18650 тестирование. Участники и результаты тестирования. Защищенные и незащищенные литий-ионные аккумуляторы

Одним из основных негативных биологических факторов космического пространства, наряду с невесомостью, является радиация. Но если ситуация с невесомостью на различных телах Солнечной системы (например, на Луне или Марсе) будет лучше, чем на МКС, то с радиацией дела обстоят сложнее.

По своему происхождению космическое излучение бывает двух типов. Оно состоит из галактических космических лучей (ГКЛ) и тяжелых положительно заряженных протонов, исходящих от Солнца. Эти два типа излучения взаимодействуют друг с другом. В период солнечной активности интенсивность галактических лучей уменьшается, и наоборот. Наша планета защищена от солнечного ветра магнитным полем. Несмотря на это, часть заряженных частиц достигает атмосферы. В результате возникает явление, известное как полярное сияние. Высокоэнергетические ГКЛ почти не задерживаются магнитосферой, однако они не достигают поверхности Земли в опасном количестве благодаря ее плотной атмосфере. Орбита МКС находится выше плотных слоев атмосферы, однако внутри радиационных поясов Земли. Из-за этого уровень космического облучения на станции намного выше, чем на Земле, но существенно ниже, чем в открытом космосе. По своим защитным свойствам атмосфера Земли приблизительно эквивалентна 80-сантиметровому слою свинца.

Единственным достоверным источником данных о дозе излучения, которую можно получить во время длительного космического перелета и на поверхности Марса, является прибор RAD на исследовательской станции Mars Science Laboratory, более известной как Curiosity. Чтобы понять, насколько точны собранные им данные, давайте для начала рассмотрим МКС.

В сентябре 2013 года в журнале Science была опубликована статья, посвященная результатам работы инструмента RAD. На сравнительном графике, построенном Лабораторией реактивного движения НАСА (организация не связана с экспериментами, проводимыми на МКС, но работает с инструментом RAD марсохода Curiosity), указано, что за полгода пребывания на околоземной космической станции человек получает дозу излучения, примерно равную 80 мЗв (миллизиверт). А вот в издании Оксфордского университета от 2006 года (ISBN 978-0-19-513725-5) говорится, что в сутки космонавт на МКС получает в среднем 1 мЗв, т. е. полугодовая доза должна составить 180 мЗв. В результате мы видим огромный разброс в оценке уровня облучения на давно изученной низкой орбите Земли.

Основные солнечные циклы имеют период 11 лет, и, поскольку ГКЛ и солнечный ветер взаимосвязаны, для статистически надежных наблюдений нужно изучить данные о радиации на разных участках солнечного цикла. К сожалению, как говорилось выше, все имеющиеся у нас данные о радиации в открытом космосе были собраны за первые восемь месяцев 2012 года аппаратом MSL на его пути к Марсу. Информация о радиации на поверхности планеты накоплена им же за последующие годы. Это не значит, что данные неверны. Просто нужно понимать, что они могут отражать лишь характеристики ограниченного периода времени.

Последние данные инструмента RAD были опубликованы в 2014 году. Как сообщают ученые из Лаборатории реактивного движения НАСА, за полгода пребывания на поверхности Марса человек получит среднюю дозу излучения около 120 мЗв. Эта цифра находится посередине между нижней и верхней оценками дозы облучения на МКС. За время перелета к Марсу, если он также займет полгода, доза облучения составит 350 мЗв, т. е. в 2-4,5 раза больше, чем на МКС. За время полета MSL пережил пять вспышек на Солнце умеренной мощности. Мы не знаем наверняка, какую дозу облучения получат космонавты на Луне, поскольку во времена программы «Аполлон» не проводились эксперименты, изучавшие отдельно космическую радиацию. Ее эффекты изучались лишь совместно с эффектами других негативных явлений, таких как влияние лунной пыли. Тем не менее, можно предположить, что доза будет выше, чем на Марсе, поскольку Луна не защищена даже слабой атмосферой, но ниже, чем в открытом космосе, т. к. человек на Луне будет облучаться только «сверху» и «с боков», но не из-под ног./

В заключение можно отметить, что радиация – это та проблема, которая обязательно потребует решения в случае колонизации Солнечной системы. Однако широко распространенное мнение, что радиационная обстановка за пределами магнитосферы Земли не позволяет совершать длительные космические полеты, просто не соответствует действительности. Для полета к Марсу придется установить защитное покрытие либо на весь жилой модуль космического перелетного комплекса, либо на отдельный особо защищенный «штормовой» отсек, в котором космонавты смогут пережидать протонные ливни. Это не значит, что разработчикам придется использовать сложные антирадиационные системы. Для существенного снижения уровня облучения достаточно теплоизоляционного покрытия, которое применяют на спускаемых аппаратах космических кораблей для защиты от перегрева при торможении в атмосфере Земли.

Космическая лента

Все организмы с момента своего появления на Земле существовали, развивались и эволюционировали при постоянном воздействии радиации. Радиация - это такое же естественное природное явление, как ветер, приливы и отливы, дождь и т. п.

Естественный радиационный фон (ЕРФ) присутствовал на Земле на всех этапах ее формирования. Он был задолго до того, как появилась жизнь, а затем и биосфера. Радиоактивность и сопровождающие ее ионизирующие излучения явились фактором, оказавшим влияние на современное состояние биосферы, эволюцию Земли, жизнь на Земле и элементный состав Солнечной системы. Любой организм подвергается воздействию характерного для данной местности радиационного фона. До 1940-х гг. он был обусловлен двумя факторами: распадом радионуклидов естественного происхождения, находящихся как в среде обитания данного организма, так и в самом организме, и космическими лучами.

Источники естественной (природной) радиации - это космос и природные радионуклиды, содержащиеся в естественной форме и концентрации во всех объектах биосферы: почве, воде, воздухе, минералах, живых организмах и т. д. Любой из окружающих нас предметов и мы сами в абсолютном смысле слова радиоактивны.

Основную дозу облучения население земного шара получает от естественных источников радиации. Большинство из них таковы, что избежать облучения от них совершенно невозможно. На протяжении всей истории существования Земли разные виды излучения проникают к поверхности земли из космоса и поступают от радиоактивных веществ, находящихся в земной коре. Человек подвергается облучению двумя способами. Радиоактивные вещества могут находиться вне организма и облучать его снаружи (в этом случае говорят о внешнем облучении) или они могут оказаться в воздухе, которым дышит человек, в пище или воде и попасть внутрь организма (такой способ облучения называют внутренним).

Облучению от естественных источников радиации подвергается любой житель Земли. Это зависит, в частности, от того, где люди живут Уровень радиации в некоторых местах земного шара, особенно там, где залегают радиоактивные породы, оказывается значительно выше среднего, а в других местах - ниже. Земные источники радиации в сумме ответственны за большую часть облучения, которому подвергается человек за счет естественной радиации. В среднем они обеспечивают более 5/6 годовой эффективной эквивалентной дозы, получаемой населением, в основном вследствие внутреннего облучения. Остальную часть вносят космические лучи, главным образом, путем внешнего облучения.



Естественный радиационный фон формируется космическим излучением (16%) и излучением, создаваемым рассеянными в природе радионуклидами, содержащимися в земной коре, приземном воздухе, почве, воде, растениях, продуктах питания, в организмах животных и человека, (84%). Техногенный радиационный фон связан главным образом с переработкой и перемещением горных пород, сжиганием каменного угля, нефти, газа и других горючих ископаемых, а также с испытаниями ядерного оружия и ядерной энергетикой.

Естественный радиационный фон есть неотъемлемый фактор окружающей среды, оказывающий существенное воздействие на жизнедеятельность человека. Естественный радиационный фон колеблется в широких пределах в различных регионах Земли. Эквивалентная доза в организме человека в среднем 2 мЗв = 0,2 бэр. Эволюционное развитие показывает, что в условиях естественного фона обеспечиваются оптимальные условия для жизнедеятельности человека, животных, растений. Поэтому при оценке опасности, обусловленной ионизирующим излучением, крайне важно знать характер и уровни облучения от различных источников.

Поскольку радионуклиды, как и любые атомы, образуют в природе определенные соединения и в соответствие со своими химическими свойствами входят в состав определенных минералов, то распределение естественных радионуклидов в земной коре неравномерно. Космическое излучение, как говорилось выше, также зависит от ряда факторов и может отличаться в несколько раз. Таким образом, естественный радиационный фон в разных местах земного шара разный. С этим связана условность понятия «нормальный радиационный фон»: с высотой над уровнем моря фон увеличивается за счет космического излучения, в местах выхода на поверхность гранитов или богатых торием песков радиационный фон также выше и так далее. Поэтому можно говорить лишь о среднем естественном радиационном фоне для данной местности, территории, страны и т. д.



Среднее значение эффективной дозы, получаемое жителем нашей планеты от природных источников за год, составляет 2,4 мЗв .

Примерно 1/3 этой дозы формируется за счет внешнего излучения (примерно поровну от космоса и от радионуклидов) и 2/3 обусловлены внутренним облучением, то есть природными радионуклидами, находящимися внутри нашего организма. Средняя удельная активность человека составляет около 150 Бк/кг. Естественный радиационный фон (внешнее облучение) на уровне моря в среднем составляет около 0,09 мкЗв/ч. Это соответствует примерно 10 мкР/ч.

Космическое излучение - это поток ионизирующих частиц, который падает на Землю из космического пространства. В состав космического излучения входят:

Космическое излучение состоит из трех компонентов, различающихся происхождением:

1) излучение частиц, захваченных магнитным полем Земли;

2) галактическое космическое излучение;

3) корпускулярное излучение Солнца.

Излучение заряженных частиц, захваченных магнитным полем Земли - на расстоянии 1,2-8 земных радиусов расположены так называемые радиационные пояса, содержащие протоны с энергией 1-500 МэВ (в основном 50 МэВ), электроны с энергией около 0,1-0,4 МэВ и незначительное количество альфа-частиц.

Состав. Галактические космические лучи состоят в основном из протонов (79 %) и α-частиц (20 %), что отражает распространенность водорода и гелия во Вселенной. Из числа тяжелых ионов наибольшее значение имеют ионы железа вследствие относительно высокой интенсивности и большого атомного числа.

Происхождение. Источниками галактических космических лучей являются звездные вспышки, взрывы сверхновых, пульсарное ускорение, взрывы галактических ядер и т. п.

Время жизни. Время существования частиц в космическом излучении - порядка 200 млн лет. Удержание частиц происходит за счет магнитного поля межзвездного пространства.

Взаимодействие с атмосферой . Входя в атмосферу, космические лучи взаимодействуют с атомами азота, кислорода и аргона. Столкновения частиц с электронами происходят чаще, чем с ядрами, но при этом высокоэнергичные частицы теряют мало энергии. При столкновениях же с ядрами частицы практически всегда выбывают из потока, поэтому ослабление первичного излучения практически полностью обусловлено ядерными реакциями.

При столкновении протонов с ядрами из ядер выбиваются нейтроны и протоны, идут реакции расщепления ядер. Образующиеся вторичные частицы обладают значительной энергией и сами индуцируют такие же ядерные реакции, т. е. происходит формирование целого каскада реакций, образуется так называемый широкий атмосферный ливень. Одна первичная частица высокой энергии может породить ливень, включающий десять последовательных поколений реакций, в которых рождаются миллионы частиц.

Новые ядра и нуклоны, составляющие ядерно-активный компонент излучения, образуются в основном в верхних слоях атмосферы. В ее нижней части поток ядер и протонов значительно ослабляется за счет ядерных столкновений и далее - потерь на ионизацию. На уровне моря он формирует только единицы процентов мощности дозы.

Космогенные радионуклиды

В результате ядерных реакций, идущих под влиянием космических лучей в атмосфере и частично в литосфере, образуются радиоактивные ядра. Из них в создание дозы наибольший вклад вносят (β-излучатели: 3 H (Т 1/2 = 12,35 лет), 14 C (T 1/2 = 5730 лет), 22 Na (T 1/2 = 2,6 лет), - поступающие в организм человека вместе с пищей. Как следует из приведенных данных, наибольший вклад в облучение вносит углерод-14. Взрослый человек потребляет с пищей ~ 95 кг углерода в год.

Солнечное излучение, состоящее из электромагнитного излучения вплоть до рентгеновского диапазона, протонов и альфа-частиц;

Перечисленные виды излучения являются первичными, они почти полностью исчезают на высоте около 20 км вследствие взаимодействия с верхними слоями атмосферы. При этом образуется вторичное космическое излучение, которое достигает поверхности Земли и воздействует на биосферу (в том числе на человека). В состав вторичного излучения входят нейтроны, протоны, мезоны, электроны и фотоны.

Интенсивность космического излучения зависит от ряда факторов:

Изменений потока галактического излучения,

Активности солнца,

Географической широты,

Высоты над уровнем моря.

В зависимости от высоты интенсивность космического излучения резко возрастает.


Радионуклиды земной коры.

В земной коре рассеяны долгоживущие (с периодом полураспада в миллиарды лет) изотопы, которые не успели распасться за время существования нашей планеты. Они образовались, наверное, одновременно с образованием планет Солнечной системы (относительно короткоживущие изотопы распались полностью). Эти изотопы называются естественными радиоактивными веществами, это значит такими, которые образовались и постоянно вновь образовываются без участия человека. Распадаясь, они образуют промежуточные, также радиоактивные, изотопы.

Внешними источниками излучений являются более 60 естественных радионуклидов, находящихся в биосфере Земли. Естественные радиоактивные элементы содержатся в относительно небольшом количестве во всех оболочках и ядре Земли. Особое значение для человека имеют радиоактивные элементы биосферы, т.е. той части оболочки Земли (лито-, гидро-и атмосфере), где находятся микроорганизмы, растения, животные и человек.

В течение миллиардов лет шел постоянный процесс радиоактивного распада нестабильных ядер атомов. В результате этого общая радиоактивность вещества Земли, горных пород постепенно снижалась. Относительно короткоживущие изотопы распались полностью. Сохранились главным образом элементы с полураспадом, измеряемым миллиардами лет, а также относительно короткоживущие вторичные продукты радиоактивного распада, образующиеся последовательные цепочки преобразований, так называемые семейства радиоактивных элементов. В земной коре естественные радионуклиды могут быть более или менее равномерно рассеяны или сконцентрированы в виде месторождений.

Природные (естественные) радионуклиды можно разделить на три группы:

Радионуклиды, принадлежащие радиоактивным семействам (рядам),

Другие (не принадлежащие радиоактивным семействам) радионуклиды, вошедшие в состав земной коры при формировании планеты,

Радионуклиды, образовавшиеся под действием космического излучения.

В процессе формирования Земли в состав ее коры наряду со стабильными нуклидами вошли и радионуклиды. Большая часть этих радионуклидов относится к так называемым радиоактивным семействам (рядам). Каждый ряд представляет собой цепочку последовательных радиоактивных превращений, когда ядро, образующееся при распаде материнского ядра, тоже, в свою очередь, распадается, вновь порождая неустойчивое ядро и т. д. Началом такой цепочки является радионуклид, который не образуется из другого радионуклида, а содержится в земной коре и биосфере с момента их рождения. Этот радионуклид называют родоначальником и его именем называют все семейство (ряд). Всего в природе существует три родоначальника - уран-235, уран-238 и торий-232, и, соответственно, три радиоактивных ряда - два урановых и ториевый. Заканчиваются все ряды стабильными изотопами свинца.

Самый большой период полураспада у тория (14 млрд. лет), поэтому он со времени аккреции Земли сохранился почти полностью. Уран-238 распался в значительной степени, распалась подавляющая часть урана-235, а изотоп нептуния-232 распался весь. По этой причине в земной коре много тория (почти в 20 раз больше урана), а урана-235 в 140 раз меньше, чем урана-238. Поскольку родоначальник четвертого семейства (нептуний) со времени аккреции Земли весь распался, то в горных породах его почти нет. В ничтожных количествах нептуний обнаружен в урановых рудах. Но происхождение его вторичное и обязано бомбардировке ядер урана-238 нейтронами космических лучей. Сейчас нептуний получают с помощью искусственных ядерных реакций. Для эколога он не представляет интереса.

Около 0,0003% (по разным данным 0,00025-0,0004%) Массы земной коры - это уран. То есть в одном кубометре самого обычного грунта содержится в среднем 5 граммов урана. Есть места, где это количество в тысячи раз больше - это месторождения урана. В кубометре морской воды содержится около 1,5 мг урана. Этот природный химический элемент представлен двумя изотопами -238U и 235U, каждый из которых является родоначальником своего радиоактивного ряда. Подавляющая часть природного урана (99,3%) - это уран-238. Этот радионуклид весьма устойчив, вероятность его распада (а именно - альфа-распада) очень мала. Эта вероятность характеризуется периодом полураспада, равным 4,5 миллиарда лет. То есть со времен формирования нашей планеты его количество уменьшилось вдвое. Из этого, в свою очередь, следует, что радиационный фон на нашей планете раньше был выше. Цепочки радиоактивных превращений, порождающей природные радионуклиды уранового ряда:

Радиоактивный ряд включает как долгоживущие радионуклиды (то есть радионуклиды с большим периодом полураспада), так и короткоживущие, но в природе существуют все радионуклиды ряда, даже те, которые быстро распадаются. Это связано с тем, что с течением времени установилось равновесие (так называемое «вековое равновесие») - скорость распада каждого радионуклида равна скорости его образования.

Существуют природные радионуклиды, которые вошли состав земной коры в процессе формирования планеты и которые не принадлежат урановым или ториевому рядам. В первую очередь - это калий-40. Содержание 40 К в земной коре около 0,00027% (масс), период полураспада 1,3 миллиарда лет. Дочерний нуклид - каль-ций-40 - является стабильным. Калий-40 в значительном количестве входит в состав растений и живых организмов, вносит существенный вклад в общую дозу внутреннего облучения человека.

Природный калий содержит три изотопа: калий-39, калий-40 и калий-41, из которых только калий-40 радиоактивен. Количественное соотношение этих трех изотопов в природе выглядит так: 93,08 %, 0,012 % и 6,91 %.

Калий-40 распадается двумя путями. Около 88% его атомов испытывают бета-излучение и превращаются в атомы кальция-40. Остальные 12% атомов, испытывая К-захват, превращаются в атомы аргона-40. На этом свойстве калия-40 основан калий-аргоновый метод определения абсолютного возраста горных пород и минералов.

Третью группу природных радионуклидов составляют космогенные радионуклиды. Эти радионуклиды образуются под действием космического излучения из стабильных нуклидов в результате ядерных реакций. К ним относятся тритий, бериллий-7, углерод-14, натрий-22. Например, ядерные реакции образования трития и углерода-14 из азота под действием космических нейтронов:

Особое место среди природных радиоизотопов занимает углерод. Природный углерод состоит из двух стабильных изотопов, среди которых преобладает углерод-12 (98,89 %). Остальная часть почти целиком приходится на изотоп углерод-13 (1,11 %).

Помимо стабильных изотопов углерода известны еще пять радиоактивных. Четыре из них (углерод-10, углерод-11, углерод-15 и углерод-16) характеризуются весьма малыми периодами полураспада (секунды и доли секунды). Пятый радиоизотоп, углерод-14, имеет период полураспада 5730 лет.

В природе концентрация углерода-14 крайне мала. Например, в современных растениях один атом этого изотопа приходится на 10 9 атомов углерода-12 и углерода-13. Однако с появлением атомного оружия и ядерной техники углерод-14 получается искусственно при взаимодействии медленных нейтронов с азотом атмосферы, поэтому количество его постоянно растет.

Существует некоторая условность относительно точки зрения того, какой фон считать «нормальным». Так, при «среднепланетарной» годовой эффективной дозе на одного человека 2,4 мЗв во многих странах эта величина составляет 7-9 мЗв/год. То есть испокон веков миллионы людей живут в условиях природных дозовых нагрузок, которые в несколько раз выше, чем среднестатистические. Медицинские исследования и демографическая статистика показывают, что это никак не сказывается на их жизни, не оказывают никакого негативного влияния на их здоровье и здоровье их потомства.

Говоря об условности понятия «нормальный» природный фон, можно указать также ряд мест на планете, где уровень природной радиации превышает среднестатистический не только в разы, но и в десятки раз (таблица), этому воздействию подвержены десятки и сотни тысяч жителей. И это тоже норма, это тоже никак не сказывается на их здоровье. Более того, многие районы с повышенным радиационным фоном в течение столетий являются местами массового туризма (морские побережья) и признанными курортами (Кавказские Минеральные Воды, Карловы Вары и др.).

Как уже говорилось, едва американцы начали свою космическую программу, их ученый Джеймс Ван Аллен совершил достаточно важное открытие. Первый американский искусственный спутник, запущенный ими на орбиту, был куда меньше советского, но Ван Аллен додумался прикрепить к нему счетчик Гейгера. Таким образом, была официально подтверждена высказанная еще в конце ХIХ в. выдающимся ученым Николой Теслой гипотеза о том, что Землю окружает пояс интенсивной радиации.

Фотография Земли астронавта Уильяма Андерса

во время миссии «Аполлон-8» (архив НАСА)

Тесла, однако, считался большим чудаком, а академической наукой - даже сумасшедшим, поэтому его гипотезы о генерируемом Солнцем гигантском электрическом заряде давно лежали под сукном, а термин «солнечный ветер» не вызывал ничего, кроме улыбок. Но благодаря Ван Аллену теории Теслы были реанимированы. С подачи Ван Аллена и ряда других исследователей было установлено, что радиационные пояса в космосе начинаются у отметки 800 км над поверхностью Земли и простираются до 24 000 км. Поскольку уровень радиации там более или менее постоянен, входящая радиация должна приблизительно равняться исходящей. В противном случае она либо накапливалась бы до тех пор, пока не «запекла» Землю, как в духовке, либо иссякла. По этому поводу Ван Аллен писал: «Радиационные пояса можно сравнить с протекающим сосудом, который постоянно пополняется от Солнца и протекает в атмосферу. Большая порция солнечных частиц переполняет сосуд и выплескивается, особенно в полярных зонах, приводя к полярным сияниям, магнитным бурям и прочим подобным явлениям».

Радиация поясов Ван Аллена зависит от солнечного ветра. Кроме того, они, по-видимому, фокусируют или концентрируют в себе эту радиацию. Но поскольку концентрировать в себе они могут только то, что пришло напрямую от Солнца, то открытым остается еще один вопрос: сколько радиации в остальной части космоса?

Орбиты атмосферных частиц в экзосфере (dic.academic.ru)

У Луны нет поясов Ван Аллена. У нее также нет защитной атмосферы. Она открыта всем солнечным ветрам. Если бы во время лунной экспедиции произошла сильная солнечная вспышка, то колоссальный поток радиации испепелил бы и капсулы, и астронавтов на той части поверхности Луны, где они проводили свой день. Эта радиация не просто опасна - она смертельна!

В 1963 году советские ученые заявили известному британскому астроному Бернарду Ловеллу, что они не знают способа защитить космонавтов от смертельного воздействия космической радиации. Это означало, что даже намного более толстостенные металлические оболочки российских аппаратов не могли справиться с радиацией. Каким же образом тончайший (почти как фольга) металл, используемый в американских капсулах, мог защитить астронавтов? НАСА знало, что это невозможно. Космические обезьяны погибли менее чем через 10 дней после возвращения, но НАСА так и не сообщило нам об истинной причине их гибели.

Обезьяна-астронавт (архив РГАНТ)

Большинство людей, даже сведущих в космосе, и не подозревают о существовании пронизывающей его просторы смертельной радиации. Как ни странно (а может быть, как раз по причинам, о которых можно догадаться), в американской «Иллюстрированной энциклопедии космической технологии» словосочетание «космическая радиация» не встречается ни разу. Да и вообще эту тему американские исследователи (особенно связанные с НАСА) обходят за версту.

Между тем Ловелл после беседы с русскими коллегами, которые отлично знали о космической радиации, отправил имевшуюся у него информацию администратору НАСА Хью Драйдену, но тот проигнорировал ее.

Один из якобы посетивших Луну астронавтов Коллинз в своей книге упоминал о космической радиации только дважды:

«По крайней мере, Луна была далеко за пределами земных поясов Ван Аллена, что предвещало хорошую дозу радиации для тех, кто побывал там, и смертельную - для тех, кто задержался».

«Таким образом, радиационные пояса Ван Аллена, окружающие Землю, и возможность солнечных вспышек требуют понимания и подготовки, чтобы не подвергать экипаж повышенным дозам радиации».

Так что же означает «понимание и подготовка»? Означает ли это, что за пределами поясов Ван Аллена остальной космос свободен от радиации? Или у НАСА была секретная стратегия укрытия от солнечных вспышек после принятия окончательного решения об экспедиции?

НАСА утверждало, что просто может предсказывать солнечные вспышки, и поэтому отправляло на Луну астронавтов тогда, когда вспышек не ожидалось, и радиационная опасность для них была минимальна.

Пока Армстронг и Олдрин выполняли работу в открытом космосе

на поверхности Луны,Майкл Коллинз

ставался на орбите (архив НАСА)

Впрочем, другие специалисты утверждают: «Возможно предсказать только приблизительную дату будущих максимальных излучений и их плотность».

Советский космонавт Леонов все же вышел в 1966 году в открытый космос - правда, в сверхтяжелом свинцовом костюме. Но спустя всего лишь три года американские астронавты прыгали на поверхности Луны, причем отнюдь не в сверхтяжелых скафандрах, а скорее совсем наоборот! Может, за эти годы специалисты из НАСА сумели найти какой-то сверхлегкий материал, надежно защищающий от радиации?

Однако исследователи вдруг выясняют, что по крайней мере «Аполлон-10», «Аполлон-11» и «Аполлон-12» отправились в путь именно в те периоды, когда количество солнечных пятен и соответствующая солнечная активность приближались к максимуму. Общепринятый теоретический максимум 20-го солнечного цикла длился с декабря 1968 по декабрь 1969 гг. В этот период миссии «Аполлон-8», «Аполлон-9», «Аполлон-10», «Аполлон-11» и «Аполлон-12» предположительно вышли за пределы зоны защиты поясов Ван Аллена и вошли в окололунное пространство.

Дальнейшее изучение ежемесячных графиков показало, что единичные солнечные вспышки - явление случайное, происходящее спонтанно на протяжении 11-летнего цикла. Бывает и так, что в «низкий» период цикла случается большое количество вспышек за короткий промежуток времени, а во время «высокого» периода - совсем незначительное количество. Но важно именно то, что очень сильные вспышки могут иметь место в любое время цикла.

В эпоху «Аполлонов» американские астронавты провели в космосе в общей сложности почти 90 дней. Поскольку радиация от непредсказуемых солнечных вспышек долетает до Земли или Луны менее чем за 15 минут, защититься от нее можно было бы только с помощью свинцовых контейнеров. Но если мощности ракеты хватило, чтобы поднять такой лишний вес, то почему надо было выходить в космос в тонюсеньких капсулах (буквально в 0,1 мм алюминия) при давлении в 0,34 атмосфер?

Это притом, что даже тонкий слой защитного покрытия, именуемого «майларом», по утверждениям экипажа «Аполлон-11», оказался столь тяжек, что его пришлось срочно стирать с лунного модуля!

Похоже, в лунные экспедиции НАСА отбирало особенных парней, правда, с поправкой на обстоятельства, отлитых не из стали, а из свинца. Американский исследователь проблемы Ральф Рене не поленился рассчитать, как часто каждая из якобы состоявшихся лунных экспедиций должна была попасть под солнечную активность.

Между прочим, один из авторитетных сотрудников НАСА (заслуженный физик, кстати) Билл Модлин в своей работе «Перспективы межзвездных путешествий» откровенно сообщал: «Солнечные вспышки могут выбрасывать ГэВ протоны в том же энергетическом диапазоне, что и большинство космических частиц, но гораздо более интенсивные. Увеличение их энергии при усиленной радиации представляет особую опасность, поскольку ГэВ протоны проникают сквозь несколько метров материала… Солнечные (или звездные) вспышки с выбросом протонов - это периодически возникающая очень серьезная опасность в межпланетном пространстве, которая обеспечивает дозу радиации в сотни тысяч рентген за несколько часов на расстоянии от Солнца до Земли. Такая доза является смертельной и в миллионы раз превышает допустимую. Смерть может наступить уже после 500 рентген за короткий промежуток времени».

Да, бравые американские парни потом должны были сиять похлеще четвертого чернобыльского энергоблока. «Космические частицы опасны, они исходят со всех сторон и требуют как минимум двух метров плотного экрана вокруг любых живых организмов». А ведь космические капсулы, которые по сей день демонстрирует НАСА, имели чуть более 4 м в диаметре. При толщине стен, рекомендуемой Модлиным, астронавты, даже без всякого оборудования, в них бы не влезли, уж не говоря о том, что и не хватило бы топлива для того, чтобы такие капсулы поднять. Но, очевидно, ни руководство НАСА, ни посланные им на Луну астронавты книжек своего коллеги не читали и, находясь в блаженном неведении, преодолели все тернии по дороге к звездам.

Впрочем, может быть, НАСА и впрямь разработало для них некие сверхнадежные скафандры, используя (понятно, очень засекреченный) сверхлегкий материал, защищающий от радиации? Но почему же его так больше нигде и не использовали, как говорится, в мирных целях? Ну ладно, с Чернобылем СССР они не захотели помогать: все-таки перестройка еще не началась. Но ведь, к примеру, в 1979 году в тех же США на АЭС «Тримайл-Айленд» произошла крупная авария реакторного блока, которая привела к расплавлению активной зоны реактора. Так что же американские ликвидаторы не использовали космические скафандры по столь разрекламированной технологии НАСА стоимостью ни много ни мало в $7 млн, чтобы ликвидировать эту атомную мину замедленного действия на своей территории?..

Текст, представленный ниже, нужно расценивать как личное мнение автора. Никакой секретной информацией (или доступом к ней) он не обладает. Всё, что изложено - это факты из открытых источников плюс немного здравого смысла («диванной аналитики», если угодно).

Научная фантастика - все эти бластеры и «пиу-пиу» в открытом космосе на крошечных одноместных истребителях - приучила человечество серьезно переоценивать доброжелательность Вселенной по отношению к теплым белковым организмам. Особенно сильно это проявляется, когда фантасты описывают путешествия к другим планетам. Увы, освоение «настоящего космоса» вместо привычных нам нескольких сотен «камэ» под защитой магнитного поля Земли будет более трудным предприятием, чем представлялось обывателю всего десятилетие назад.

Итак, вот мой главный тезис. Психологический климат и конфликты внутри экипажа далеко не главные проблемы, с которыми столкнется человек при организации пилотируемых полетов на Марс.

Главная проблема человека, путешествующего за пределы магнитосферы Земли - проблема с большой буквы «Р».

Что такое космическая радиация и почему мы не гибнем от нее на Земле

Ионизирующее излучение в космосе (за пределами нескольких сотен километров околоземельного пространства, которые человек действительно освоил) состоит из двух частей.

Излучение Солнца. Это, прежде всего, «солнечный ветер» - поток частиц, который постоянно «дует» во все стороны от светила и который чрезвычайно хорош для будущих космических парусников, потому что позволит им как следует разогнаться для путешествий за пределы Солнечной системы. Вот только для живых существ основная часть этого ветра не особо полезна. Замечательно, что нас от жесткой радиации защищают толстый слой атмосферы, ионосфера (та, где озоновые дыры), а еще мощное магнитное поле Земли.

Помимо ветра, который разлетается более-менее равномерно, наше светило еще периодически постреливает так называемыми солнечными вспышками. Последние представляют собой выбросы коронарного вещества Солнца. Они настолько серьезны, что время от времени приводят к проблемам у людей и техники даже на Земле, где самое веселье, повторюсь, недурственно экранируется.

Итак, у нас есть атмосфера и магнитное поле планеты. В уже довольно близком космосе, на расстоянии десятка-другого тысяч километров от Земли, солнечная вспышка (даже слабая, всего-то пара Хиросим), попав в корабль, гарантированно выведет его живую начинку из строя без малейших шансов на выживание. Помешать этому сегодня - при текущем уровне развития технологий и материалов - нам абсолютно нечем. По этой и только по этой причине многомесячное путешествие к Марсу человечеству придется отложить до времени, когда мы не решим эту проблему хотя бы частично. Также его придётся планировать в периоды наиболее спокойного солнца и много молиться всем техническим богам.

Космические лучи. Эти вездесущие злодейские штуки несут огромное количество энергии (больше, чем способен закачать в частицу БАК). Они приходят из других частей нашей галактики. Попадая в щит земной атмосферы, такой луч взаимодействует с ее атомами и расшибается на десятки менее энергичных частиц, которые каскадно порождают потоки еще менее энергичных (но тоже опасных) и в итоге все это великолепие проливается радиационным дождём на поверхность планеты. Примерно 15% от фонового излучения на Земле приходится на гостей из космоса. Чем выше ты живешь над уровнем моря, тем выше ловимая в течении жизни доза. И происходит это круглосуточно.

В качестве школьного упражнения попробуйте представить, что произойдёт с космическим кораблём и его «живой начинкой» в случае прямого попадании в них такого луча где-нибудь в открытом космосе. Лететь к Марсу, напомню, предстоит несколько месяцев, кораблик для этого предстоит строить здоровенный и вероятность описанного выше «контакта» (а то и не одного) достаточно велика. Просто пренебречь ею при длительных полетах с живым экипажем, увы, никак не получится.

Что ещё?

Помимо той радиации, что долетает до Земли от Солнца, есть ещё та солнечная радиация, которую магнитосфера планеты отталкивает, не пропускает внутрь и самое главное - накапливает*. Знакомьтесь, читатели. Это радиационный пояс Земли (РПЗ). Он же пояс Ван Аллена, как его называют за рубежом. Преодолеть его космонавтам предстоит что называется «на полных парах», чтобы не получить летальную дозу радиации всего за несколько часов. Повторный контакт с этим поясом - если мы вопреки здравому смыслу решим вернуть астронавтов с Марса на Землю - запросто может их добить.

*Значительная доля частиц пояса Ван Аллена приобретает опасную скорость уже в самом поясе. То есть он не только защищает нас от радиации извне, но еще и усиливает эту накопленную радиацию.

До сих пор речь шла об открытом космосе. Но не нужно забывать о том, что у Марса (в отличие от Земли) почти нет магнитного поля**, а атмосфера разрежённая и дохленькая, так что подвергаться воздействию этих негативных факторов люди будут не только в полёте.

**Ладно, немножко есть - в районе южного полюса.

Отсюда вывод. Жить будущим колонистам вероятнее всего предстоит не на поверхности планеты (как нам показывали в эпичном кино «Миссия на Марс»), а глубоко под ней.

Как быть?

Прежде всего, видимо, не питать иллюзий на скорое (в течение десятка-другого-третьего лет) разрешение всех этих проблем. Чтобы избежать гибели экипажа от лучевой болезни, нам придётся или вообще его туда не посылать и осваивать космос с помощью умных машин (кстати, не самое глупое решение), либо очень здорово поднапрячься, потому что, если я прав, то отправка людей на Марс с созданием там постоянной колонии - задача для одной страны (хоть США, хоть России, хоть Китая) в ближайшие полстолетия, а то и дольше совершенно неподъёмная. Один корабль для такой миссии обойдется в сумму, эквивалентную постройке и полному обслуживанию пары-тройки МКС (см. ниже).

И да, забыл сказать: пионеры Марса будут заведомо «смертниками», поскольку ни обратной дороги, ни долгой и комфортной жизни на Марсе обеспечить им в ближайшие полвека у нас, скорее всего, получится.

Как теоретически могла бы выглядеть миссия на Марс, имей мы для этого все ресурсы и технологии старушки-Земли? Сравните описанное ниже с тем, что вы видели в культовом фильме «Марсианин».

Миссия на Марс. Условно реалистичная версия

Во-первых, человечеству предстоит сильно напрячься и построить циклопических размеров космический корабль с мощной антирадиационной защитой, который сможет частично компенсировать адскую лучевую нагрузку на экипаж за пределами магнитного поля Земли и обеспечить доставку более-менее живых колонистов на Марс - в один конец.

Как может выглядеть такой корабль?

Это здоровенная махина в десятки (а лучше сотни) метров в поперечнике, обеспеченная собственным магнитным полем (сверхпроводящие электромагниты) и источниками энергии для его поддержания (атомные реакторы). Огромные размеры конструкции позволяют набить её изнутри поглощающими радиацию материалами (например, это может быть вспененный освинцованный пластик или герметичные контейнеры с простой либо «тяжелой» водой), которые десятилетиями (!) предстоит возить на орбиту и монтировать вокруг сравнительно крошечной капсулы жизнеобеспечения, куда потом мы поместим астронавтов.

Помимо размеров и дороговизны, марсианский корабль должен быть чертовски надежным и, главное, полностью автономным в плане управления. Чтобы доставить экипаж живым безопаснее всего будет погрузить его в искусственную кому и немного охладить (всего на пару-тройку градусов), чтобы замедлить метаболические процессы. В таком состоянии люди а) будут менее чувствительны к радиации, б) занимают меньше места и их дешевле экранировать от все той же радиации.

Очевидно, помимо корабля, нужен искусственный интеллект, способный уверенно доставить корабль на орбиту Марса, выгрузить колонистов на его поверхность, не повредив в процессе ни себя, ни груз, а потом ещё без участия людей вернуть астронавтов в сознание (уже на Марсе). Пока таких технологий у нас нет, но есть некоторая надежда, что подобный ИИ, а главное политические и экономические ресурсы для постройки описанного корабля, появятся у нас, допустим, ближе к середине столетия.

Хорошей новостью является то, что марсианский «паром» для колонистов вполне может быть многоразовым. Ему предстоит как челноку курсировать между Землёй и конечным пунктом, доставляя в колонию партии «живого груза» на замену выбывших «от естественных причин» людей. Для доставки «неживого» груза (еды, воды, воздуха и техники) противолучевая защита особо не нужна, так что марсианским грузовиком суперкорабль делать не обязательно. Он нужен исключительно для доставки колонистов и, возможно, семян растений / молоди сельскохозяйственных животных.

Во-вторых, нужно заранее забросить на Марс технику и запасы воды-еды-кислорода на экипаж из 6-12 человек на 12-15 лет (с учётом всех форс-мажоров). Это само по себе нетривиальная задачка, но допустим, что в ресурсах для ее решения мы не ограничены. Предположим, что войны и политические пертурбации Земли утихли, а на марсианскую миссию работает в едином порыве вся планета.

Забрасываемая на Марс техника, как вы уже должны догадаться, представляет собой полностью автономных роботов с искусственным интеллектом и питанием от компактных ядерных реакторов. Им предстоит методично в течение десятка-полутора лет отрыть сначала глубокий тоннель под поверхность красной планеты. Затем - ещё за несколько лет - небольшую сеть тоннелей, в которую предстоит втащить блоки жизнеобеспечения и запасы для будущей экспедиции, а потом все это герметично смонтировать в автономный подмарсианский поселок.

Метроподобное обиталище кажется оптимальным решением по двум причинам. Во-первых, оно экранирует космонавтов от космических лучей уже на самом Марсе. Во-вторых, из-за остаточной «марсотермальной» активности недр под поверхностью планеты на градус-другой теплее, чем снаружи. Это пригодится колонистам как для экономии энергии, так и для выращивания картошки на собственных фекалиях.

Уточним важный момент: строить колонию придётся в южном полушарии, где на планете ещё сохранилось остаточное магнитное поле.

Выходить на поверхность астронавтам в идеале не придётся вообще (Марс «вживую» они или не увидят совсем, или увидят один раз - при посадке). Всю работу на поверхности предстоит делать роботам, действиями которых колонистам предстоит руководить из своего бункера всю их недолгую жизнь (лет двадцать при удачном стечении обстоятельств).

В-третьих, надо поговорить о самом экипаже и методах его подбора.

Идеальной схемой последнего станет поиск по всей Земле… генетически идентичных (монозиготных) близнецов, один из которых только что превратился в донора органов (например, «удачно» попав в автокатастрофу). Звучит до крайности цинично, но пусть это не помешает вам дочитать текст до конца.

Что нам дает близнец-донор?

Погибший близнец даёт возможность своему брату (или сестре) стать идеальным колонистом на Марсе. Дело в том, что красный костный мозг первого, будучи доставлен на красную планету в дополнительно защищённом от радиации контейнере, можно будет перелить близнецу-астронавту. Тем самым повышаются шансы на выживание оного при лучевой болезни, остром лейкозе и других неприятностях, которые с колонистом весьма вероятно приключатся за годы миссии.

Итак, как выглядит процедура отсева будущих колонистов?

Отбираем несколько миллионов близнецов. Ждём, пока что-то происходит с одним из них, и делаем предложение оставшемуся. Набирается пул из, скажем, ста тысяч потенциальных кандидатов. Теперь внутри этого пула проводим итоговый отбор на психологическую совместимость и профпригодность.

Естественно, для расширения выборки отбирать астронавтов придётся по всей Земле, а не в одной или двух странах.

Ещё бы, конечно, здорово помогла некая технология выявления особо устойчивых к облучению кандидатов. Известно, что некоторая часть людей гораздо более устойчива к радиации, чем другая. Наверняка её можно выявить с помощью неких генетических маркеров. Если дополнить этим методом идею с близнецами, вместе они должны существенно повысить выживаемость марсианских колонистов.

Помимо этого, полезно было бы научиться переливать людям костный мозг в невесомости. Это не единственная штука, которую предстоит изобрести специально под этот проект, но, по счастью, время у нас ещё есть, а МКС пока что болтается на орбите Земли будто специально для отработки подобных технологий.

PS. Я должен специально оговориться, что принципиальным противником космических путешествий я не являюсь и верю, что рано или поздно «космос будет наш». Вопрос только в цене этого успеха, а также во времени, которое человечество затратит на отработку необходимых технологий. Мне кажется, под влиянием научной фантастики и массовой культуры многие из нас довольно беспечны в смысле понимания трудностей, которые на этом пути предстоит преодолеть. Чтобы несколько отрезвить эту часть «космооптимистов » и написан этот текст.

Во и частях я расскажу какие еще варианты у нас имеются в вопросе освоения космоса человеками в долгосрочной перспективе.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: