Чем обусловлены нелинейные искажения в усилителе. Линейные искажения в усилителях. Фон от внешних источников

Реальный сигнал звуковой частоты является сложным и содержит гармонические составляющие, т.е. синусоидальные колебания различной частоты, амплитуды, фазы. Если форма кривой на выходе усилителя отличается от формы кривой на его входе, то это отразится на качестве звука.

Причины появления искажений различны, и также различно их влияние на качество звука. Различают искажения:

Частотные;

Фазовые;

Нелинейные.

Частотные – это изменение формы кривой сигнала в результате неодинакового усиления колебаний разной частоты.

Причиной появления этих искажений являются реактивные элементы – индуктивности катушек и емкости конденсаторов, сопротивления которых зависят от частоты (вспомнить формулы Х с и Х L).

В результате частотных искажений нарушается соотношение между амплитудами составляющих сигналов разной частоты. Это воспринимается на слух как изменение тембра: если недостаточное усиление верхних частот, то звук становится глухим, а нижних - металлическим.

Численно частотные искажение определяются по частотной характеристике, т.е. зависимости коэффициента усиления от частоты сигнала, т.е. K дБ = f(f).

Рис. 5

На этой характеристике частоту следует откладывать в логарифмическом масштабе, а коэффициент усиления - как в логарифмическом масштабе, так и в относительных величинах или в дБ.

Частотный диапазон делится на отдельные области:

а) область средних частот - 300- 3000гЦ, в этой области мало сказывается влияние реактивных элементов;

б) область верхних частот - свыше 3000гЦ;

в) область нижних частот - ниже 300гЦ.

Частота 400гЦ (иногда 1000гЦ) называется средней (f о),

f н - нижняя граничная частота, f в - верхняя граничная частота.

При отсутствии частотных искажений характеристика имеет вид горизонтальной прямой. Если коэффициент усиления на граничных частотах уменьшается или увеличивается, то в характеристике будет некоторый спад или подъем вершин (рис. 5б). Оцениваются частотные искажения коэффициентом частотных искажений (М), который определяется: М = К 0 /К,

где K o - коэффициент усиления на средней частоте,

K- коэффициент усиления на данной частоте.

Обычно его определяют на граничных частотах, где он имеет максимальную величину

М н = К 0 /К н М в = К 0 /К в

Или его выражают в дБ по формулам:

М ндБ = 20 lg М н = K o дБ - K ндБ

М в дБ = 20 lg М в = K o дБ - K вдБ

Указанные формулы имеют одно неудобство: подъему характеристики соответствует знак минус, а спаду - плюс, что нарушает привычное представление о том, что положительные величины откладываются выше нулевого уровня, а отрицательные - ниже.

Поэтому при построении частотной характеристики используют стандартный бланк, на котором по оси ординат откладывается относительное усиление (Y) в дБ, и это есть величина, обратная коэффициенту частотных искажений, т.е.

Y = К/К 0 = 1/М или Y дБ = - М дБ

Для многокаскадного усилителя коэффициент частотных искажений (М) и относительное усиление (Y) определяются как произведение коэффициентов в относительных величинах или как их сумма в дБ.

Поэтому, если на одной частоте в одном каскаде спад, а в другом – такой же подъем, то общая частотная характеристика будет без искажений, что используется для коррекции ЧХ.

Малозаметные на слух частотные искажения составляют -+ 2 дБ, и эта их величина считается допустимой для УАС.

Фазовые - это искажения формы кривой сигнала, вызванные тем, что сдвиг фаз между выходным и входным сигналом не пропорционален частоте. Причина - наличие реактивных элементов. Как и частотные, фазовые искажения сказываются при усилении сложного сигнала, в котором нарушается соотношение между фазами отдельных составляющих. Оценить эти искажения можно по фазовой характеристике, т. е. зависимости угла сдвига фаз от частоты: φ = f(f).

Рис.6 Разложение сложного сигнала и фазовая характеристика

На слух фазовые искажения не воспринимаются, но если в усилителе есть цепь обратной связи, то они могут привести к генерации на высоких частотах.

Нелинейные – это изменение формы кривой сигнала, вызванные нелинейностью характеристик транзисторов.

Рис.7 Входная характеристика транзистора

По графику видно, что при отсутствии сигнала на базе действует напряжение базы покоя U бс и протекает ток базы покоя I бо - им соответствует точка покоя P. Искажения возникают, так как используется криволинейный участок характеристики P-А.

Причинами появления нелинейных искажений могут быть и нелинейность выходных характеристик, и неравномерность их сдвига при равных изменениях тока базы.

Любая несинусоидальная кривая раскладывается на составляющие: основную - с частотой сигнала и гармоник высшего порядка - с частотами, кратными частоте основного сигнала. И тогда, при подаче сигнала с частотой 400 Гц на выходе можно получить сигналы с частотами 400, 800, 1200, 1600 и т.д. Гц.

Кроме того, могут появиться комбинационные тона - это колебания с частотами, представляющими сумму или разность любой пары составляющих сложного сигнала. Они делают звук хриплым, дребезжащим, а речь - неразборчивой.

Для учета нелинейных искажений вводится понятие коэффициента гармоник К г

К г = √ P 2 + P 3 +…../ Р 1 100% или К г = √ I 2 + I 3 +…../ I 1 100% или

К г = √ U 2 + U 3 +…../ U 1 100%

Коэффициент гармоник выражает долю действующих значений высших гармоник в процентном отношении к основному сигналу.

Если преобладает, какая - либо из гармоник, то формула может быть упрощена:

К г = I 2 / I 1 100% - по второй гармонике;

К г = I 3 / I 1 100% по третьей гармонике.

Следует знать, что в симметричном сигнале преобладает третья гармоника, а в несимметричном - вторая гармоника. Численно коэффициент гармоник не должен превышать 1% на средних частотах.

Лекция 9.

Основные параметры и характеристики усилителя:

1. R вх =U 1 /I 1. – входное сопротивление.

На низких частотах – активное. Зависит от частоты.

На высоких частотах – комплексное.

2. R вых =U 2 xx/I 2 кз. (хх-холостой ход, кз-короткое замыкание).

3. К – коэффициент усиления, во сколько раз выходной сигнал больше входного.

а) К u =U 2 m /U 1 m – по напряжению.

б) K I =I 2 m /I 1 m – по току.

в) K p =P 2 /P 1 – по мощности.

Коэффициент усиления – величина безразмерная, иногда его выражают в относительных логарифмических единицах, которые называют децибелами.

При воздействии на усилитель гармонического сигнала, его коэффициент усиления оказывается частотно-зависимым и аналитически выражается комплексной функцией коэффициента передачи, которая называется частотной характеристикой.

Комплексный коэффициент передачи.

4. Зависимость коэффициента передачи от частоты – частотная характеристика.

АЧХ: K (j w) = (0

ФЧХ: j (j w) =j 2 -j 1 (0


Графики усилителя:

Идеальный усилитель должен иметь коэффициент усиления К 0 на всем диапазоне частот, в реальном же усилителе коэффициент меняется.

ФЧХ говорит о том, что на низких частотах фазовый сдвиг положителен, а на высоких частотах происходит запаздывание (т.е. отрицателен).

Амплитудная характеристика усилителя.

U вых =f(U вх.м);

Амплитудная характеристика.

1.Отличия в области малых амплитуд входного сигнала состоят в том, что при отсутствии входного сигнала на выходе имеется некоторый сигнал. Он возникает из-за наличия электромагнитных наводок и собственных шумов на вход усилителя

2.В области больших амплитуд отличия связаны с нелинейностью ВАХ активных элементов.

Из ВАХ вытекают основные параметры определяемые по амплитудной характеристике:

а. - динамический диапазон усилителя. Чем больше D, тем он качественнее.

Б.Чувствительность. Различают две чувствительности:

1.)Номинальная – величина входного сигнала, при котором на выходе обеспечивается номинальная мощность.

2).Пороговая – минимальный входной сигнал, при котором выходной сигнал однозначно определяется над уровнем шумов усилителя.

Пороговую чувствительность определяют, когда:

Искажения сигналов в усилителях.

Для идеального линейного усилителя форма входного и выходного сигналов должны совпадать. В реальных усилителях этого не происходит. Всякое отклонение формы сигнала на выходе от формы его на входе есть искажение создаваемое усилителем.

Искажения бывают:

1.Линейное;


2.Нелинейное.

Нелинейное искажение – это изменения формы сигнала на выходе, которые возникаютза счет нелинейности ВАХ активных металлов. Количественно нелинейные искажения оценивают коэффициентом нелинейных искажений (КНИ).

Линейное искажение бывает двух видов:

а. Частотное;

б. Фазовое;

Частотное искажение связано с наличием в схеме усилителя реактивных элементов и возникающих за счет неодинакового усиления различных гармонических составляющих.

Фазовое искажение возникает за счет неодинакового фазового сдвига различных гармонических составляющих. Причина этого - наличие реактивных элементов в схеме усилителя.

КПД усилителя.

КПД играет существенную роль в усилителях мощности.

Классификация усилителей.

Классификация усилителей может быть произведена по различным признакам:

1.По полосе пропускания и абсолютному значению усиливаемых частот усилители делятся на усилители постоянного тока и усилители переменного тока. Усилители переменного тока в свою очередь делятся на усилители низких частот, широкополосные усилители и на избирательные усилители.

а. Усилители постоянного тока – способны усиливать как переменные, так и постоянные составляющие сигнала. У них f н =0;

б. Усилители переменного тока – способны усиливать только переменные составляющие сигнала. F н >0.

в. Усилители низких частот – усилители звуковой частоты - f н »50 Гц,f в »20 кГц;

г. Избирательные усилители предназначены для усиления электрических сигналов в относительно узком диапазоне частот. Для них

2.По характеру входного сигнала:

а. Усилители непрерывных сигналов;

б. Усилители импульсных сигналов.

3.По виду используемых активных элементов:

а. Ламповые;

б. На биполярных транзисторах;

в. На полевых транзисторах;

г. На туннельных диодах;

д. Параметрические элементы. В них активным элементом является индуктивность и емкость, они могут усиливать электрический сигнал.

4. По числу усилительных каскадов:

Под усилительным каскадом понимают совокупность элементов способных усиливать электрические сигналы.

а. Однокаскадные;

б. Многокаскадные.

5. По виду связи между каскадами:

а. Усилители с непосредственной гальванической связью между каскадами:

Б. Связь между усилителями осуществляющаяся через RC-элемент:

В. Усилители с трансформаторной связью:

Трансформаторная связь обеспечивает гальваническую развязку между каскадами.

Г. Усилители с оптоэлектронной связью:


Обеспечивает гальваническую развязку между каскадами и в то же время обеспечивает полную передачу сигнала от одного каскада к другому по переменной и постоянной составляющей.

Многокаскадные усилители.

Искажения в усилителях

Идеальный линейный усилитель должен обеспечивать усиление входного сигнала без усиления входной формы. В реальных усилителях, между формой выходного и входного сигнала, всегда имеются отличия. Всякое отклонение формы сигнала на выходе от формы сигнала на входе называется искажением. Их классификация приведена на рис. 8. .

Нелинейное искажение связаны с нелинейностной ВАХ активных элементов. Количественно нелинейные искажения оцениваются коэффициентом нелинейных искажений (КНИ). ,

где U 2m1 – амплитуда первой гармоники выходного напряжения, U 2m2 … амплитуда второй и других высших гармоник выходного напряжения

Линейные искажения возникают за счёт зависимости частотной характеристики коэффициента усиления от частоты. Частотные искажения возникают из-за непостоянства коэффициента усиления. Идеального неискажающий усилитель должен иметь постоянный коэффициент усиления. В таком усилителе искажения нет. Считаем, что на вход воздействует сигнал, состоящий из двух составляющих ω 0 и 2ω 0 . Из-за непостоянного коэффициента усиления, составляющее входной сигнал с частотой 2ω 0 . будет усиленно в меньшее число раз, чем составляющая ω 0 . А следовательно сумма этих сигналов будет отличаться от формы от формы суммы сигналов на входе. Количественно частотные искажения оцениваются коэффициентом частотных искажений, под которым понимают неравномерность коэффициента усиления

Усилителем называется устройство, предназначенное для увеличения мощности входного сигнала. Про­цесс усиления основан на преобразовании активным элементом (биполярным, полевым транзистором) энергии источника постоянного напряжения в энергию переменного напряжения на нагрузке при изменении сопротив­ления активного элемента под действием входного сигнала.

Усилители сигналов являются базовыми устройствами для построения сложных аналоговых электронных устройств. В зависимости от того, какой электрод транзистора является общим для входной и выходной цепей, разли-чают три схемы включения для биполярных (БТ) и полевых транзисторов (ПТ) соответственно: с общей базой или общим затвором (ОБ или ОЗ); с общим эмиттером или общим истоком (ОЭ или ОИ); общим коллектором или общим стоком (ОК или ОС).

коэффициент усиления по напряжению К u = U вых /U вх;

коэффициент усиления по току К i = I вых /I вх;

коэффициент усиления по мощности К р = Р вых /Р вх.

Для многокаскадных усилителей коэффициент усиления определяется произведением коэффициентов усиления отдельных каскадов, выраженных в абсолютных единицах:

(раз) или суммой коэффициентов усиления, выраженных в децибелах:

Входное сопротивление усилителя представляет собой сопротивление между входными зажимами усилителя и определяется отношением входного напряжения ко входному току Z вх = U вх /I вх. Характер входного сопротивления зависит от диапазона усиливаемых частот.

Выходное сопротивление определяют между выходными зажимами при отключенном сопротивлении нагрузки Z вых = U вых /I вых.

Коэффициент демпфирования – отношение сопротивления нагрузки к выходному сопротивлению усилителя К д = R н /R вых. Значение этого параметра лежит в пределах от 10 до 100.

КПД – отношение выходной мощности, отдаваемой усилителем в нагрузку, к общей мощности, потребляемой от источника питания .Чувствительность – напряжение, которое нужно подать на вход усилителя, чтобы получить на выходе заданную мощность.

Динамический диапазон – отношение наибольшего допустимого значе-ния входного напряжения к его наименьшему допустимому значению

D = U вх макс /U вх мин.

Диапазон усиливаемых частот (полоса пропускания) – разность между верхней и нижней граничными частотами Δf = f в – f н, в которой коэффициент уси-ления изменяется по определенному закону с заданной точностью.

Линейные искажения определяются зависимостями параметров транзисторов от частоты и реактивными элементами усилительных устройств. Линейные искажения бывают трех видов: частотные, фазовые и переходные.

57. Линейные и нелинейные искажения усилителей .

Кроме получения необходимого коэффициента усиления сигнала необходимо, чтобы усилитель не изменял его формы. Отклонение формы выходного сигнала от формы входного принято называть искажениями. Искажения бывают двух видов: нелинейные и линейные.

Источником нелинейных искажений является нелинейность вольт-амперных характеристик элементов усилителя. При подаче па вход усилителя напряжения синусоидальной формы из-за нелинейности входной и выходной характеристики транзистора форма входного и выходного токов может отличаться от синусоидальной из-за появления составляющих высших гармоник. Это относится как к синусоидальному входному напряжению, так и ко входному сигналу любой другой формы. Уровень нелинейных искажений характеризуется коэффициентом нелинейных искажений (клир-фактор) усилителя, выраженным в процентах

K r =((P 2 +P 4 +…+P n)^1/2)/((P 1)^1/2)*100%=((U 2 2 +U 3 2 +…U n 2)^1/2)/(U 1 ^1/2)*100%

где P2, P3, Pn – мощности, выделяемые в нагрузке под воздействием 2-й, 3-й, n-й гармонических составляющих напряжения (U2, U3, Un); P1 – мощность в нагрузке, обусловленная основной гармонической составляющей напряжения U1.

При оценке нелинейных искажений в большинстве случаев учитывают только вторую и третью гармоники, поскольку более высокие гармоники имеют малую мощность. Для многокаскадного усилителя общий коэффициент нелинейных искажений принимается равным сумме коэффициентов нелинейных искажений отдельных каскадов

Нелинейные искажения зависят от амплитуды входного сигнала и не свя- заны с его частотой. Для уменьшения искажения формы выходного сигнала входной сигнал должен иметь малую амплитуду. В связи с этим в многокас- кадных усилителях нелинейные искажения в основном возникают в предоко- нечных и выходных каскадах, на входе которых действуют сигналы большой амплитуды.

Линейные искажения определяются зависимостями параметров транзи-сторов от частоты и реактивными элементами усилительных устройств. Линейные искажения бывают трех видов: частотные, фазовые и переходные .

Частотные искажения связаны с несовпадением реальных и идеальных характеристик в рабочем диапазоне частот. Эти искажения зависят лишь от частоты усиливаемого сигнала.

Зависимость коэффициента усиления от частоты входного сигнала К=F(f) принято называть амплитудно-частотной (частотной) характеристикой (АЧХ) рис. 10.5,а.

Идеальная АЧХ параллельна оси частот. Реально, гармонические составляющие входного сигнала усиливаются усилителем неодинаково, поскольку реактивные сопротивления элементов схемы по-разному зависят от частоты. Типичным для АЧХ является наличие так называемой области средних частот, в которой К почти не зависит от частоты и обозначается К 0 В диапазоне низких и высоких частот амплитудно-частотная характеристика спадает, имея неравномерность усиления. Частоты усиления, на которых коэффициент усиления уменьшается в 2^1/2 раз или на 3 дБ по сравнению со средней частотой, называют граничными частотами: нижняя f Н и верхняя f В разность частот f В - f Н =∆f называют полосой пропускания.

Частотные искаженияв усилителе всегда сопровождаются наличием сдвига фаз между входным и выходным сигналами, что вызывает появление фазовых искажений . Под фазовыми искажениями подразумевают сдвиги 250 фаз, вызванные реактивными элементами усилителя, а поворот фазы усилительным каскадом не учитывается. Фазовые искажения усилителя оцениваются его фазочастотной характеристикой ϕ=F(f). График фазочастотной характеристики представляет собой зависимость угла сдвига фазы между входным и выходным напряжениями усилителя от частоты (рис. 10.5,б). Фазовые искажения в усилителе отсутствуют, когда фазовый сдвиг линейно зависит от частоты. Идеальной фазочастотной характеристикой является прямая линия, начинающаяся в начале координат (рис. 10.5,б пунктирная линия). На практике амплитудно-частотную и фазочастотную характеристики удобнее строить в логарифмическом масштабе по оси частот. Это удобно тем, что растягивается область нижних и сжимается область верхних частот.

Переходная характеристика выражает зависимость от времени выходного напряжения усилителя, на вход которого подан мгновенный скачок напряжения (рис. 10.7).

Эта характеристика определяет процесс перехода усилителя из одного состояния в другое. Скачкообразное изменение входного напряжения позволяет выяснить реакцию усилителя на это воздействие сразу в двух режимах: переходном и стационарном. Характер переходного процесса в усилителе во многом зависит от наличия реактивных элементов L, C, которые препятствуют мгновенному изменению тока в индуктивности и напряжения на емкости. Напряжение на выходе не может измениться скачкообразно при подаче на вход импульса.

Время, в течение которого фронт нормированной переходной характеристики нарастает от уровня 0,1 до уровня 0,9, называется временем нарастания tнар. Превышение мгновенного значения напряжения над установившимся называют выбросом δ и выражают в процентах. Существует так называемое критическое значение выброса, при котором δ не зависит от числа каскадов усилителя. Неравномерность вершины нормированной переходной характеристики обозначается через Δ, измеряется как и выброс в процентах от стационарного значения и не должна превышать 10 % для усилителей высоко- качественного воспроизведения.

Шумы в электронных схемах

Собственные шумы компонентов электронных схем

Собственные шумы компонентов электронных схем являются их неотъемлемой и основной физической характеристикой: они устанавливают нижнюю границу напряжения шумов электронного прибора. К собственным шумам относятся: тепловые, дробовые и контактные шумы, которые являются непрерывными сигналами с характерными свойствами.

Тепловые шумы возникают в результате теплового движения электронов в веществе. Они возникают во всех элементах, обладающих сопротивлением. Поэтому тепловые шумы в технической литературе называются также шумами сопротивления или джонсоновскими шумами.

Источником теплового шума могут быть компоненты электрической схемы, которые способны рассеивать энергию. Поэтому реактивное сопротивление не является источником теплового шума.

Для исследования тепловой шум может быть представлен в виде стандартного «белого» шума: амплитуда напряжения теплового шума нормальное распределение с параметрами m = 0 и σ= UT, а СПМ теплового шума постоянна во всем диапазоне частот.

Дробовой шум возникает вследствие того, что электрический ток представляет собой движение дискретных зарядов. Конечность заряда приводит к статистическим флуктуациям тока относительно среднего значения, вызываемых случайным характером эмиссии электронов (или дырок), т.е. дробовому шуму. Этот вид шума присутствует как в электронных лампах, так и в транзисторах. В последних дробовой шум обусловлен хаотической диффузией носителей через базу и случайным характером генерации и рекомбинации пар электрон-дырка. В общем случае дробовой шум связан с прохождением тока через потенциальный барьер.

Для дробового шума также применимо представление в виде нормально распределенного «белого» шума, описанного выше. Математическое ожидание дробового шума равно нулю, а среднеквадратическое отклонение определяется эффективным значением тока

Контактные шумы вызываются флуктуацией проводимости (переходного сопротивления) вследствие несовершенства контакта между двумя материалами. Они проявляются всякий раз, когда два проводника соединяются друг с другом, например, в переключателях и контактном реле.

Контактные шумы встречаются в сопротивлениях, транзисторах и диодах из-за несовершенства контактов, микросхемах содержащих множество сплавных между собой мелких частиц.

Этот шум зависит от многих факторов конструкции конкретного сопротивления резистивный материал и в особенности концевые соединения.

В технической литературе контактные шумы часто имеют другие названия. В частности, шумы, возникающие в сопротивлениях, называются «избыточными» шумами, контактные шумы в электронных лампах и транзисторах обычно - «фликкер-шумами».

Спектральная плотность мощность изменяется как величина обратная частоте, вследствие чего эти шумы называют низкочастотными или 1/f шумами, а иногда этот шум называют «розовым».

Контактные шумы являются наиболее существенными источниками шумов в низкочастотных схемах и электрических цепях.

К собственным шумам относятся так же характерные для полупроводниковых элементов - диодов, транзисторов и интегральных схем импульсные шумы.

В отличие от других типов шумов импульсные являются практически неустранимыми, так как обусловлены производственными дефектами и их можно устранить только улучшив процессы производства. Эти шумы вызываются металлическими примесями в переходе полупроводникового прибора. Импульсные шумы являются дискретными непериодическими сигналами и проявляются как резкие всплески уровни выходного напряжения.

Средняя скорость повторения импульсов может изменяться от нескольких сот импульсов в секунду до одного импульса в минуту, однако у любого конкретного устройства амплитуда импульсных шумов фиксирована, так как она является функцией параметров дефекта перехода. Длительность шумовых импульсов колеблется от микросекунд до секунд. Обычно эта амплитуда в 2 - 100 раз превышает амплитуду тепловых шумов.

Спектральная плотность мощности импульсных шумов имеет зависимость вида 1/f2. Поскольку этот шум представляет собой явление, связанное с наличием тока, напряжение импульсных шумов будет наибольшим в высокоомной цепи, такой, как входная цепь операционного усилителя.

Не ограничиваясь рассмотрением только этих основных типов шумов, в общем случай, суммарное напряжение шума для электронныой схемы можно записать в виде

U шƩ =(U ш1 2 +U ш2 2 +…U шn 2)^1/2


Похожая информация.


  • Tutorial

На аудиофильских сайтах принято пугать посетителей интермодуляционными искажениями, однако поскольку большинство публикаций на эту тему широко использую технологию копипаста, понять почему эти искажения возникают и чем так страшны очень сложно. Сегодня я постараюсь в меру своих способностей и объёма статьи отразить именно природу этих стрРрашных ИМИ.

Тема искажений сигнала в УМЗЧ была поднята в моей , но в прошлый раз мы лишь слегка коснулись линейных и нелинейных искажений. Сегодня попробуем разобраться в наиболее неприятных на слух, трудноуловимых для анализа и сложноустранимых для проектировщиков УНЧ интермодуляционных искажениях. Причинах их возникновения и взаимосвязи с обратной связью сорри за каламбур.

Операционный усилитель как белый треугольник

Прежде чем говорить об обратной связи, сделаем небольшой экскурс в операционные усилители ОУ , поскольку сегодня транзисторные усилительные тракты без них практически не обходятся. Они могут присутствовать как в виде отдельных микросхем, так и входить в состав более сложных чипов - например интегральных усилителей низкой частоты - УНЧ .

Рассмотрим усилитель в виде чёрного ящика вернее белого треугольника, как их принято обозначать в схемотехнике, пока не вдаваясь в подробности его устройства.

Назначение выводов операционного усилителя

Неинвертирующий вход:

Инвертирующий вход:


Плюс источника питания:


Минус источника питания:

Если увеличить входное напряжение на неинвертирующем входе, то напряжение на выходе вырастет, если на инвертирующем, то наоборот уменьшится.

Обычно входное напряжение, которое необходимо усилить, подают между двумя входами и тогда выходное напряжение можно выразить следующим образом:


Где - коэффициент усиления с разомкнутой петлёй обратной связи


Поскольку наша цель не усиление постоянных напряжений, а звуковых колебаний давайте для примера рассмотрим зависимость недорогого ОУ LM324 от частоты входных синусоидальных колебаний.


На данном графике по вертикали отложено усиление, а по горизонтали частота в логарифмическом масштабе. Результаты работы инженеров не слишком впечатляют и применить подобный усилитель в реальности вряд ли получится. Во первых, он показывает хорошую линейность лишь за пределами частотного диапазона воспринимаемого ухом - ниже 10 Гц, во вторых, его коэффициент усиления слишком большой - 10 000 раз на постоянном токе!

Так что же делать, должен же быть выход! Да, он есть. Взять часть выходного сигнала и подать его на инвертирующий вход - ввести обратную связь.

Обратная связь - просто и сердито! Панацея от всех бед?

В данной статье не будем касаться основ теории операционных усилителей, при желании в интернете можно найти много информации на эту тему, Игоря Петрова

Ввести обратную связь в схему усилителя не просто, а очень просто. Давайте чтобы далеко не ходить рассмотрим как это можно сделать на примере из моей .

Обратная связь в данной схеме подаётся на инвертирующий вход ОУ через резистор R2, точнее делитель напряжения из R2 и R1.


Нетрудно доказать что в данная схема будет иметь коэффициент усиления по напряжению равный двум, причём он будет неизменен при усилении гармонических сигналов в очень широком частотном диапазоне. С увеличением частоты сигнала коэффициент усиления ОУ без ОС падает но остаётся многократно больше двух и это падение компенсируется автоматическим уменьшением уровня сигнала обратной связи. В результате коэффициент усиления схемы в целом остаётся неизменным. Но и это ещё не всё. Данная схема имеет очень высокое входное сопротивление, а значит практически не оказывает влияние на источник сигнала. Она также имеет весьма низкое выходное сопротивление, а значит по идее, должна сохранять форму сигнала даже при работе на достаточно низкоомную нагрузку, причём с комплексным сопротивлением - индуктивную и ёмкостную.

Неужели мы вот так просто получили ИДЕАЛЬНЫЙ УСИЛИТЕЛЬ?

К сожалению нет, как любая монета имеет орла и решку, так и обратная связь свою тёмную сторону.

Что русскому хорошо, то немцу - смерть или немного радиотехники


В радиотехнике хорошо известен эффект взаимодействия сигналов двух различных частот, поданных на нелинейный элемент, называемый интермодуляцией . В результате получается сложный сигнал с комбинациями частот (гармоник), зависящих от частоты исходных сигналов f1 и f2 согласно следующей формуле:
Полученные частоты по амплитуде меньше родительских гармоник и как правило их уровень быстро убывает с увеличением целочисленных коэффициентов m и n.

Наибольшую амплитуду будут иметь гармоники, называемые гармониками второго порядка с частотами:


и частотами гармоник третьего порядка :
В радиотехнике этот эффект широко используют для преобразования частот. Благодаря ему работают современные приёмники. Преобразование частоты происходит в смесителях, построенных на основе нелинейных элементов в качестве которых часто используют p-n переход диода, ну или транзистора. На смеситель одновременно поступает принимаемый полезный сигнал и сигнал от генератора - гетеродина.


На выходе мы получаем широкий спектр сигналов:


Но благодаря узкополосному фильтру ФПЧ выделяем нужный нам сигнал с промежуточной частотой f пр =f г -f с и усиливаем его в усилителе ПЧ. Затем происходит детектирование с помощью следующего нелинейного элемента, обычно диода и на выходе после фильтра низких частот на рисунке не изображён мы получаем сигнал звуковой частоты.

ИМИ (IMD) - интермодуляционные искажения

Однако, если для приёмников эффект интермодуляции жизненно необходим, в усилителях низкой частоты он вызывает возникновение нелинейных искажений, которые так и называют интермодуляционными. Ведь звуковой сигнал одновременно содержит гармоники большого количества частот, сильно отличающихся по амплитуде, а транзисторы, из которых состоит усилитель, как и диоды являются нелинейными элементами. Искажения, которые появляются благодаря описанному выше механизму, в англоязычных источниках именуют intermodulation distortion сокращённо IMD , кстати российское сокращение для них ИМИ .

Данный тип искажений гораздо неприятнее на слух, чем банальное амплитудное ограничение сигнала, источник их появления в каждом конкретном случае гораздо сложнее обнаружить, а главное устранить.

Пора нам наконец заняться исследованием тёмной стороны обратной связи

Тёмная сторона обратной связи

Для того, чтобы её обнаружить соберём усилитель по на ОУ LM324, но с немного другими номиналами резисторов обратной связи так, чтобы получить единичное усиление.

А теперь подадим на его вход прямоугольный импульс малой амплитуды, каких нибудь 100 милливольт.


Tо, что мы получили на выходе выглядит совсем не похоже на входной сигнал. Что же случилось и почему нам не помогла обратная связь? Как всегда виновата физика, её мир гораздо сложнее чем наши математические модели, основанные на грубых приближениях. Дело в том, что наш усилитель - весьма сложное устройство.

Экскурсия в реальный мир. Общая отрицательная обратная связь в усилителе мощности звуковой частоты

Нелинейность, присущая транзисторным каскадам, вынуждает разработчиков использовать сильную отрицательную обратную связь как простейшее решение для подгонки параметров усилителя под соответствия требованиям по низкому уровню гармонических и интермодуляционных искажений разумеется измеренных по стандартным методикам. В результате промышленные усилители мощности, имеющие глубину ООС в 60 и даже 100 дБ, на сегодняшний день не являются редкостью.
Изобразим реальную схему несложного транзисторного усилителя мощности. Можно сказать что он является трёхкаскадным. Первый усилительный каскад на ОУ А1, второй на транзисторах T1-T2 и третий также транзисторный Т3 -Т4. При этом усилитель охвачен цепью общей обратной связи она выделена красным контуром, которая подаётся через резистор R6 на неинвертирующий вход ОУ. Ключевое слово здесь общей - обратная связь тут подаётся не с выхода ОУ на его вход, а с выхода всего усилителя.


В результате ОУ благодаря своему огромному усилению должен помогать справляться с разными родами нелинейностями и помехами транзисторным усилительным каскадам. Перечислим ниже основные из них:

  • транзисторы в подобном включении могут работают в весьма нелинейном режиме при переходе сигнала через ноль и для слабых сигналов;
  • на выходе усилитель нагружен на комплексную нагрузку - акустическую систему. На схеме показан её эквивалент - сопротивление R15 и индуктивность L1;
  • Транзисторы работают в тяжёлом тепловом режиме и температура их корпуса существенно зависит от выходной мощности, а от температуры сильно зависят их параметры;
  • Ёмкости монтажа и различного рода наводки могут иметь приличное значение и ошибки трассировки легко могут привести к возникновению положительной обратной связи и самовозбуждению усилителя;
  • Значительно возрастает роль помех, наводимых по питанию;
И ОУ помогает, но как дурак молящейся богу из известного афоризма порой уж слишком усердно. Появляются проблемы с перегрузочной способностью отдельных каскадов, транзисторы которых попадают в режим ограничения сигнала. Они выходят из линейного разумеется сравнительно линейного режима в режимы отсечки или насыщения. Выходят очень быстро, а возвращаются в него гораздо медленней, что обусловлено неторопливым процессом рассасывания неосновных источников заряда в полупроводниковых переходах. Рассмотрим подробнее данный процесс и его последствия.

Динамические интермодуляционные искажения TIM. Перегрузочная способность и эффект “клиппирования” усилителя

Перегрузочная способность усилителя это параметр, который описывает на сколько децибел номинальное выходное напряжение или мощность отличается от максимальной, когда начинаются ограничения выходного сигнала по питанию - clipping

У транзисторных усилителей перегрузочная способность невелика, особенно у оконечных и предоконечных каскадов. Номинальная мощность от максимальной часто отличается всего процентов на 40, это меньше чем 3 дБ.

Представим что наш усилитель состоит из идеального предусилителя корректора и УМЗЧ охваченного обратной связью с коэффициентом B. Важно отметить, что сигнал V 1 может содержать составляющие очень высокой частоты. Предусилитель C действует как фильтр НЧ, выдавая входной сигнал V 2 для усилителя A, содержащий только составляющие, попадающие в звуковую полосу частот.

Напряжение на входе усилителя мощности V 2 имеет время нарастания, определяемое предусилителем, на графике видно что оно сглажено. Тем не менее, в напряжении V 3 , действующем на выходе сумматора, присутствует выброс, вызванный стремлением обратной связи компенсировать малое быстродействие усилителя мощности A с амплитудой V max


Выброс в сигнале V 3 может в сотни и даже тысячи раз превосходить по амплитуде номинальный уровень входного сигнала. Он может в значительной степени превысить динамический диапазон усилителя. Во время такой перегрузки усиление других сигналов, присутствующих на входе уменьшается, вызывая мгновенный всплеск интермодуляционных искажений. Этот всплеск называется динамическими интермодуляционными искажениями TID , потому что приводит к влиянию одного сигнала на амплитуду другого интермодуляция, и зависит от временной и амплитудной характеристик входного сигнала сильнее, чем просто от амплитудной характеристики, как в случае простых интермодуляционных искажений.


Выше показан график крайне неприятного эффекта, который называют “клиппированием” усилителя и он является порождением обратной связи. На выходе А1 мы получаем в результате эффект ограничения по амплитуде, а на выходе усилителя искажённый сигнал.

Методики измерения интермодуляционных искажений и методы борьбы с ними

Согласно стандартной методике для измерения интермодуляционных искажений на вход изме­ряемого объекта одновременно подаются два сигнала: низкой f 1 и высокой f 2 частот. К сожалению, в различных странах пользу­ются различными измерительными частотами. Разные стандарты предусматривают разные частоты - 100 и 5000 Гц, 50 и 1000 Гц…

Наиболее употребительным является использование частот 400 и 4000 Гц, утвержденных в стандарте DIN 45403, ГОСТ 16122-88 и МЭК 60268-5. Амплитуда сигнала частотой f 1 на 12 дБ в 4 раза больше, чем амплитуда сигнала частотой f 2 . В зависимости от нелинейности характеристики, в рабочей точке симметрично относительно частоты f 2 образуются разностные и сум­марные комбинационные колебания f 2 ± f 1 , и f 2 ± 2f 1 более высоких порядков. Возникающие комбинационные колебания второго поряд­ка с частотами f 2 ± f 1 характеризуют квадратичные, а третьего по­рядка с частотами f 2 ± 2f 1 - кубические искажения объекта изме­рения.

Также широко используется пара частот 19 и 20 КГц c равным уровнем сигнала, удобная прежде всего тем, что основной гармоникой, которая попадает в звуковой диапазон, в данном случае является сигнал с частотой 1КГц, уровень которого легко измерить.

Для подачи измерительных сигналов применяют не только генераторы, но и специально записанные в студии измерительные CD диски и даже виниловые пластинки.


Лет 30 назад для измерения коэффициента интермодуляцнонных искажений требовались сложные и дорогие приборы, доступные только в лабораториях и студиях, вот например состав измерительного стенда для усилителя звукоснимателя:
  1. Проигрыватель виниловых пластинок;
  2. Измерительная пластинка;
  3. Звукосниматель;
  4. Корректирующий усилитель;
  5. Полосовой фильтр;
  6. Линейный детектор;
  7. Фильтр низких частот.
  8. Ну и конечно V - вольтметр, умеющий измерять действующее значение синусоидальных колебаний!
Сегодня гораздо лучшее качество измерений может обеспечить даже простенькая 16 битная компьютерная музыкальная карта с ценой до 30 долларов в комплекте со специальной измерительной программой и несложными цепями согласования.

Описанные стандарты очень удобны для производителей звуковоспроизводящей аппаратуры без особого труда можно получить красивые маленькие цифры в паспортных данных, но не слишком хорошо отражают реальное качество усилительного тракта. Результатом конечно является развитие субьективизма - когда два усилителя или даже недешёвых аудиокарты, имеющих формально практически одинаковые параметры, на сложном музыкальном сигнале «звучат» совершенно по разному - без прослушивания перед покупкой не обойтись.

Любители энтузиасты качественного звука и отдельные фирмы производители аппаратуры высокого класса пытаются продвигать свои методики измерений, основанные на менее оторванных от реальности приближениях. Существуют мультичастотные методики, методики исследующие взаимодействие гармонической частоты и единичного импульса, на основе шумовых сигналов и другие. Однако в этот раз обсудить их подробно мы уже не успеем.
ООС

  • эффект клиппирования УНЧ
  • Добавить метки

    Есть вопросы?

    Сообщить об опечатке

    Текст, который будет отправлен нашим редакторам: