некоторые пояснения к ряду Фурье в комплексной форме

В предыдущем параграфе мы осуществили переход от тригонометрического ряда Фурье (2) к ряду Фурье в комплексной форме (9). В результате, вместо разложения периодических сигналов в базисе вещественных тригонометрических функций, мы получили разложение в базисе комплексных экспонент, с комплексными коэффициентами , да еще и появились отрицательные частоты в разложении! Поскольку данный вопрос часто встречает непонимание, то необходимо дать некоторые пояснения.

Во-первых, работать с комплексными экспонентами в большинстве случаев проще, чем с тригонометрическими функциями. Например, при умножении и делении комплексных экспонент достаточно лишь сложить (вычесть) показатели, в то время как формулы умножения и деления тригонометрических функций более громоздкие.

Дифференцировать и интегрировать экспоненты, пусть даже комплексные, также проще, чем тригонометрические функции, которые постоянно меняются при дифференцировании и интегрировании (синус превращается в косинус и наоборот).

Если сигнал периодический и вещественный, то тригонометрический ряд Фурье (2) кажется более наглядным, потому что все коэффициенты разложения , и остаются вещественными. Однако, часто приходится иметь дело с комплексными периодическими сигналами (например, при модуляции и демодуляции используют квадратурное представление комплексной огибающей). В этом случае при использовании тригонометрического ряда Фурье все коэффициенты , и разложения (2) станут комплексными, в то время как при использовании ряда Фурье в комплексной форме (9) будет использованы одни и те же коэффициенты разложения как для вещественных, так и для комплексных входных сигналов.

Ну и наконец, необходимо остановится на пояснении отрицательных частот, которые появились в (9). Этот вопрос часто вызывает непонимание. В повседневной жизни мы не сталкиваемся с отрицательными частотами. Например, мы никогда не настраиваем свой радиоприемник на отрицательную частоту. Давайте рассмотрим следующую аналогию из механики. Пусть имеется механический пружинный маятник, который совершает свободные колебания с некоторой частотой . Может ли маятник колебаться с отрицательной частотой ? Конечно нет. Как не бывает радиостанций, выходящих в эфир на отрицательных частотах, так и частота колебаний маятника не может быть отрицательной. Но пружинный маятник — одномерный объект (маятник совершает колебания вдоль одной прямой).

Мы можем также привести еще одну аналогию из механики: колесо, вращающееся с частотой . Колесо, в отличие от маятника вращается, т.е. точка на поверхности колеса перемещается в плоскости, а не просто совершает колебания вдоль одной прямой. Поэтому для однозначного задания вращения колеса, задать частоту вращения недостаточно, потому что необходимо задать также направление вращения. Вот именно для этого мы и можем использовать знак частоты.

Так, если колесо вращается с частотой рад/с против часовой стрелки, то считаем, что колесо вращается с положительной частотой, а если по направлению часовой стрелки, то частота вращения будет отрицательной. Таким образом, для задания вращения отрицательная частота перестает быть бессмыслицей и указывает направление вращения.

А теперь самое главное, что мы должны понять. Колебание одномерного объекта (например, пружинного маятника) может быть представлено как сумма вращений двух векторов, показанных на рисунке 4.

Рисунок 4. Колебание пружинного маятника

Как сумма вращений двух векторов

на комплексной плоскости

Маятник совершает колебания вдоль вещественной оси комплексной плоскости с частотой по гармоническому закону . Движение маятника показано горизонтальным вектором. Верхний вектор совершает вращения на комплексной плоскости с положительной частотой (против часовой стрелки), а нижний вектор вращается с отрицательной частотой (по направлению часовой стрелки). Рисунок 4 наглядно иллюстрирует хорошо известное из курса тригонометрии соотношение:

Таким образом, ряд Фурье в комплексной форме (9) представляет периодические одномерные сигналы как сумму векторов на комплексной плоскости, вращающихся с положительными и отрицательными частотами. При этом обратим внимание, что в случае вещественного сигнала согласно (9) коэффициенты разложения для отрицательных частот являются комплексно-сопряженными соответствующим коэффициентам для положительных частот . В случае комплексного сигнала это свойство коэффициентов не выполняется ввиду того, что и также являются комплексными.

Спектр периодических сигналов

Ряд Фурье в комплексной форме представляет собой разложение периодического сигнала в сумму комплексных экспонент, вращающихся с положительными и отрицательными частотами кратными рад/c с соответствующими комплексными коэффициентами , которые определяют спектр сигнала . Комплексные коэффициенты могут быть представлены по формуле Эйлера как , где — амплитудный спектр, a — фазовый спектр.

Поскольку периодические сигналы раскладываются в ряд только на фиксированной сетке частот , то спектр периодических сигналов является линейчатым (дискретным).

Рисунок 5. Спектр периодической последовательности

Прямоугольных импульсов:

А — амплитудный спектр; б — фазовый спектр

На рисунке 5 приведен пример амплитудного и фазового спектра периодической последовательности прямоугольных импульсов (см. рисунок 1) при с, длительности импульса c и амплитуде импульсов В.

Амплитудный спектр исходного вещественного сигнала является симметричным относительно нулевой частоты, а фазовый спектр — антисимметричным. При этом заметим, что значения фазового спектра и соответствуют одной и той же точке комплексной плоскости .

Можно сделать вывод, что все коэффициенты разложения приведенного сигнала являются чисто вещественными, и фазовый спектр соответствует отрицательным коэффициентам .

Обратим внимание, что размерность амплитудного спектра совпадает с размерностью сигнала . Если описывает изменение напряжения во времени, измеряемое в вольт, то амплитуды гармоник спектра также будут иметь размерность вольт.

Выводы

В данном разделе рассмотрено представление периодических сигналов при помощи ряда Фурье. Приведены выражения для ряда Фурье в тригонометрической и комплексной формах. Мы уделили особое внимание условиям Дирихле сходимости ряда Фурье и были приведены примеры функций, для которых ряд Фурье расходится.

Мы подробно остановились на выражении ряда Фурье в комплексной форме и показали, что периодические сигналы как вещественные, так и комплексные представляются рядом комплексных экспонент с положительными и отрицательными частотами. При этом коэффициенты разложения являются также комплексными и характеризуют амплитудный и фазовый спектр периодического сигнала.

В следующем разделе мы более детально рассмотрим свойства спектров периодических сигналов.

Программная реализация в библиотеке DSPL

Дёч, Г. Руководство по практическому применению преобразования Лапласа. Москва, Наука, 1965, 288 c.

1.3 Сделать общие выводы.

Часть 2

Цель работы: углубление теоретических знаний, полученных в ходе изучения преобразования Фурье (Fourier Transform)

Необходимые теоретические сведения.

Изменяя период Т и длительность импульса как показано на рис. 7, можно изменять спектр сигнала. С увеличением периода гармоники сближаются, не изменяя форму огибающей.


Рис.7 – Изменение спектра

Смоделируем одиночный прямоугольный импульс, периодическую последовательность импульсов с периодом Т и 10Т .

t = 0:.0314:25;

y= square(2*pi*t/10, pi*pi);

z = rectpuls(2*pi*t1/10);

subplot(4,2,1); plot(t,x)

subplot(4,2,2); plot(t,y)

subplot(4,2,3); plot(t1,z)

Проведем спектральный анализ полученных сигналов. Непериодические процессы - таковыми являются информационные сигналы , одиночные импульсы , хаотические колебания (шумы ) - обладают сплошным или непрерывным спектром. Интуитивно к такому выводу можно прийти, представляя одиночный импульс частью периодической последовательности, период которой неограниченно увеличивается. Действительно, при увеличении интервала между импульсами гармоники на спектральных диаграммах периодических последовательностей импульсов сближаются: чем реже следуют импульсы, тем меньше расстояние между соседними гармониками (оно равно 1/T ). Спектр одиночного импульса (предельный случай увеличения периода) становится непрерывным, и вводится он не рядами, а интегралами Фурье .

Преобразование Фурье (Fourier transform) является инструментом спектрально­го анализа непериодических сигналов.

В описанных ниже функциях реализован особый метод быстрого преобразования Фурье (БПФ) - Fast Fourier Transform (FFT ), позволяющий резко уменьшить число арифметических операций в ходе приведенных выше преобразований. Метод особенно эффективен, если число обрабатываемых элементов (отсчетов) составляет 2 n , где n - целое положительное число. В MatLab используются следующие функции:

fft(X ) - возвращает для вектора X дискретное преобразование Фурье, по возможности используя алгоритм быстрого преобразования Фурье. Если X - матрица, функция fft возвращает преобразование Фурье для каждого столбца матрицы;

fft(X.n) - возвращает n-точечное преобразование Фурье. Если длина вектора X меньше n, то недостающие элементы заполняются нулями. Если длина X больше п, то лишние элементы удаляются. Когда X - матрица, длина столбцов корректируется аналогично;

ft(X,[ Ldirn) и fft(X,n,dim) - применяют преобразование Фурье к одной из размерностей массива в зависимости от значения параметра dim .

Возможно одномерное обратное преобразование Фурье, реализуемое следующими функциями:

ifft(F) - возвращает результат дискретного обратного преобразования Фурье вектора F . Если F - матрица, то ifft возвращает обратное преобразование Фурье для каждого столбца этой матрицы;

ifft(F.n) - возвращает результат n-точечного дискретного обратного преобразования Фурье вектора F ;

ifft(F.,dim) иу = ifft(X,n,dim) - возвращают результат обратного дискретного преобразования Фурье массива F по строкам или по столбцам в зависимости от значения скаляра dim .

Для любого X результат последовательного выполнения прямого и обратного преобразований Фурье ifft(fft(x)) равен X с точностью до погрешности округления. Если X - массив действительных чисел, ifft(fft(x)) может иметь малые мнимые части.

Получим спектры смоделированных сигналов.

Вызовем программу SPTool (Signal Processing Tool) . Импортируем смоделированные сигналы и рассчитаем спектр сигнала. С этой целью выделяем сигнал в списке сигналов и нажмите кнопку Create , расположенную под списком спектров. В окне Spectrum Viewer в поле Parameters нужно указать метод спектрального анализа. Указываем метод ДПФ (используется быстрое преобразование Фурье БПФ (FFT)). Указав метод, следует щёлкнуть мышью по кнопке Apply . Будет выведен график спектральной плотности мощности. Имеется возможность выводить спектры в линейном или в логарифмическом масштабе (меню Options ).

Непрерывным (сплошным) является спектр хаотических (шумовых ) колебаний . В этом случае спектральная характеристика, как функция частоты, также представляет собой хаотический (случайный ) процесс , статистические параметры которого определяются спецификой конкретного случайного временного процесса. Сформируем сигнал, содержащий регулярные составляющие с частотами 50 Гц и 120 Гц и случайную аддитивную компоненту с нулевым средним.

ЗАДАНИЕ 2

Цель работы: ознакомление со спектральным описанием периодических функций с помощью рядов Фурье.

Необходимые теоретические сведения. Разложение в ряд Фурье

Первым рассматриваемым сигналом будет последовательность прямоугольных импульсов с амплитудой А , длительностью и периодом повторенияТ . Начало отсчета времени примем расположенным в середине импульса (рис.1).

Рис 1. - Периодическая последовательность прямоугольных импульсов

Данный сигнал является четной функцией, поэтому для его представления удобнее использовать синусно-косинусную форму ряда Фурье- в ней будут присутствовать только косинусные слагаемые , равные

Введем скважность
в полученную формулу для коэффициентов ряда Фурье, а затем приведем формулу к виду
.

Представление последовательности прямоугольных импульсов в виде ряда Фурье имеет вид:

Амплитуды гармонических слагаемых ряда зависят от номера гармоники по закону
(см. рис. 2).График функции
имеет лепестковый характер. Итак, ширина лепестков, измеренная в количестве гармоник, равна скважности последовательности (при
имеем
, если
). Отсюда следует важное свойство спектра последовательности прямоугольных импульсов - в нем отсутствуют (имеют нулевые амплитуды) гармоники с номерами, кратными скважности.

Рис. 2 - Коэффициенты ряда Фурье для последовательности прямоугольных импульсов.

Расстояние по частоте между соседними гармониками равно частоте следования импульсов -
. Ширина лепестков спектра, измеренная в единицах частоты, равна
, то есть обратно пропорциональна длительности импульсов, т.е. чем короче сигнал, тем шире его спектр.

Важным частным случаем предыдущего сигнала является меандр (рис. 3) - последова­тельность прямоугольных импульсов со скважностью, равной
, когда дли­тельности импульсов и промежутков между ними становятся равными.

Рис. 3 - Меандр

,

где m – произвольное целое число.

Таким образом, в спектре меандра присутствуют только нечетные гармоники. Представление меандра в виде ряда Фурье с учетом этого может быть записано следующим образом:

Гармонические составляющие, из которых складывается меандр, имеют ампли­туды, обратно пропорциональные номерам гармоник, и чередующиеся знаки. На примыкающих к разрыву участках сумма ряда Фурье дает заметные пульса­ции. Это явление, присущее ря­дам Фурье для любых сигналов с разрывами первого рода (скачками), называет­ся эффектом Гиббса. Можно показать, что амплитуда первого (самого большого) выброса составляет примерно 9 % от величины скачка.

Рисунок 4. Эффект Гиббса.

Пилообразный сигнал (рис. 5). в пре­делах периода описывается линейной функцией:

,
.

Данный сигнал является нечетной функцией, поэтому его ряд Фурье в синусно-косинусной форме будет содержать только синусные слагаемые:

Сам ряд Фурье для пилообразного сигнала выглядит следующим образом:

Рис. 5 - Пилообразный сигнал.

Периодическая последовательность треугольных импульсов имеет симметричную форму (рис. 6):

,
.

Рис. 6 - Последовательность треугольных импульсов.

Ряд Фурье имеет следующий вид:

Рассмотрим программу, реализующую разложение в ряд Фурье прямоугольной последовательности импульсов.

ЗАДАНИЕ1.

где , - частота основной гармоники, ;

() – высшие гармоники; (включая ) и – коэффициенты Фурье.

,

Постоянную составляющую (среднее значение) функции удобно вычислять по отдельному выражению полученному из при :

, тогда ,

Очевидно, что если сигнал представляет собой четную функцию времени , то в тригонометрической записи ряда Фурье (1.14) остаются только косинусоидальные составляющие , так как коэффициенты обращаются в нуль. Для сигнала определяемого нечетной функцией времени, наоборот, в нуль обращаются коэффициенты , и ряд содержит синусоидальные составляющие

Часто выражение (1.15) удобно представлять в другой, эквивалентной форме ряда Фурье:

,

где , - амплитуда, - начальная фаза - ой гармоники.

На рис. 1.10 приведены графики, иллюстрирующие представление периодической последовательности прямоугольных импульсов конечным числом слагаемых () ряда Фурье.

Для функции (рис.1.10) разложение имеет вид

Периодическая последовательность прямоугольных импульсов представляется как результат сложения постоянной составляющей и синусоидальных сигналов с частотами , причем период синусоиды с частотой совпадает с периодом последовательности импульсов . Для удобства можно представить в виде .

Совокупность всех гармонических составляющих разложения функции в ряд Фурье называется спектром функции.

Наличие отдельных гармонических составляющих спектра и величины из амплитуд можно наглядно показать с помощью спектральной диаграммы (рис.1.11), у которой горизонтальная ось служит осью частот, а вертикальная – осью амплитуд.

В точках оси частот отображаются амплитуды соответствующих гармонических составляющих разложения функции.

Легко заметить, что график суммы двух первых слагаемых разложения (1.16) воспроизводит форму графика функции очень грубо, только в основных чертах. Учет третьего слагаемого существенно улучшает совпадение суммы с функцией . Таким образом, с увеличением числа учитываемых гармоник точность представления возрастает.

На практике спектральные диаграммы называют более кратко – амплитудный спектр, фазовый спектр. Чаще всего интересуются амплитудным спектром (рис. 1.11). По нему можно оценить процентное содержание гармоник, наличие и уровни отдельных гармонических составляющих спектра.

Пример 1.1. Разложим в ряд Фурье периодическую последовательность прямоугольных видеоимпульсов с известными параметрами (, , ) (рис. 1.12), четную относительно точки :

.

Воспользуемся для представления этого сигнала формой записи ряда Фурье в виде (1.12). Для спектрального представления последовательности прямоугольных импульсов начало отсчета целесообразно брать в середине импульса. Действительно, в этом случае и в разложении останутся только косинусоидальные составляющие, так как интегралы от нечетных функций за период равны нулю bk=0.

По формулам (1.14) находим коэффициенты:

, ,

позволяющие записать ряд Фурье:

,

где - скважность импульсной последовательности.

Для построения спектральных диаграмм при конкретных числовых данных полагаем и вычисляем коэффициенты гармоник. Результаты расчета первых восьми составляющих спектра при , , и 8 сведены в табл. 1.1 и построены спектральные диаграммы на рис.1.13.

Таблица 1.1. Амплитуды спектральных составляющих для периодической последовательности прямоугольных импульсов

Из приведенного примера следует, что с увеличением скважности увеличивается число спектральных составляющих и уменьшаются их амплитуды.

Выбор количества спектральных составляющих зависит от формы сигнала и точности его представления рядом Фурье. Плавное изменение формы сигнала потребует меньше числа гармоник при той же точности представления, чем для скачкообразного сигнала. Для приближенного представления прямоугольных импульсов на практике обычно считают, что достаточно трех - пяти гармоник.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: