Внешний осмотр процессора. Энергоэффективность, технология и температурный режим

Введение.
. К сожалению, это было связано с объективными причинами, которые мы на данный момент устранили и приступаем к объективной оценке процессоров, как от компании AMD, так и от компании Intel.
В сегодняшнем обзоре вашему вниманию будет представлен процессор AMD Athlon II X4 640, который имеет более высокую частоту по сравнению с протестированным ранее решением AMD Athlon II X4 620.


Комплектация.


Мы приобретали OEM вариант процессора, что было связано с нежеланием заторачиваться оригинальным кулером, который всегда показывает посредственные показатели производительности и шумности.


При этом хочется отметить, что данные процессоры в BOX варианте также имеются в продаже и поставляются вот в такой вот коробке черно-зеленого цвета.
При покупке BOX комплектации процессора пользователь получает систему охлаждения от AMD и расширенную гарантию на продукт в течение трех лет. Для продукции в формате OEM дается только 1 год гарантии.

Внешний осмотр процессора.


Процессор имеет маркировку ADX640WFK42GM. Каждая буква и цифра в маркировке всегда что-то значит, вот и мы постараемся расшифровать ее. Итак,
- буквы AD говорят нам о том, что перед нами процессор от AMD поколения K10,5.
- буква Х означает наличие заблокированного множителя частоты вращения;
- цифры 640 - означают модельный номер процессора внутри линейки процессоров самой AMD;
- буквы WF - означают уровень тепловыделения процессора до 95 Вт и работу в диапазоне напряжений 0,900 - 1,425 вольт;
- буква K - означает сокетное исполнение Socket AM3;
- цифра 4 - указывает на количество ядер процессора;
- оставшиеся цифры 2GM - указывают ревизию ядра процессора
Особый интерес для нас представляет вторая строчка, в которой первые пять букв указывают ядро процессора, в нашем случае, - это Propus.


Оборотная сторона процессора ничем не выделяется. Имеет стандартные ножки, которые можно легко погнуть и обломать при выпрямлении. Процессор предназначен для работы в сокете AM3.

Спецификации процессора.
1. Номер модели: Athlon II X4 640
2. Частота: 3.0GHz
3. Максимальное тепловыделение: 95 watts
4. Объем кэша: L1 Cache 64K + L2 Cache: 512KB per core (2MB общее)
5. Технологический процесс: 45-нм SOI
6. Шина: One 16-bit/16-bit link @ up to 4.0GHz full duplex (2.0GHz x2)
7. Контролер памяти: двухканальный контролер с поддержкой памяти до PC2-8500 (DDR2-1066MHz) и PC3-10600 (DDR3-1333MHz)
8. Технологический процесс: 45нм
9. Сокет: Socket AM3 с полной совместимостью AM2+ 940-pin

Ключевые особенности данной серии процессоров.
Особый интерес данные процессоры вызывают в связи с тем, что некоторые из них имеют заблокированный кэш памяти третьего уровня, который довольно часто беспрепятственно удается включить.
Связано это с тем, что очень часто компания AMD под марками младших моделей выпускает в урезанном виде процессоры старших серий, что связано со спросом на рынке. Или качественный неликвид, который не может работать как полноценный процессор урезается до младшей модели и продается как вполне функциональный продукт.
На сегодняшний день представленная линейка процессоров Athlon II X4 выпускается на базе двух ядер. Первое ядро, - это ядро Propus. Ядро было специально создано для выпуска данных процессоров, поэтому оно не имеет никакого дополнительного КЭШа третьего уровня, одним словом, - нам разблокировать нечего. К сожалению, участник тестирования оказался основанным именно на этом ядре.
Вторым ядром для данных процессоров выступает урезанная версия ядра Deneb , на базе полнофункциональной версии которой выпускаются процессоры Phenom II X4.
Ключевой особенностью процессоров серии Deneb является физическое наличие кэш памяти третьего уровня в объеме 6 Мб, но у процессоров Athlon II X4 он отключен и владельцы данных процессоров имеют полную возможность его включить. Включение данной кэш памяти превращает процессор пользователя в полнофункциональный Phenom II X4. Естественно, разблокированный процессор должен подвергаться тестированию, на выявление ошибок.
Как уже указывалось выше, ядро процессора можно узнать по второй строчке маркировки. Процессоры Deneb имеют следующие наборы: AACTC, AACZC, AACAC, CACZC, CADAC, CACYC CACYC, CACVC, CACZC, CACAC, AACYC, AACSC. Все остальные вариации, - это, скорее всего, наше ядро, - Propus.

Вопросы, возникающие у пользователей при работе с данными процессорами.
1. Что необходимо для получения возможности разблокировки ядра процессора?
Ответ: Для этого вам необходима материнская плата, которая поддерживала бы данную функцию. В меню Биоса находите пункт разблокировки, чаще всего это L3 Cache Allocation и Advanced Clock Calibration.

2. Материнские платы от каких производителей точно не поддерживают разблокировку кэш-памяти третьего уровня на данных процессорах?
Ответ: достоверно известно, что все материнские платы от ECS не поддерживают данную функцию. Скорее всего, это касается и таких продуктов, как Jetway, Zotac.

3. Какой мощности блок питания мне необходим для использования разблокированного процессора Deneb?
Ответ: наш опыт показывает, что блока питания мощностью 400-450 ватт стандарта ATX 2.хх от известного бренда вполне хватает. Многое зависит от используемых вами видеокарт.

Разгон процессора.
Как уже мы упоминали, нам не удалось разблокировать кэш третьего уровня на данном процессоре, так как у его ядра попросту нет данного КЭШа памяти.


Процессор удалось разогнать до 3,8 Ггц при напряжении в 1,45 вольт.

Заключение.
Нам хочется пожелать своим пользователям стараться приобретать процессоры данной серии на ядре Deneb. Данные процессоры достаточно часто встречаются в компьютерных магазинах, а посмотреть второй ряд цифр на крышке при покупке OEM версии процессора, - ни для кого не является проблемой.
Стоимость участвовавшего в обзоре процессора не превышает 130 долларов, что делает его достаточно интересным продуктом для покупки и обновления существующего процессора.


С появлением микроархитектуры Zen стратегия AMD на процессорном рынке стала базироваться на очень простом принципе: компания старается обеспечивать лучшие характеристики (в первую очередь по числу ядер и поддерживаемых потоков) по более выгодной цене. Семейства Ryzen 7, Ryzen 5 и Ryzen 3 при таком подходе оказались более дешёвыми альтернативами для Core i7, i5 и i3, и именно это во многом обеспечивает их популярность у покупателей. Но несмотря на то, что цена - это один из самых важных аргументов в продвижении процессоров AMD, совсем дешёвых Socket AM4-процессоров в ассортименте у этого производителя до недавних пор не существовало. Для тех покупателей, которые не располагали как минимум 100-долларовым бюджетом, выделенным на покупку CPU, AMD могла лишь предложить старые процессоры для Socket FM2+ семейств и либо ещё более старые процессоры AMD FX класса Piledriver. Но привлекательность таких предложений в современных условиях вызывает обоснованные сомнения, и это стало заметной проблемой.

Данная проблема дополнительно усугубилась тем, что компания Intel с внедрением дизайна Kaby Lake начала выпускать очень привлекательные процессоры начального уровня - двухъядерные . Такие недорогие четырёхпоточные CPU быстро завоевали признание и стали очень популярным вариантом для бюджетных конфигураций.

Тем не менее оставлять Pentium c Hyper-Threading совсем без конкуренции в начальном рыночном сегменте AMD всё же не стала. Спустя примерно полгода после их появления в продаже «красный чипмейкер» принял решение создать свою альтернативу «гиперпням» и пустить для этого в дело имевшиеся в его распоряжении четырёхъядерные чипы Bristol Ridge. Такие процессоры поставлялись AMD по OEM-каналам примерно с середины прошлого года, но летом было объявлено, что теперь для исправления ситуации в нижнем ценовом сегменте Bristol Ridge станут доступны и для розничных покупателей.

Вообще, семейство Bristol Ridge в первую очередь включает в себя гибридные процессоры A-серии с интегрированным графическим ядром Radeon (поколения Volcanic Islands). Однако для конкуренции с Pentium были спроектированы специальные модели с отключённой графикой - такие процессоры AMD отнесла к отдельному модельному ряду Athlon X4. В результате покупатели бюджетных систем с дискретными видеокартами получили выбор между двухъядерными Kaby Lake с Hyper-Threading и четырёхъядерными процессорами Bristol Ridge, которые базируются на микроархитектуре Excavator. Какой вариант лучше - мы и решили выяснить в нашем очередном материале.

Для проведения тестирования нам пришлось взять модель Athlon X4 950. Несмотря на то, что в серии Bristol Ridge компания AMD запланировала три модификации процессоров без интегрированной графики, в продаже реально доступна только эта, средняя модель. Тем не менее благодаря наличию даже одного такого процессора экосистема Socket AM4 приобрела необходимую полноту. Сегодня для этой платформы можно приобрести процессор с ценой от $51 до $499, и доступный Athlon X4 950 может стать отличным вариантом начального уровня, который со временем можно будет заметить одним из существующих Ryzen серии Summit Ridge или даже перспективным Ryzen серии Pinnacle Ridge.

⇡ Athlon X4 для Socket AM4: что нового

В теории всё выглядит достаточно неплохо. Новая версия Athlon X4 представляет собой производную от наиболее современных APU компании AMD, относящихся к поколению Bristol Ridge. Такие APU пришли на рынок мобильных решений ещё в 2016 году, а в этом году семейство расширилось за счёт чипов для настольных систем. Конструктивно Bristol Ridge можно охарактеризовать как перенос в современную экосистему. В процессе этого переноса в APU сохранились вычислительные ядра Excavator и графическое ядро класса Volcanic Islands (дискретный аналог архитектуры R9 Fury с меньшим количеством потоковых процессоров), но добавился более новый контроллер памяти, поддерживающий DDR4 SDRAM. Кроме того, архитектурно Bristol Ridge больше напоминают системы-на-чипе (SoC), что позволило вписать их в экосистему Socket AM4.

Интересующие нас представители серии Athlon X4, как и раньше, интегрированной графики лишены. Графический процессор, естественно, присутствует на полупроводниковом кристалле, но он аппаратно заблокирован, что позволяет AMD задействовать при производстве Athlon X4 кремниевую отбраковку, которая не смогла попасть в полноценные гибридные процессоры A-серии. В результате Athlon X4 представляют собой недорогие четырёхъядерники для платформы Socket AM4, которые кардинально отличаются от схожих по количеству ядер чипов Ryzen 3 своей базовой микроархитектурой. Процессорные ядра в Bristol Ridge были спроектированы в эпоху, предшествовавшую появлению архитектуры Zen, а значит, Athlon X4 для Socket AM4, как и их Socket FM2+-собратья, относятся к прямым потомкам Bulldozer.

Если конкретнее, то лежащие в основе актуального поколения APU вычислительные ядра Excavator представляют собой эволюционное развитие ядер Steamroller, которые, в свою очередь, появились в результате оптимизации Piledriver. Как говорит сама AMD, по показателю IPC (по числу выполняемых за такт инструкций) Excavator превосходит предшествующее ядро Steamroller примерно на 5-15 процентов. Прогресс достигается за счёт увеличения объёма кеш-памяти данных первого уровня до 32 Кбайт на ядро , а также благодаря полуторакратному расширению буфера адресов ветвлений, что улучшает результативность работы алгоритмов предсказания переходов. Кроме того, в Excavator добавлена поддержка 256-битных векторных инструкций из набора AVX2.

Однако не стоит переоценивать все такие дополнения, ведь они сделаны на откровенно устаревшем фундаменте. Ждать каких-то чудес производительности от Excavator явно не следует, и хорошей иллюстрацией слабости данной микроархитектуры может послужить тот факт, что во время представления первых процессоров серии Ryzen представители AMD говорили о 52-процентном превосходстве Zen над Excavator по показателю IPC. То есть при прочих равных четырёхъядерные Ryzen 3 способны обеспечить как минимум в полтора раза более высокую производительность, чем современные Athlon X4. А это значит, что между Athlon X4 для Socket AM4-систем и «полноценными» процессорами Ryzen существует колоссальный разрыв хотя бы с точки зрения эффективности базовой микроархитектуры. И этим дело не ограничивается. В бюджетных CPU компания AMD заложила ещё несколько дополнительных «ухудшений».

Одна из основных потерь, которую понёс современный Athlon X4, касается системы кеширования. В отличие от представителей серий FX или Ryzen, в процессорах этого семейства вообще нет кеш-памяти третьего уровня. Кроме того, в ядрах Excavator сократился и объём L2-кеша. Раньше в CPU такого класса на каждый двухъядерный модуль Bulldozer приходился кеш второго уровня объёмом по 2 Мбайт. Теперь он стал вдвое меньше, и четырёхъядерные Athlon X4 для Socket AM4 располагают лишь небольшим L2-кешем ёмкостью 2 Мбайт суммарно.

Серьёзные претензии вызывает и встроенный в Bristol Ridge двухканальный контроллер памяти. AMD реализовала в этих процессорах поддержку DDR4, но она совсем не такая, как в Ryzen. Bristol Ridge проектировался заметно раньше, и контроллер памяти в нём оказался намного хуже. В частности, максимальная частота поддерживаемой памяти ограничена режимом DDR4-2400, причём более высокие скорости недоступны и через разгон - для них банально не предусмотрены делители. Не впечатляет и эффективность этого контроллера. Bristol Ridge ощутимо проигрывает Ryzen в латентности подсистемы памяти и катастрофически уступает в реальной пропускной способности. Таким образом, переход на использование DDR4 производительность представителей семейства Athlon X4 только ухудшил.

Athlon X4 950 Ryzen 3 1200

Что касается встроенных в процессор элементов SoC, то и они у новых Athlon X4 тоже сильно отличаются от того, что предлагает AMD в процессорах семейства Ryzen. Самая серьёзная потеря затронула шину для взаимодействия с дискретными графическими ускорителями: для этой цели Athlon X4 предлагает лишь восемь линий PCI Express 3.0. То есть видеокарты в Socket AM4-платформах, построенных на базе таких бюджетных процессоров, будут работать «не в полную силу».

В дополнение к урезанной графической шине процессорная SoC в Bristol Ridge поддерживает две дополнительные линии PCI Express 3.0, которые могут быть конвертированы в два порта SATA, а также четыре порта USB 3.0. Расширить этот набор можно за счёт подключения внешнего южного моста, для соединения с которым в процессоре зарезервировано ещё четыре линии PCI Express 3.0. Поскольку способ взаимодействия с набором системной логики у Athlon X4 точно такой же, как и у Ryzen, процессоры поколения Bristol Ridge полностью совместимы с любыми Socket AM4-материнскими платами, включая модели, построенные на чипсетах A320, B350 и даже X370.

Скудные характеристики Athlon X4 объясняются его происхождением. Изначально дизайн Bristol Ridge был нацелен на применение в мобильных системах, поэтому многое из того, в чём нет острой необходимости в ноутбуках, пошло под нож ради оптимизации энергопотребления. И в этом есть некоторая положительная сторона: энергосберегающие технологии в Bristol Ridge сделали большой шаг вперёд, позволяя соблюдать тонкий баланс между производительностью и энергопотреблением.

Но самое важное заключается в том, что, несмотря на использование при производстве Bristol Ridge полупроводниковой технологии с разрешением 28 нм, данный процессорный дизайн получился вполне энергоэффективным. В частности, все представители десктопного семейства Bristol Ridge вписываются в 65-ваттный тепловой пакет, в том числе даже модели с графическим ядром и рабочими частотами порядка 4 ГГц. Достигается это во многом благодаря тому, что производственный партнёр AMD, компания TSMC, внедрил специальную «высокоплотную» разновидность 28-нм техпроцесса, похожую на технологию, которая применяется при выпуске GPU. В результате современные Athlon X4 смогли получить не только сравнительно невысокое тепловыделение и энергопотребление, но и конфигурируемый TDP. Номинальный тепловой пакет этих процессоров, как и у полноценных APU, установлен на уровне 65 Вт, но в случае необходимости его рамки могут быть ужесточены до 35 Вт.

⇡ Athlon X4 950 в подробностях

Когда AMD объявляла о начале розничных продаж десктопных процессоров семейства Bristol Ridge, она говорила о модельном ряде, состоящем из восьми APU A-серии и трёх процессоров Athlon X4 без встроенной графики. Новые модификации Athlon X4 должны были получить модельные номера 940, 950 и 970 и, согласно спецификации, различались бы тактовыми частотами, установленными на уровне 3,2, 3,5 и 3,8 ГГц соответственно. Однако впоследствии AMD решила отказаться от розничной реализации бюджетных Socket AM4-процессоров «широким фронтом» и ограничилась поставками лишь единичной четырёхъядерной модели Athlon X4 950.

Стоит напомнить, что в экосистеме Socket FM2+ модельный ряд процессоров Athlon X4 был весьма представителен. Он формировался из многочисленных четырёхъядерных чипов Kaveri с частотами от 3,0 до 4,0 ГГц и впоследствии получил дополнение в виде Carrizo с частотой 3,5 ГГц. При переносе Athlon X4 в более актуальную платформу Socket AM4 от былого изобилия не осталось и следа. Причём единственный Athlon X4 для Socket AM4 - это ещё и сильно «зарезанный» по характеристикам процессор. Если пытаться провести параллели между Athlon X4 950 и предшественниками для Socket FM2+, то наиболее близкой по характеристикам моделью окажется Athlon X4 845, в то время как популярные Athlon X4 860K (и более быстрые модели) родом из 2015 года новинку заметно превосходят.

Зато это позволило компании AMD установить на Athlon X4 950 очень привлекательную цену. Его официальная стоимость составляет $51, что делает данный процессор самым доступным четырёхъядерником, который вдвое дешевле младшего представителя в серии Ryzen 3. Благодаря такому предложению AMD надеется привлечь на свою сторону покупателей бюджетных систем, которые до настоящего момента ориентировались на Intel Pentium поколения Kaby Lake с поддержкой Hyper-Threading.

При этом характеристики Athlon X4 950 на фоне прочих дешёвых процессоров с возможностью исполнения четырёх потоков выглядят достаточно многообещающе:

AMD Athlon X4 950 AMD Ryzen 3 1200 Intel Pentium G4560
Кодовое имя Bristol Ridge Summit Ridge Kaby Lake
Технология производства, нм 28 14 14+
Ядра/потоки 4/4 4/4 2/4
Базовая частота, ГГц 3,5 3,1 3,5
Частота в турборежиме, ГГц 3,8 3,4 -
Технология XFR Нет +50 МГц Нет
Разгон Поддерживается Поддерживается Не поддерживается
L2-кеш 2 × 1 Мбайт 4 × 512 Кбайт 2 × 256 Кбайт
L3-кеш Нет 2 × 4 Мбайт 3 Мбайт
Поддержка памяти DDR4-2400 DDR4-2666 DDR4-2400
Линии PCI Express 3.0 для GPU 8 16 16
TDP, Вт 65 65 54
Разъём Socket AM4 Socket AM4 LGA1151 v1
Официальная цена $51 $109 $64

Основная проблема Athlon X4 950 - устаревшая микроархитектура с низкой удельной производительностью, в остальном же никаких очевидных изъянов в приведённом списке спецификаций не видно.

В диагностической программе CPU-Z характеристики Athlon X4 950 выглядят следующим образом.

Реальные рабочие частоты Athlon X4 950 оказываются немного выше номинала. В Bristol Ridge работа технологии Turbo Core привязана исключительно к показаниям встроенных в ядро датчиков температуры и потребляемой мощности и никак не зависит от того, какое количество ядер процессора реально работает, а какое находится в состоянии простоя. Поэтому, несмотря на то, что номинальная частота Athlon X4 950 - 3,5 ГГц, в большинстве случаев он работает на 3,7-3,8 ГГц. Причём активация турборежима нередко происходит даже при исполнении ресурсоёмких многопоточных программ.

В таком состоянии расчётное тепловыделение Athlon X4 950 остаётся в 65-ваттных рамках. Однако имеется возможность снизить TDP через настройки UEFI BIOS материнской платы. Минимальный уровень потребления составляет 35 Вт, что в теории может быть востребовано в случае использования такого CPU в компактных системах. В таком экономичном режиме реальная частота Athlon X4 950 оказывается ниже номинала и в ресурсоёмких приложениях плавает в интервале от 3,0 до 3,4 ГГц.

⇡ Разгон

Хотя в названии Athlon X4 950 нет литеры K, коэффициент умножения у этого процессора не зафиксирован, что открывает путь к сравнительно простому разгону. Впрочем, не стоит забывать, что процессорный дизайн Bristol Ridge пришёл в десктопы из мобильной среды, а это значит, что основанные на нём чипы оптимизированы скорее под низкое энергопотребление, чем под высокие частоты.

Поэтому вполне закономерно, что на практике разгонный потенциал Athlon X4 950 оказался достаточно скудным, и с повышением напряжения питания до 1,5 В нам удалось добиться устойчивой работы нашего экземпляра всего лишь на частоте 4,2 ГГц.

Хотя 28-нм Athlon X4 с ядрами Excavator по оверклокерскому потенциалу немного превосходит 14-нм Ryzen, которые обычно удаётся разогнать до частот порядка 4,0 ГГц, хорошим результатом такой разгон всё равно назвать невозможно. Более ранние потомки Bulldozer были способны работать на значительно более высоких частотах. Например, предшествующие Athlon X4 950 процессоры той же серии с модельными номерами из девятой сотни, предназначенные для платформы Socket FM2+ и базирующиеся на дизайне Kaveri, без особого труда брали частоты в диапазоне от 4,5 до 4,8 ГГц.

При этом максимально доступные для представителей поколения Bristol Ridge частоты ограничиваются отнюдь не тепловыделением. Температура Athlon X4 950 в разгоне остаётся сравнительно невысокой. Повышение же частоты стопорится из-за каких-то глубинных ограничений в полупроводниковой структуре, которые препятствуют безошибочной работе CPU на скоростях сильно выше номинальной.

С выходом в продажу процессоров AMD Athlon II x4 по цене порядка 100$ поклонники продукции этой фирмы получили замечательную возможность собирать четырехъядерные системы за минимум средств. Новая линейка Athlon II x4 ставит рекорд по минимальной цене за 4 ядра. Ближайший аналог от INTEL, Core 2 Quad Q8200 стоит на 30% больше, нежели младшая модель линейки Athlon II x4 620. И если с ценой у новых процессоров от AMD все прекрасно, то как обстоят дела с производительностью? Сегодня мы постараемся ответить на этот вопрос.

В этом обзоре мы оценим производительность старшего процессора в линейке Athlon II x4 630 в сравнении с младшим представителем четырехъядерного семейства Phenom II: процессором Phenom II х4 810, а также оценим разгонный потенциал обоих процессоров.

Спецификации процессоров

Оба подопытных процессора изготовлены по 45-нм техпроцессу, обладают одинаковым тепловым пакетом TDP в 95 Вт, различаются лишь наличием кэша третьего уровня (у Phenom II) и чуть большей тактовой частотой (у Athlon II).

Несмотря на то, что процессоры Athlon II x4 существенно дешевле своих старших собратьев Phenom II x4, архитектура их отличается незначительно. На фото кристаллов ядер Deneb (слева) и Propus (справа) мы видим, что они очень похожи и ядро Propus представляет собой кристалл Deneb с отсутствующей памятью L3.

В связи с этим становится совершенно очевидно, что процессоры Athlon II на ядре Propus не имеют никакой скрытой возможности включения кэша L3, что можно было бы ожидать от «урезанной» версии топового продукта. Возможно, самые первые партии процессоров Athlon II строились на ядре Deneb с отключенным кэшем, что и породило массу слухов (опирающихся на немногих счастливчиков) о возможности задействовать его, включив функцию Advanced Clock Calibration (ACC) в БИОСе материнской платы.

Уменьшение площади кристалла на треть значительно снизило себестоимость процессора, что в итоге привело к выгодным для покупателей ценам на четырехъядерные процессоры AMD Athlon II x4.

Подробные спецификации процессоров приведены ниже:

Имя Athlon II X4 630 Phenom II X4 810
Количество ядер 4 4
Процессорный разъем AM3 AM3
Ядро Propus Deneb
Техпроцесс, нм 45 45
Кол-во транзисторов, млн. шт. 300 758
Тактовая частота, МГц 2800 2600
L1, Кбайт 4 x 128 4 x 128
L2, Кбайт 4 x 512 4 x 512
L3, Мбайт - 4
Размер кристалла, мм 2 169 258
TDP, Вт 95 95
Цена, руб. 3 770 4 280

Оба процессора работают на 2000 МГц шины Hyper Transport и поддерживают как DDR2, так и DDR3 модули памяти.


Конфигурация стенда, тестовые приложения

Тестовый стенд:

  • Материнская плата MSI 790FX-GD70, BIOS версии 1.6
  • Оперативная память 2 x 2 Гбайт DDR3-1600, Corsair TR3X6G1600C8D, 8-8-8-24
  • Блок питания Tuniq 950 Вт
  • Жесткий диск Western Digital WD15EADS 1,5 Тбайт
  • Видеокарта Sapphire AMD(ATi) Radeon HD 4890
  • Система охлаждения процессора: BOX Cooler

Программное обеспечение:

Тестовые приложения:

  • 3D Mark 06
  • Science Mark тестовый пакет для научных вычислений.
  • LightWork - обсчет сцены в разрешении 300х200
  • POV-Ray Render - обсчет сцены в разрешении 1280х1024
  • PC Mark 05 - результат CPU Score, настройки по умолчанию
  • Crysis Warhead
  • WinRar 3.80 - встроенный тест производительности
  • Unreal Tournament 3 - максимальные настройки качества, 8xAF 4xAA
  • FarCry 2 - режим DX10, максимальные настройки качества, 8xAF 4xAA
  • DVD 2 AV I - однопроходное кодирование mpeg2 ролика кодеком xVid
  • CineBench R10 - многопоточный рендеринг, настройки по умолчанию
  • Call of Duty: World at War - максимальные настройки качества, 4xAF, 4xAA

Разгон

Как показывает опыт, процессоры линейки Phenom II обычно удается разогнать до частоты 3,7-4 ГГц. Так как процессоры Athlon II построены на похожем ядре, мы надеемся на то, что и разгонный потенциал их сравним с Phenom II. Поскольку подопытные процессоры не относятся к серии Black Edition, мы не сможем повысить их множитель свыше номинального, разгон приходится осуществлять только посредством увеличения частоты системной шины. К счастью, материнская плата MSI 790FX-GD70 обладает средствами для удобного изменения частоты FSB «на лету». С помощью аппаратной функции OS Clock Dial, мы сможем поднимать частоту системной шины непосредственно в Windows, попутно контролируя стабильность системы. В ряде экспериментов, когда разгон осуществлялся непосредственно из БИОСа никакой разницы с разгоном через OS Clock Dial нами замечено не было.

Для контроля температуры процессора и, отчасти - тестирования стабильности работы системы, мы использовали программу AMD Overdrive Utility и ее встроенный тест. Разгон мы начали с поднятия напряжения питания процессоров до 1.51 В (1.50 В под нагрузкой) и, уже при этом напряжении, стали повышать частоту FSB. Наш экземпляр Phenom II показал очень неплохой частотный потенциал. При напряжении питания 1,5 В максимальная частота составила 3848 МГц (296 МГц FSB, 2072 МГц Hyper Transport). Для достижения этого результата нам пришлось снизить множитель шины Hyper Transport до x7. С множителем HT х10 максимально стабильной частотой оказалась 3250 МГц (250 МГц FSB, 2500 МГц Hyper Transport). При повышении напряжения до 1.53 В нам удалось достичь частоты в 3900 МГц (300 МГц FSB, 1800 МГц Hyper Transport). Но при прохождении тестов в данном режиме температура процессора поднималась до 70 градусов Цельсия, вследствие чего система зависала от перегрева. Поэтому мы вернулись к стабильной частоте в 3848 МГц и все тесты проводили на ней. В этом режиме температура процессора не превышала 68 градусов Цельсия.

У Athlon II 630 максимальной стабильной оказалась частота в 3570 МГц. Для ее достижения нам пришлось поднять частоту FSB до 255 МГц и снизить множитель шины Hyper Transport до 8х. Температура процессора, в этом случае, под нагрузкой не превышала 52 градусов Цельсия. Дальнейшее повышение напряжения питания процессора (свыше 1.5 В) позволило разогнать процессор до 3640 МГц, но и на этой частоте система оказалась нестабильной.

К сожалению, стабильный предел разгона Athlon II x4 630 не оправдал наших ожиданий. Мы смогли, практически не напрягаясь, поднять частоту Phenom II x4 почти на 50%, и в то же время потерпели неудачу при попытках разогнать Athlon II x4 более чем на 27%. Пока нам неясны столь скромные результаты разгона – это особенность конкретного экземпляра Athlon II 630 или же свойство нового ядра Propus? На этот вопрос можно будет ответить, только набрав статистику по разгону достаточного числа процессоров на новом ядре.


Что есть?

Новые процессоры Athlon на самом деле новыми не являются, хотя AMD представила два кодовых названия: Propus (четырёхъядерные CPU) и Rana (трёхъядерные CPU).

Первый образец, полученный нами - 2,6-ГГц Propus со всеми функциями Phenom II , включая 45-нм техпроцесс SOI и четыре ядра с 512 кбайт кэша L2 каждое. Чип поддерживает почти все современные расширения (MMX, SSE, SSE2, SSE3, SSE4a, Enhanced 3DNow!), бит NX (или "execute disable" на CPU Intel), 64-битные расширения, технологию виртуализации AMD-V и Cool’n’Quiet для снижения тактовых частот и напряжений в промежутках бездействия.

Поскольку Propus базируется на дизайне Deneb, все новые процессоры Athlon II X3 и X4 могут работать как на платформах Socket AM2+ с памятью DDR2, так и на Socket AM3 с памятью DDR3. Вполне понятно, что новые процессоры являются прекрасной возможность апгрейда старых систем AM2, особенно с учётом привлекательной цены $100.

И чего нет?

Вряд ли вы будете удивлены, что за $100 вы не сможете купить топовый продукт, так что настало время поговорить об ограничениях чипа. Самое очевидное кроется в урезанной архитектуре кэша. У всех процессоров Athlon II, включая ранее объявленные чипы Athlon II X2 , отсутствует кэш-память L3.

Учитывая это, Athlon II X4 разрывает традицию AMD по установке общего кэша для многоядерных дизайнов. Отсутствие кэша L3 является основным отличием линеек Phenom II и Athlon II, хотя есть некоторые различия и по частотам (у Athlon II они меньше).

Впрочем, урезанный кэш L3 может дать некоторые преимущества, поскольку не нужно питать транзисторы, которые входят 6 Мбайт кэша L3 у Phenom II. То есть если производительность Athlon II X4 и не будет близко подходить к уровню Phenom II X4, процессоры могут оказаться более эффективными.

Линейка процессоров AMD

Все современные процессоры AMD состоят из трёх основных элементов, которые надо тщательно сбалансировать: числа ядер, ёмкости кэша и тактовой частоты. Баланс должен учитывать техпроцесс, возможные уровни напряжений и тактовых частот, тепловые и электрические ограничения, долю выхода годных кристаллов и, конечно, суммарные затраты.

Уменьшение техпроцесса производства, например, с 65 на 45 нм позволяет производителям чипов оптимизировать один или несколько приведённых параметров. Меньшие по размеру и более эффективные транзисторы обычно могут работать на более высоких тактовых частотах. Но также возможно добавить больше ядер или увеличить размер кэша, чтобы повысить производительность. Наконец, производители могут оставить дизайн процессора неизменным, получая при этом снижение энергопотребления. Этот подход также позволяет производителям получить время на "обкатку" нового техпроцесса, прежде чем переходить к изменениям.

Так как у AMD нет таких крупных производственных мощностей, как у Intel (недавно компания вообще передала производство GlobalFoundries), ей нужно максимизировать долю выхода годных кристаллов. Поэтому большая часть продуктов AMD в любое время базировалась на одном дизайне процессора, который можно было модифицировать (обычно упрощать), чтобы нацеливать CPU на разные сегменты и цены, максимизируя при этом долю выхода годных кристаллов. Ситуация здесь простая: одинаковые процессоры больше не подходят для всех рынков, однако одинаковые кристаллы проще производить.



Кристалл Propus. Нажмите на картинку для увеличения.

Intel, кстати, делает примерно то же самое. Все 45-нм процессоры Core 2 технически построены на двуядерном дизайне Wolfdale, причём два таких кристалла компания использует для создания четырёхъядерных процессоров Yorkfield (Core 2 Quad, Extreme). Intel модифицирует кристаллы, ограничивая ёмкость кэша L2. AMD, однако, намного более агрессивно подошла к созданию разных продуктов на 45-нм дизайне Deneb. Компания переработала кристалл на более глубоком уровне, выключая или включая отдельные блоки, чтобы получить максимальную долю выхода годных кристаллов. Результатом стали несколько отличающиеся кристаллы, которые имеют одинаковое происхождение. Ниже представлена таблица с кратким обзором разных линеек AMD, все из которых имеют одни и те же "корни".

Deneb, четыре ядра, 6 или 4 Мбайт кэша L3 (от 2,4 до 3,4 ГГц)
Heka, три ядра, 6 Мбайт кэша L3 (от 2,4 до 3,0 ГГц)
Callisto, два ядра, 6 Мбайт кэша L3 (от 3,0 до 3,1 ГГц)
Propus, четыре ядра, нет кэша L3 (от 2,6 ГГц и выше)
Rana, три ядра, нет кэша L3 (от 2,7 ГГц и выше)
Regor, два ядра, нет кэша L3 (от 2,8 до 3,0 ГГц)

AMD непреднамеренно подтвердила, что ранние образцы Athlon II X4 в продаже базируются на дизайнах Propus и Deneb, первый не получал кэш L3 изначально, но у последнего 6 Мбайт кэша L3 просто отключены.

Мы сдули пыль со старой доброй материнской платы ASRock M3A790GXH/128M, которую мы использовали раньше для разблокирования процессоров Phenom II X3 и X4 , а потом и для Phenom II X2 . К сожалению, хотя мы видели скриншоты с процессором Athlon II X4 с полным кэшем L3 6 Мбайт, наш 620 запустился с включённым ACC, но кэш L3 не разблокировал, а 630 просто не загрузился.

Как и раньше, не следует покупать эти недорогие процессоры, рассчитывая на лёгкий апгрейд на правильной материнской плате с SB750. Некоторые процессоры действительно могут стать приятным сюрпризом, но есть все шансы, что вы не получите эквивалент Phenom II X4 из новых Athlon II.



Нажмите на картинку для увеличения.

Athlon II X4 - первая модель в линейке AMD с урезанным кэшем L3, и, как нам кажется, данный процессор будет очень успешен на low-end сегменте рынка. Он не только представляет собой самую дешёвую четырёхъядерную модель, доступную по цене около $100, но и может дать начало одному из самых популярных апгредов платформы AMD. Propus он производится по 45-нм техпроцессу, поэтому он может работать на материнских платах Socket AM3 с памятью DDR3, но вы также можете установить его в любую материнскую плату Socket AM2+, если сделаете обновление BIOS. Новые процессоры на многих платах заработают даже без обновления BIOS (мы получили как раз такую ситуацию со старой материнской платой ASRock на 790GX).

Процессор Athlon II X4 620 работает на штатной частоте 2,6 ГГц, а тепловой пакет TDP составляет 95 Вт. AMD предлагает также и 2,8-ГГц модель Athlon II X4 630 (она на момент проведения тестов у нас отсутствовала). В четвёртом квартале запланирован выход и более скоростных моделей. То же самое касается и линейки Athlon II X3, которая на момент объявления будет работать на 100 МГц быстрее, чем X4 - поэтому модельные номера будут 425 (2,7 ГГц) и 435 (2,9 ГГц).

Наш образец Propus очень напоминал Phenom II X4, предлагая четыре ядра и работая на тех же номинальных уровнях напряжения. В отличие от процессоров Athlon II X2, где AMD суммирует ёмкость L2 всех четырёх ядер для работы со всего двумя ядрами (2 x 1024 кбайт), у моделей Athlon II X3 и X4 присутствует по 512 кбайт кэша L2 на ядро (как и у всех Phenom II).

К сожалению, наш образец по-прежнему работал на степпинге C2, хотя AMD начала переходить на новый степпинг C3. Мы рассмотрим различия в степпинге как только получим модели C3, которые ничем другим не отличаются. Не так давно мы рассматривали четыре почти идентичных процессора Athlon 64 X2 5000+ на разных степпингах F2, F3, G1 и G2 . Мы обнаружили любопытные отличия, поэтому будет интересно посмотреть, смогут или нет AMD и GlobalFoundries улучшить некоторые характеристики ядра Phenom II.

Сравнительная таблица всех 45-нм процессоров AMD

High-End/массовый рынок: Phenom II X4 (Deneb четыре ядра)
Модель Тактовая частота Число ядер Socket / память TDP Кэш L2 Кэш L3 Дата выпуска Hyper Transport
Phenom II X4 965 BE 3,4 ГГц 4 AM3/AM2+ DDR3, DDR2 140 Вт 4 x 512 кбайт 6 Мбайт 13 августа 2009 2,0 ГГц
Phenom II X4 955 BE 3,2 ГГц 4 AM3/AM2+ DDR3, DDR2 125 Вт 4 x 512 кбайт 6 Мбайт 23 апреля 2009 2,0 ГГц
Phenom II X4 945 3,0 ГГц 4 AM3/AM2+ DDR3, DDR2 125 Вт
95 Вт
4 x 512 кбайт 6 Мбайт 23 апреля 2009
12 июня 2009
2,0 ГГц
Phenom II X4 940 BE 3,0 ГГц 4 AM2+ DDR2 125 Вт 4 x 512 кбайт 6 Мбайт 08 января 2009 1,8 ГГц
Phenom II X4 920 2,8 ГГц 4 AM2+ DDR2 125 Вт 4 x 512 кбайт 6 Мбайт 08 января 2009 1,8 ГГц
Phenom II X4 910 2,6 ГГц 4 AM3/AM2+ DDR3, DDR2 95 Вт 4 x 512 кбайт 6 Мбайт 09 февраля 2009 2,0 ГГц
Phenom II X4 905e 2,5 ГГц 4 AM3/AM2+ DDR3, DDR2 65 Вт 4 x 512 кбайт 6 Мбайт 02 июня 2009 2,0 ГГц
Phenom II X4 900e 2,4 ГГц 4 AM3/AM2+ DDR3, DDR2 65 Вт 4 x 512 кбайт 6 Мбайт 02 июня 2009 2,0 ГГц
Phenom II X4 820 2,8 ГГц 4 AM3/AM2+ DDR3, DDR2 95 Вт 4 x 512 кбайт 6 Мбайт 16 сентября 2009 2,0 ГГц
Phenom II X4 810 2,6 ГГц 4 AM3/AM2+ DDR3, DDR2 95 Вт 4 x 512 кбайт 6 Мбайт 02 февраля 2009 2,0 ГГц
Phenom II X4 805 2,5 ГГц 4 AM3/AM2+ DDR3, DDR2 95 Вт 4 x 512 кбайт 6 Мбайт 09 февраля 2009 2,0 ГГц
Athlon II X4 620 2,6 ГГц 4 AM3/AM2+ DDR3, DDR2 95 Вт 4 x 512 кбайт 16 сентября 2009 2,0 ГГц
Athlon II X4 630 2,8 ГГц 4 AM3/AM2+ DDR3, DDR2 95 Вт 4 x 512 кбайт 16 сентября 2009 2,0 ГГц
Массовый рынок: Phenom II X3 (Heka три ядра на основе Deneb)
Модель Тактовая частота Число ядер Socket / память TDP Кэш L2 Кэш L3 Дата выпуска Hyper Transport
Phenom II X3 740 3,0 ГГц 3 AM3/AM2+ DDR3, DDR2 95 Вт 3 x 512 кбайт 6 Мбайт 16 сентября 2009 2,0 ГГц
Phenom II X3 720 BE 2,8 ГГц 3 AM3/AM2+ DDR3, DDR2 95 Вт 3 x 512 кбайт 6 Мбайт 09 февраля 2009 2,0 ГГц
Phenom II X3 710 2,6 ГГц 3 AM3/AM2+ DDR3, DDR2 95 Вт 3 x 512 кбайт 6 Мбайт 09 февраля 2009 2,0 ГГц
Phenom II X3 705e 2,5 ГГц 3 AM3/AM2+ DDR3, DDR2 95 Вт 3 x 512 кбайт 6 Мбайт 09 февраля 2009 2,0 ГГц
Phenom II X3 700e 2,4 ГГц 3 AM3/AM2+ DDR3, DDR2 95 Вт 3 x 512 кбайт 6 Мбайт 09 февраля 2009 2,0 ГГц
Массовый рынок: Phenom II X2 (Callisto два ядра на основе Deneb)
Модель Тактовая частота Число ядер Socket / память TDP Кэш L2 Кэш L3 Дата выпуска Hyper Transport
Phenom II X2 550 BE 3,1 ГГц 2 AM3/AM2+ DDR3, DDR2 80 Вт 2 x 512 кбайт 6 Мбайт 01 июня 2009 2,0 ГГц
Phenom II X2 545 3,0 ГГц 2 AM3/AM2+ DDR3, DDR2 80 Вт 2 x 512 кбайт 6 Мбайт 01 июня 2009 2,0 ГГц
Недорогой сегмент: Athlon II X2 (Regor два ядра)
Модель Тактовая частота Число ядер Socket / память TDP Кэш L2 Кэш L3 Дата выпуска Hyper Transport
Athlon II X2 250 3,0 ГГц 2 AM3/AM2+ DDR3, DDR2 65 Вт 2 x 1024 кбайт - 02 июня 2009 2,0 ГГц
Athlon II X2 245 2,9 ГГц 2 AM3/AM2+ DDR3, DDR2 65 Вт 2 x 1024 кбайт - 02 июня 2009 2,0 ГГц
Athlon II X2 240 2,8 ГГц 2 AM3/AM2+ DDR3, DDR2 65 Вт 2 x 1024 кбайт - 02 июня 2009 2,0 ГГц
Недорогой сегмент: Athlon II X2 (Sargas одно ядро)
Модель Тактовая частота Число ядер Socket / память TDP Кэш L2 Кэш L3 Дата выпуска Hyper Transport
Sempron 140 2,7 ГГц 1 AM3/AM2+ DDR3, DDR2 45 Вт 1024 кбайт - - 2,0 ГГц

На этом мы остановимся, поскольку привели все 45-нм процессоры AMD. На рынке по-прежнему присутствует большое количество 65-нм чипов на четырёхъядерном дизайне Agena (линейка Phenom 9000) и трёхъядерном Toliman (Phenom 8000), а также и процессоры Athlon X2 на основе двуядерного дизайна Kuma. Все процессоры предназначены для Socket AM2+ и памяти DDR2, но поскольку 45-нм поколение совместимо как с AM3/DDR3, так и с AM2+/DDR2, оно будет лучшим выбором.

Новые Athlon II X3 и Athlon II X4

Нынешнее объявление процессоров AMD Athlon II X4 означает первый шаг в сторону дизайна Deneb с тремя и четырьмя ядрами без кэша L3. AMD начала с процессоров Athlon II X4 620 на 2,6 ГГц, но вскоре должны появиться две модели с более высокими тактовыми частотами. Athlon II X3 уже присутствует в планах компании, этот процессор должен быть объявлен в то же время.

В остальном AMD переходит со степпинга C2 на C3, что должно понизить тепловой пакет TDP у ряда моделей. Например, флагманский процессор Phenom II X4 965 должен снизить тепловой пакет со 140 Вт до 125 Вт, а Phenom II X4 945 - со 125 Вт до 95 Вт.

Тестовая конфигурация

Для сравнения мы взяли процессоры Intel Core 2 Quad Q8200 (2,33 ГГц), Core 2 Quad Q9550 (2,83 ГГц) и Core 2 Duo E8600 (3,33 ГГц) - с ними будут биться процессоры AMD Phenom II X2 550 (3,1 ГГц) и Phenom II X4 965 BE (3,4 ГГц).

Системное аппаратное обеспечение
Тесты производительности
Gigabyte MA790FXT-UD5P (Rev. 1.0), чипсет: AMD 790GX, SB750, BIOS: 5c (04/01/2009)
Память DDR3 (два канала) 2 x 2 Гбайт DDR3-1600 (Corsair CM3X2G1600C9DHX)
2 x 1 Гбайт DDR3-1600 (Crucial BL12864BA1608.8SFB)
Тесты энергопотребления
Материнская плата (Socket AM3) MSI 770-C45 (Rev. 1.1), чипсет: AMD 770GX, SB710, BIOS: 1.2
Память DDR3 (два канала) 2 x 2 Гбайт DDR3-1600 (Corsair TR3X6G-1600C8D 8-8-8-24)
Общие комплектующие
CPU AMD I AMD Phenom II X4 965 (45 нм, 3,4 ГГц, 4 x 512 кбайт кэша L2 и 6 Мбайт кэша L3, TDP 140 Вт, Rev. C2)
CPU AMD II AMD Phenom II X2 550 (45 нм, 3,1 ГГц, 2 x 512 кбайт кэша L2 и 6 Мбайт кэша L3, TDP 80 Вт, Rev. C2)
CPU AMD III AMD Athlon II X4 620 (45 нм, 2,6 ГГц, 4 x 512 кбайт кэша L2, TDP 95 Вт, Rev. C2)
Видеокарта Zotac GeForce GTX 260², GPU: GeForce GTX 260 (576 МГц), видеопамять: 896 Мбайт DDR3 (1998 МГц), потоковые процессоры: 216, частота блока шейдеров 1242 МГц
Жёсткий диск Western Digital VelociRaptor, 300 Гбайт (WD3000HLFS), 10 000 об/мин, SATA/300, кэш 16 Мбайт
Привод Blu-Ray LG GGW-H20L, SATA/150
Блок питания PC Power & Cooling, Silencer 750EPS12V 750 Вт
Системное ПО и драйверы
Операционная система Windows Vista Enterprise Version 6.0 x64, Service Pack 2 (Build 6000)
Драйверы чипсета AMD Catalyst 9.4
Драйверы чипсета Intel Chipset Installation Utility Ver. 9.1.0.1012
Драйверы Intel Storage Matrix Storage Drivers Ver. 8.8.0.1009


Нажмите на картинку для увеличения.

Для тестов энергопотребления мы взяли эффективную материнскую плату MSI 770-C45, поскольку мы хотели убедиться, что уровни энергопотребления в нашем сравнении будут соответствовать повседневной работе. Другими словами, вряд ли кто-то будет покупать процессор Athlon II X4 за $100, чтобы установить его в high-end материнскую плату. Но мы оставили Gigabyte MX790FXT-UD5P в платформе для тестов производительности.

Тесты и настройки

3D-игры
Far Cry 2 Version: 1.0.1
Far Cry 2 Benchmark Tool
Video Mode: 1280x800
Direct3D 9
Overall Quality: Medium
Bloom activated
HDR off
Demo: Ranch Small
GTA IV Version: 1.0.3
Video Mode: 1280x1024
- 1280x1024
- Aspect Ratio: Auto
- All options: Medium
- View Distance: 30
- Detail Distance: 100
- Vehicle Density: 100
- Shadow Density: 16
- Definition: On
- Vsync: Off
In-game Benchmark
Left 4 Dead Version: 1.0.0.5
Video Mode: 1280x800
Game Settings
- Anti Aliasing none
- Filtering Trilinear
- Wait for vertical sync disabled
- Shader Detail Medium
- Effect Detail Medium
- Model/Texture Detail Medium
Demo: THG Demo 1
Кодирование аудио и видео
iTunes Version: 8.1.0.52
Audio CD ("Terminator II" SE), 53 min.
Convert to AAC audio format
Lame MP3 Version 3.98
Audio CD "Terminator II SE", 53 min
convert WAV to MP3 audio format
Command: -b 160 --nores (160 Kbps)
TMPEG 4.6 Version: 4.6.3.268
Video: Terminator 2 SE DVD (720x576, 16:9) 5 Minutes
Audio: Dolby Digital, 48000 Hz, 6-Kanal, English
Advanced Acoustic Engine MP3 Encoder (160 Kbps, 44.1 kHz)
DivX 6.8.5 Version: 6.8.5
== Main Menu ==
default
== Codec Menu ==
Encoding mode: Insane Quality
Enhanced multithreading
Enabled using SSE4
Quarter-pixel search
== Video Menu ==
Quantization: MPEG-2
XviD 1.2.1 Version: 1.2.1
Other Options / Encoder Menu -
Display encoding status = off
Mainconcept Reference 1.6.1 Version: 1.6.1
MPEG2 to MPEG2 (H.264)
MainConcept H.264/AVC Codec
28 sec HDTV 1920x1080 (MPEG2)
Audio:
MPEG2 (44.1 kHz, 2 Channel, 16 Bit, 224 kbps)
Codec: H.264
Mode: PAL (25 FPS)
Profile: Settings for eight threads
Adobe Premiere pro CS4 Version: 4.0
WMV 1920x1080 (39 sec)
Export: Adobe Media Encoder
== Video ==
H.264 Blu-ray
1440x1080i 25 High Quality
Encoding Passes: one
Bitrate Mode: VBR
Frame: 1440x1080
Frame Rate: 25
== Audio ==
PCM Audio, 48 kHz, Stereo
Encoding Passes: one
Приложения
Grisoft AVG Anti Virus 8 Version: 8.5.287
Virus base: 270.12.16/2094
Benchmark
Scan: some compressed ZIP and RAR archives
Winrar 3.9 Version 3.90 x64 BETA 1
Compression = Best
Benchmark: THG-Workload
Winzip 12 Version 12.0 (8252)
WinZIP Commandline Version 3
Compression = Best
Dictionary = 4096 KB
Benchmark: THG-Workload
Autodesk 3D Studio Max 2009 Version: 9 x64
Rendering Dragon Image
Resolution: 1920 x 1280 (frame 1-5)
Adobe Photoshop CS4 (64-Bit) Version: 11
Filtering a 16MB TIF (15000x7266)
Filters:
Radial Blur (Amount: 10; Method: zoom; Quality: good)
Shape Blur (Radius: 46 px; custom shape: Trademark symbol)
Median (Radius: 1px)
Polar Coordinates (Rectangular to Polar)
Adobe Acrobat 9 professional Version: 9.0.0 (Extended)
== Printing Preferenced Menu ==
Default Settings: Standard
== Adobe PDF Security - Edit Menu ==
Encrypt all documents (128 bit RC4)
Open Password: 123
Permissions Password: 321
Microsoft PowerPoint 2007 Version: 2007 SP2
PPT to PDF
Powerpoint Document (115 Pages)
Adobe PDF-Printer
Deep Fritz 11 Version: 11
Fritz Chess Benchmark Version 4.2
Синтетические тесты
3DMark Vantage Version: 1.02
Options: Performance
Graphics Test 1
Graphics Test 2
CPU Test 1
CPU Test 2
PCMark Vantage Version: 1.00
PCMark Benchmark
Memories Benchmark
SiSoftware Sandra 2009 Version: 2009 SP3
Processor Arithmetic, Cryptography, Memory Bandwith
Benchmark Results: Sandra 2009, PCMark Vantage

Результаты тестов

Синтетические тесты






В тестовом пакете SiSoftware Sandra 2009 новый Athlon II X4 620 на 2,6 ГГц оказался почти что аналогом Core 2 Quad Q8200 по производительности. Мы использовали экономичный процессор Q8200S, который даёт точно такую же производительность, что и обычный Q8200.





Новый четырёхъядерный процессор начального уровня AMD даёт хорошую производительность, но в тесте CPU 3DMark он обходит только Intel Core 2 Quad Q8200 и двуядерные модели.

3D-игры

Архитектура Intel Core 2 даёт в Far Cry больше производительности в расчёте на такт. Даже Phenom II X2 550 побеждает новый четырёхъядерный процессор AMD из-за более высокой тактовой частоты. Впрочем, отрыв невелик.

AMD Athlon II X4 620 является аналогом Core 2 Quad Q8200 в GTA IV. Эта игра выигрывает от четырёхъядерных процессоров больше, чем от тактовых частот.

Left 4 Dead чувствительна к тактовой частоте, поэтому другие процессоры оказываются быстрее.

Приложения

Рендеринг 3ds Max быстрее выполняется на четырёхъядерных процессорах, и Propus показывает себя весьма неплохо.

Проверка на вирусы с помощью AVG Anti-Virus дала простой результат: побеждают четыре ядра, а два ядра находятся в аутсайдерах.

Создание документов PDF с помощью Microsoft PowerPoint чувствительно к производительности памяти, здесь также преимущество дают высокие тактовые частоты. Архитектура Core 2 даёт больше производительности в расчёте на такт.

Adobe Photoshop, как нам кажется, является самым популярным редактором изображений, поэтому мы его и взяли для тестов. Версия CS4 была серьёзно оптимизирована под многоядерные процессоры, но на "железе" Intel она работает быстрее. Впрочем, топовый процессор AMD в Photoshop даёт довольно высокую производительность, а двуядерный Phenom II находится в самом "хвосте". Новый Athlon II X4 620 показал себя вполне достойно, он соответствует по производительности топовой двуядерной модели Intel Core 2 Duo.

Архиватор WinRAR очень чувствителен к производительности памяти и оптимизирован под многопоточность, то есть он выигрывает от наличия нескольких вычислительных ядер. Отсутствующий кэш L3, похоже, является проблемой при сжатии файлов в WinRAR. Все другие четырёхъядерные процессоры быстрее из-за лучшей архитектуры кэша или более высоких тактовых частот.

WinZip не оптимизирован под многоядерные процессоры, поэтому лидируют CPU с самыми высокими тактовыми частотами и лучшей производительностью на такт. Новый процессор AMD проигрывает около минуты своему прямому конкуренту от Intel - Core 2 Quad Q8200.

Посмотрите на великолепные результаты Adobe Premiere Pro CS4. Процессор Athlon II X4 даже сравнялся по производительности с Intel Core 2 Quad Q9550, который работает на более высоких тактовых частотах. Как видим, не все тесты выигрывают от крупного кэша.

Шахматной программе Fritz 11 нужно как можно больше вычислительных ядер, да и от частоты она хорошо масштабируется. В результате новый процессор AMD даёт приятную производительность, но не может обойти линейку Intel Core 2 Quad.

Кодирование аудио/видео

В Apple iTunes решающую роль играет тактовая частота и производительность на такт, поскольку программа не оптимизирована под многоядерные процессоры.

То же самое касается и Lame. Core 2 Duo E8600 на 3,33 ГГц становится лидером.

AMD Athlon II X4 620 смог обойти прямого конкурента Core 2 Quad Q8200 в тесте кодирования видео DivX.

Впрочем, процессор AMD не смог победить Q8200 в том же тесте, но с кодеком XviD.

Кодировщик MainConcept H.264 прекрасно оптимизирован под многоядерные процессоры, что объясняет, почему новый Athlon II X4 показал себя в этом тесте очень хорошо.

Энергопотребление системы

Новый четырёхъядерный процессор AMD не смог обойти систему на Phenom II X2 с энергопотреблением 82 Вт в режиме бездействия. Он потребляет чуть меньше текущей топовой модели, но заключение вполне определённое: вы не сможете сэкономить энергию покупкой более дешёвого процессора в случае платформы AMD.

Под пиковой нагрузкой ситуация полностью иная. Топовая модель AMD кажется просто прожорливым "монстром" по сравнению с другими. Новый Athlon II X4 620 потребляет относительно мало энергии, учитывая, что он обгоняет двуядерные процессоры в приложениях, оптимизированных под четыре вычислительных ядра.

На диаграмме приведено общее количество энергии, которое потребовалось на полный прогон PCMark Vantage - оно минимально у Athlon II X4. Данный тест пока не учитывает производительность вообще.

Эффективность

Среднее энергопотребление во время полного прогона PCMark Vantage у нового Athlon II X4 620 было чуть ниже, чем у двуядерного Phenom II X2 550.

Итог будет тактов: отбрасывание кэша L3 от дизайна Phenom II привело к улучшению эффективности Athlon II по результатам анализа производительности на ватт PCMark Vantage. Впрочем, помните, что мы сравниваем процессоры на разных тактовых частотах, поэтому этот вывод касается только приведённых CPU.



Нажмите на картинку для увеличения.

Заключение

Появление у AMD недорогих четырёхъядерных процессоров без кэша L3 было неизбежно. Athlon II X2 стал первым 45-нм продуктом, который смог выиграть от архитектуры Phenom II при невысокой цене. Athlon II X3 и X4 теперь дополняют ассортимент недорогих процессоров, что позволяет AMD продавать буквально каждый выпущенный кристалл CPU - если у него есть, как минимум, два или больше рабочих ядер. Традиционно AMD очень осторожно подошла к тактовым частотам своих процессоров. Компания выпускает сначала модели для массового рынка со скромными частотами, а потом представляет более скоростные версии. Возможно, AMD нужно накопить определённое количество подходящих ядер, чтобы выпустить подобные "новые" процессоры.

Средняя производительность

Как и предполагалось, Athlon II X4 620 на частоте 2,6 ГГц нельзя назвать высокопроизводительным процессором. Традиционные приложения, не содержащие оптимизацию под многоядерные архитектуры (Far Cry, Left 4 Dead, WinZip, создание PDF) работают хорошо, но не очень быстро из-за ограниченных тактовых частот. Поэтому процессор Core 2 Duo с высокими тактовыми частотами остаётся лучшим (хотя и более дорогим) выбором. Приложения с хорошей оптимизацией под многопоточность прекрасно показывают себя на новом процессоре AMD начального уровня. Есть несколько тестов, в которых Athlon II X4 серьёзно обгоняет двуядерного конкурента (GTA IV, Fritz 11, 3ds Max, Adobe Premiere, MainConcept, синтетические тесты).

Приближается к Core 2 Quad Q8200 при меньшей цене

Основным конкурентом у Athlon II X4 является линейка Intel Core 2 Quad Q8000. В большинстве тестов процессор AMD приближается к Q8200, но только в немногих оказывается быстрее (DivX, MainConcept, Adobe Premiere). Впрочем, ценовое предложение AMD вновь лучше, чем у Intel. Да и материнские платы для массового рынка у платформы AMD дешевле, чем у Intel. По соотношению производительность/цена появление Athlon II X4 620 можно считать умным ходом, который привносит четыре ядра и на low-end сегмент.

Новые возможности апгрейда

Наконец, мы хотели бы специально отметить, что новые процессоры, будь это Athlon II X3 или X4, прекрасно подходят для старых платформ Socket AM2. Если вы хотите, чтобы ваша система Athlon 64 X2 проработала чуть дольше (скажем, до появления на массовом рынке SATA/600 и USB 3.0 в 2010 году), то покупка Athlon II X4 в качестве замены старой системы Athlon 64 X2 кажется идеальной опцией. Просто убедитесь, что на сайте производителя материнской платы присутствует обновление BIOS перед покупкой CPU. Хотя на некоторых моделях материнских плат новые процессоры будут работать и без обновления.

Athlon 64 x2 модели 5200+ позиционировался производителем как двухъядерное решение среднего уровня на базе АМ2. Именно на его примере и будет изложен порядок разгона данного семейства устройств. Запас прочности у него достаточно неплохой, и при наличии соответствующих комплектующих можно было получить вместо него чипы с индексами 6000+ или 6400+.

Смысл разгона ЦПУ

Процессор AMD Athlon 64 x2 модели 5200+ можно легко превратить в 6400+. Для этого достаточно только повысить его тактовую частоту (в этом и заключается смысл разгона). Как результат - конечная производительность системы вырастет. Но при этом увеличится и энергопотребление компьютера. Поэтому не все так просто. Большинство компонентов компьютерной системы должно иметь запас по надежности. Соответственно, материнская плата, модули памяти, блок питания и корпус должны быть более высокого качества, это значит, что и стоимость у них будет выше. Также система охлаждений ЦПУ и термопаста должны быть специально подобраны именно для процедуры разгона. А вот со штатной системой охлаждения не рекомендуется экспериментировать. Она рассчитана на стандартный тепловой пакет процессора и с увеличенной нагрузкой не справится.

Позиционирование

Характеристики процессора AMD Athlon 64 x2 явно указывают на то, что он относился к среднему сегменту двухъядерных чипов. Были и менее производительные решения - 3800+ и 4000+. Это начальный уровень. Ну а выше в иерархии находились ЦПУ с индексами 6000+ и 6400+. Первые две модели процессоров теоретически можно было разогнать и получить из них 5200+. Ну а сам 5200+ можно было модифицировать до 3200 МГц, и за счет этого получить вариацию уже 6000+ или даже 6400+. Причем технические параметры у них были практически идентичными. Единственное что могло изменяться, так это количество кэша второго уровня и технологический процесс. Как результат уровень их производительности после разгона практически не отличался. Вот и получалось, что при меньшей стоимости конечный владелец получал более производительную систему.

Технические характеристики чипа

Характеристики процессора AMD Athlon 64 x2 могут существенно отличаться. Ведь было выпущено три его модификации. Первая из них носила кодовое название Windsor F2. Работала она на тактовой частоте в 2,6 ГГц, имела 128 кбайт кэша первого уровня и, соответственно, 2 Мб второго уровня. Изготавливался этот полупроводниковый кристалл по нормам 90 нм технологического процесса, а тепловой его пакет был равен 89 Вт. При этом максимальная температура его могла достигать 70 градусов. Ну и напряжение, подаваемое на ЦПУ, могло быть равно 1,3 В или 1,35 В.

Чуть позже появился в продаже чип с кодовым названием Windsor F3. В этой модификации процессора изменилось напряжение (в этом случае оно понизилось до 1,2 В и 1,25 В соответственно), увеличилась максимальная рабочая температура до 72 градусов и уменьшился тепловой пакет до 65 Вт. В довершение к этому изменился и сам технологический процесс - с 90 нм до 65 нм.

Последний, третий вариант процессора носил кодовое название Brisbane G2. В этом случае частота была поднята на 100 МГц и составляла уже 2,7 ГГц. Напряжение могло быть равным 1,325 В, 1,35 В или 1,375 В. Максимальная рабочая температура снижалась до 68 градусов, а тепловой пакет, как и в предыдущем случае, был равен 65 Вт. Ну и сам чип изготавливался по более прогрессивному 65 нм технологическому процессу.

Сокет

Процессор AMD Athlon 64 x2 модели 5200+ устанавливался в сокет АМ2. Второе его название - сокет 940. Электрически и в отношении программного обеспечения он совместим с решениями на базе АМ2+. Соответственно, приобрести для него материнскую плату пока еще возможно. Но вот сам ЦПУ уже купить достаточно сложно. Это неудивительно: процессор появился в продаже в 2007 году. С тех пор успело уже поменяться три поколения устройств.

Подбор материнской платы

Достаточно большой набор материнских плат на базе сокета АМ2 и АМ2+ поддерживал процессор AMD Athlon 64 x2 5200. Характеристики у них были самые разнообразные. Но вот чтобы по максимуму стал возможен разгон этого полупроводникового чипа, рекомендуется обращать внимание на решения на базе чипсета 790FX или 790Х. Стоили подобные материнские платы дороже среднего. Это логично, так как возможности для разгона у них были значительно лучше. Также плата должна быть изготовлена в форм-факторе АТХ. Можно, конечно, попытаться разогнать данный чип и на решениях мини-АТХ, но плотная компоновка радиодеталей на них может привести к нежелательным последствиям: перегреву материнской платы и центрального процессора и выходу их из строя. В качестве конкретных примеров можно привести PC-AM2RD790FX от Sapphire или 790XT-G45 от MSI. Также достойной альтернативой приведенным ранее решениям может стать M2N32-SLI Deluxe от Asus на базе чипсета nForce590SLI, разработанного NVIDIA.

Система охлаждения

Разгон процессора AMD Athlon 64 x2 невозможен без качественной системы охлаждения. Тот кулер, который идет в коробочной версии данного чипа, не подходит для этих целей. Он рассчитан на фиксированную тепловую нагрузку. При увеличении производительности ЦПУ его тепловой пакет возрастает, и штатная система охлаждения уже не будет справляться. Поэтому нужно покупать более продвинутую, с улучшенными техническими характеристиками. Можно порекомендовать для этих целей использовать кулер CNPS9700LED от Zalman. При наличии его данный процессор можно смело разгонять до 3100-3200 МГц. При этом особых проблем с перегревом ЦПУ точно не будет.

Термопаста

Еще один важный компонент, который нужно учитывать перед тем, AMD Athlon 64 x2 5200 +, это термопаста. Ведь чип будет функционировать не в режиме штатной нагрузки, а в состоянии увеличенной производительности. Соответственно, к качеству термопасты выдвигаются более жесткие требования. Она должна обеспечивать улучшенный теплоотвод. Для этих целей рекомендуется заменить штатную термопасту на КПТ-8, которая отлично подойдет для условий разгона.

Корпус

Процессор AMD Athlon 64 x2 5200 будет работать с увеличенной температурой в процессе разгона. В некоторых случаях она может подниматься до 55-60 градусов. Чтобы компенсировать эту увеличенную температуру, одной качественной замены термопасты и системы охлаждения будет недостаточно. Также нужен корпус, в котором воздушные потоки могли бы хорошо циркулировать, а за счет этого обеспечивалось бы дополнительное охлаждение. То есть внутри системного блока должно быть как можно больше свободного пространства, и это бы позволило за счет конвекции обеспечить охлаждение компонентов компьютера. Еще лучше будет, если в нем будут установлены дополнительные вентиляторы.

Процесс разгона

Теперь разберемся с тем, как разогнать процессор AMD ATHLON 64 x2. Выясним это на примере модели 5200+. Алгоритм разгона ЦПУ в это случае будет таким.

  1. При включении ПК нажимаем клавишу Delete. После этого откроется синий экран БИОСа.
  2. Затем находим раздел, связанный с работой оперативной памяти, и снижаем частоту ее работы до минимума. Например, задано значение для ДДР1 333 MHz, а мы опускаем частоту до 200 MHz.
  3. Далее сохраняем внесенные изменения и загружаем операционную систему. Потом с помощью игрушки или тестовой программы (например, CPU-Z и Prime95) проверяем работоспособность ПК.
  4. Опять перезагружаем ПК и заходим в БИОС. Здесь теперь находим пункт, связанный с работой шины PCI, и фиксируем ее частоту. В этом же месте необходимо зафиксировать данный показатель для графической шины. В первом случае значение должно быть установлено в 33 MHz.
  5. Сохраняем параметры и перезагружаем ПК. Заново проверяем его работоспособность.
  6. На следующем этапе выполняется перезагрузка системы. Заново входим в БИОС. Здесь находим параметр, связанный с шиной HyperTransport, и устанавливаем частоту работы системной шины в 400 МГц. Сохраняем значения и перезагружаем ПК. После окончания загрузки ОС тестируем стабильность работы системы.
  7. Потом перезагружаем ПК и входим заново в БИОС. Здесь необходимо теперь перейти в раздел параметров процессора и увеличить частоту системной шины на 10 МГц. Сохраняем изменения и перезагружаем компьютер. Проверяем стабильность системы. Затем, постепенно повышая частоту процессора, доходим до того момента, когда он перестает стабильно работать. Далее возвращаемся к предыдущему значению и опять тестируем систему.
  8. Затем можно попытаться дополнительно разогнать чип с помощью его множителя, который должен быть в этом же разделе. При этом после каждого внесения изменений в БИОС сохраняем параметры и проверяем работоспособность системы.

Если в процессе разгона ПК начинает зависать и вернуться к предыдущим значениям невозможно, то необходимо сбросить настройки БИОСа на заводские. Для этого достаточно найти в нижней части материнской платы, рядом с батарейкой, джампер с надписью Clear CMOS и переставить его на 3 секунды с 1 и 2 контакта на 2 и 3 контакты.

Проверка стабильности системы

Не только максимальная температура процессора AMD Athlon 64 x2 может привести к нестабильной работе компьютерной системы. Причина может быть вызвана рядом дополнительных факторов. Поэтому в процессе разгона рекомендуется проводить комплексную проверку надежности работы ПК. Лучше всего для решения этой задачи подходит программа Everest. Именно с ее помощью и можно проверить надежность и стабильность работы компьютера в процессе разгона. Для этого лишь достаточно после каждых внесенных изменений и после окончания загрузки ОС запускать эту утилиту и проверять состояние аппаратных и программных ресурсов системы. Если какое-то значение выходит за допустимые границы, то нужно перезагружать компьютер и возвращаться к предыдущим параметрам, а затем заново все тестировать.

Контроль системы охлаждения

Температура процессора AMD Athlon 64 x2 зависит от работы системы охлаждения. Поэтому по окончании процедуры разгона необходимо проверить стабильность и надежность работы кулера. Для этих целей лучше всего использовать программу SpeedFAN. Она и бесплатная, и уровень ее функциональности достаточный. Скачать ее из Интернета и установить на ПК не составит особого труда. Далее ее запускаем и периодически, в течение 15-25 минут, контролируем количество оборотов кулера процессора. Если это число стабильно и не уменьшается, то все в порядке с системой охлаждения ЦПУ.

Температура чипа

Рабочая температура процессора AMD Athlon 64 x2 в штатном режиме должна изменяться в диапазоне от 35 до 50 градусов. В процессе разгона этот диапазон будет уменьшаться в сторону последнего значения. На определенном этапе температура ЦПУ может даже превысить 50 градусов, и в этом ничего страшного нет. Максимально допустимое значение - 60 ˚С, приблизившись к которому, рекомендуется прекратить какие-либо эксперименты с разгоном. Более высокое значение температуры может негативно сказаться на полупроводниковом кристалле процессора и вывести его из строя. Для проведения замеров в процессе операции рекомендуется использовать утилиту CPU-Z. Причем регистрацию температуры необходимо осуществлять после каждого внесенного изменения в БИОС. Также нужно выдержать интервал в 15-25 минут, в течении которого периодически проверять, как сильно нагрелся чип.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: