Линейный раскрой материалов. Программа оптимального раскроя линейных заготовок на детали руководство пользователя - программа. Пример решения задачи линейного раскроя в MS Excel

n Пример 2.3. Найти корни уравнения

x - tg(x)= 0. (2.18)

Первый этап решения (этап отделения корней ) был реализован в разделе 2.1 (пример 2.2). Искомый корень уравнения находится на отрезке x Î, что и видно на графике (рис. 2.9).

Рис.2.9. Этап отделения корней

Этап уточнения корня реализуем средствами Excel. Продемонстрируем это на примере метода половинного деления . Схемы расчетов для методов касательных и хорд мало чем отличаются от приведенной ниже схемы.

Последовательность действий:

1. Подготовим таблицу, как показано на рис.2.10 и введем значения a , b , ε соответственно в ячейки В3, В4, В5.

2. Заполним первую строку таблицы:

D4=0 номер итерации;

Е4=В3, F4=B4, для вычисления f(a): G4=E4-TAN(E4),

Аналогично, в ячейки H4, I4, J4 введем формулы для вычисления соответственно f (b ), x n =(a+b )/2 и f (x n );

В ячейке К4 вычислим длину отрезка [a , b ]: K4=ABS(E4-F4).

3. D5=D4+1, для формирования номера итерации.

4. В ячейки E5, F5 введем формулы для формирования концов вложенных отрезков в соответствии с алгоритмом, изложенным в разделе 2.2.1:

E5=ЕСЛИ(J4*H4<0;I4;E4);

F5=ЕСЛИ(J4*H4>0;I4;F4).

5. Выделим ячейки G4:K4 и скопируем их вниз на одну строку .

6. Выделим ячейки D5:K5 и скопируем их вниз до конца таблицы.

Рис.2.10. Схема решения нелинейного уравнения методом бисекции

Деление отрезков продолжаем до тех пор, пока длина последнего не станет меньше заданного ε, т.е. до тех пор, пока не выполнится условие .

Чтобы сделать наглядным окончание итерационного процесса, воспользуемся Условным форматированием

Условное форматирование – это форматирование выделенных ячеек на основе некоторого критерия, в результате чего произойдет цветовое оформление ячеек, содержимое которых удовлетворяет заданному условию (в нашем случае ).

Для этого выполним следующие действия:

Выделим ячейки последнего столбца (К) расчетной схемы (рис.2.10), где будет задаваться критерий окончания итерационного процесса;

Выполним команду


Главная\Стили\ Условное форматирование;

Рис.2.11. Окно условного форматирования

В появившемся окне (рис.2.11) выберем строку:

Правила выделения ячеек \ Меньше;

В левой части появившегося диалогового окна Меньше (рис.2.12) зададим значение, которое будем использовано в качестве критерия (в нашем примере это адрес ячейки B5, где находится значение ε ).

Рис.2.12. Диалоговое окно Меньше

В правой части окна Меньше выберем цвет, которым будут окрашены ячейки, отвечающие заданному условию; и нажмем кнопку ОК.

В результате такого форматирования ячейки столбца К, значения которых меньше 0.1, тонированы, рис.2.10.

Таким образом, за приближенное значение корня уравнения x- tg(x)= 0 с точностью e=0.1принимается 3-я итерация, т.е. x * »4.46875 . Для e=0.01 - x * » 4.49609 (6-я итерация).

Решение нелинейных уравнений с использованием надстройки «Подбор параметра»

Решение нелинейных уравнений можно реализовать в приложении MS Excel с использованием надстройки Подбор параметра, где реализуется некоторый итерационный процесс.

Найдем корни рассмотренного выше уравнения (2.18).

За нулевое приближение решения уравнения, как это видно из рис.2.13, можно принять х 0 =4 или х 0 =4,5.

Последовательность действий

1. Подготовим таблицу, как показано на рис.2.13. В ячейку А2 введем некоторое значение х 0 (например х 0 =4) из ОДЗ функции y=f(x). Это будет начальным приближением для итерационного процесса, реализуемого приложением Подбор параметра.

2. Ячейка В2 является изменяемой ячейкой в процессе работы надстройки. Введем в нее это значение х 0 , а в ячейке С3 вычислим значение функции f(x n) для этого приближения.

3. Выберем команду:

Данные \ Работа с данными \ Анализ «что-если»\ Подбор параметра.

4. В окне «Подбор параметра»сделаем установки, как показано на рис.2.13 и нажмем кнопку ОК.

Рис.2.13. Решение нелинейного уравнения с помощью надстройки «Подбор параметра»

Если все было проделано правильно, то в ячейке В2 (рис.2.13) будет получено приближенное значение корня нашего уравнения.

Проделайте все эти операции ещё раз с другим значением начального приближения, например х 0 =4,5.

Контрольные вопросы

1. Какое уравнение называется нелинейным. Что является решением нелинейного уравнения.

2. Геометрическая интерпретация решения нелинейного уравнения.

3. Методы решения нелинейного уравнения (прямые и итерационные), в чем разница.

4. Два этапа численного решения нелинейного уравнения. Какие задачи ставятся на первом и втором этапах.

5. Первый этап решения нелинейного уравнения. Как выбирается нулевое приближение (нулевая итерация).

6. Построение итерационной последовательности. Понятие сходимости итерационной последовательности. Нахождение приближенного значения корня нелинейного уравнения с точностью ε.

7. Геометрическая интерпретация численных методов решения нелинейного уравнения: половинного деления, Ньютона (касательных), хорд.


Глава 3.

" В отличие от метода хорд, в методе касательных вместо хорды на каждом шаге проводится касательная к кривой y=F(x) при x=x n и ищется точка пересечения касательной с осью абсцисс:

Формула для (n+1) приближения имеет вид:

Если F(a)*F"(a)>0 , x 0 =a , в противном случае x 0 =b .

Итерационный процесс продолжается до тех пор, пока не будет обнаружено, что:

Пример:

Пусть дана задача следующего характера: Уточнить корни уравнения cos(2x)+x-5=0 методом касательных с точностью до 0,00001.

Изначально необходимо определиться с тем, чему равно x0: либо a, либо b. Для этого необходимо выполнить следующие действия:

Найти производную первого порядка от функции f(x)=cos(2x)+x-5. Она будет выглядеть следующим образом: f1(x)=-2sin(2x)+1.

Найти производную второго порядка от функции f(x)=cos(2x)+x-5. Она будет выглядеть следующим образом: f2(x)=-4cos(2x).

В итоге получается следующее:

Так как x0=b, то необходимо выполнить следующие действия:

Заполнить ячейки следующим образом (обратить внимание на названия и номера столбцов при заполнении - они должны быть такими же, как на рисунке):

В ячейку A6 ввести формулу =D5.

Выделить диапазон ячеек B5:E5 и методом протягивания заполнить диапазон ячеек B6:E6.

Выделить диапазон ячеек A6:E5 и методом протягивания заполнить диапазон нижерасположенных ячеек до получения в одной из ячеек столбца E результата (диапазон ячеек A6:E9).

В итоге получаем следующее:

4. Комбинированный метод хорд и касательных

Для того чтобы достичь наиболее точной погрешности, нужно одновременно использовать методы хорд и касательных. "По формуле хорд находят x n+1 , а по формуле касательных - z n+1 . Процесс нахождения приближенного корня прекращается, как только:

В качестве приближенного корня берут значение, равное (11) :"[2 ]

Пусть требуется уточнить корни уравнения cos(2x)+x-5=0 комбинированным методом с точностью до 0,00001.

Для решения такой задачи, используя Excel, необходимо выполнить следующие действия:

    Так как в комбинированном методе необходимо использовать одну из формул хорд и формулу касательных, то для упрощения следует ввести следующие обозначения:

    Для формул хорд обозначить:

Переменная c будет играть роль a или b в зависимости от ситуации.

Остальные обозначения аналогичны приведенным в формулах хорд, только учитывая выше введенные переменные.

    Для формулы касательных обозначить:

Остальные обозначения аналогичны приведенным в формуле касательных, только учитывая выше введенные переменные.

    Найти производную первого порядка от функции f(x)=cos(2x)+x-5. Она будет выглядеть следующим образом: f1(x)=-2sin(2x)+1.

    Найти производную второго порядка от функции f(x)=cos(2x)+x-5. Она будет выглядеть следующим образом: f2(x)=-4cos(2x).

    Заполнить ячейки следующим образом (обратить внимание на названия и номера столбцов при заполнении - они должны быть такими же, как на рисунке):

    В итоге получается следующее:

    В ячейку G1 ввести e, а в G2 ввести число 0,00001.

    В ячейку H1 ввести c, а в H2 ввести число 6, так как c=b (см. ячейку F2).

    В ячейку I1 ввести f(c), а в I2 ввести формулу =COS(2*H2)+H2-5.

    Заполнить ячейки последовательно следующим образом (обратить внимание на названия и номера столбцов при заполнении - они должны быть такими же, как на рисунке):

    В ячейку A6 ввести формулу =E5.

    В ячейку F6 ввести формулу =I5.

    Выделить диапазон ячеек B5:E5 и маркером автозаполнения заполнить диапазон ячеек B6:E6.

    Выделить диапазон ячеек G5:K5 и маркером автозаполнения заполнить диапазон ячеек G6:K6.

    Выделить диапазон ячеек A6:K6 и методом протягивания заполнить все нижестоящие ячейки до получения ответа в одной из ячеек столбца K (диапазон ячеек A6:K9).

В итоге получаем следующее:

Ответ: Корень уравнения cos(2x)+x-5=0 равен 5,32976.

Задание: дано нелинейного уравнения f(x) = 0 на заданном отрезке . Требуется средствами табличного процессора Excel найти корни данного уравнения методом касательных с использованием циклических ссылок.

x-x 3 +1=0 a=1 b=2

Решение:

Найдем корень нелинейного уравнения в табличном процессоре Excel методом касательных с использованием циклических ссылок. Для нахождения корня будем использовать формулу:

Для включения режима циклических вычислений в Excel 2003 в меню Сервис/Параметры/вкладка Вычисления следует поставить флажок Итерации и флажок выбора вида ведения вычислений: автоматически. В MS Excel 2010 следует зайти в меню Файл/Параметры/Формулы и поставить флажок в поле "Включить итеративные вычисления" :


Найдем производную функции f(x)=x-x 3 +1

f’(x)=1-3x 2
В ячейку А3 введем значение а =1, ячейку В3 введем формулу расчета текущего значения х: =ЕСЛИ(B3=0;A3;B3-(B3-СТЕПЕНЬ(B3;3)+1)/(1-3*СТЕПЕНЬ(B3;2)))
В ячейку С3 введем формулу для контроля значения f(x): =B3-СТЕПЕНЬ(B3;3)+1.
Получим корень уравнения в ячейке В3 х=1,325.

Введем начальное приближение в ячейку А3 =2. Но для того чтобы вычисления были правильные, недостаточно изменить число в ячейке А3 и запустить процесс вычислений. Потому что в этом случае вычисления продолжаться с последнего вычисленного ранее значения. Это значение, в ячейке В3, необходимо обнулить, для этого можно заново записать туда формулу или просто выбрать ячейку с формулой и дважды щелкнуть мышью на ней. После этого поставить курсор на ячейку с формулой и нажать клавишу Enter для запуска процесса итерационных вычислений.

В классической математике многое выглядит элементарно. Так, если нужно найти экстремум некоторой функции, то предлагается взять ее производную, приравнять нулю, решить полученное уравнение и т.д. Вне сомнения, что первые два действия в состоянии выполнить многие школьники и студенты. Что касается третьего действия, то позвольте усомниться в его элементарности.

Пусть после взятия производной мы пришли к уравнению tg(x)=1/x . Проведем следующие преобразования:
tg(x)=1/x Ю x tg(x)=1 Ю x2 tg=1 Ю x2= 1 / tg(x) Ю x = ± .

Если в приведённой здесь цепочке преобразований ничто не взволновало вашу мысль, то может быть лучше обучение на этом прекратить и заняться чем-нибудь другим, не требующим уровня знаний выше церковно-приходской школы начала XX века.

В самом деле, мы прекрасно решаем квадратные и биквадратные уравнения, наипростейшие тригонометрические и степенные. Еще водятся "мастодонты", знающие о существовании формул Кардано для кубических уравнений. В общем же случае надежд на простое аналитическое решение нет. Более того, доказано, что даже алгебраическое уравнение выше четвертой степени неразрешимо в элементарных функциях. Поэтому решение уравнения проводят численно в два этапа (здесь разговор идет лишь о вещественных корнях уравнения). На первом этапе производится отделение корней - поиск интервалов, в которых содержится только по одному корню. Второй этап решения связан с уточнением корня в выбранном интервале (определением значения корня с заданной точностью).

1.1. Отделение корней

В общем случае отделение корней уравнения f(x)=0 базируется на известной теореме, утверждающей, что если непрерывная функция f(x) на концах отрезка имеет значения разных знаков, т.е. f(a)ґ f(b)Ј 0 , то в указан-ном промежутке содержится хотя бы один корень. Например, для уравнения f(x)= x 3 -6x+2=0 видим, что при x®Ґ f(x)>0 , при x®-Ґ f(x) , что уже свидетельствует о наличии хотя бы одного корня.

В общем случае выбирают некоторый диапазон, где могут обнаружиться корни, и осуществляют "прогулку" по этому диапазону с выбранным шагом h для обнаружения перемены знаков f(x) , т.е. f(x)ґ f(x+h) .

При последующем уточнении корня на обнаруженном интервале не надейтесь никогда найти точное значение и добиться обращения функции в нуль при использовании калькулятора или компьютера, где сами числа представлены ограниченным числом знаков. Здесь критерием может служить приемлемая абсолютная или относительная погрешность корня. Если корень близок к нулю, то лишь относительная погрешность даст необходимое число значащих цифр. Если же он весьма велик по абсолютной величине, то критерий абсолютной погрешности часто дает совершенно излишние верные цифры. Для функций, быстро изменяющихся в окрестности корня, может быть привлечен и критерий: абсолютная величина значения функции не превышает заданной допустимой погрешности.

1.2. Уточнение корней методом половинного деления (дихотомии)

Самым простейшим из методов уточнения корней является метод половинного деления, или метод дихотомии, предназначенный для нахождения корней уравнений, представленных в виде f(x)=0 .

Пусть непрерывная функция f(x) на концах отрезка имеет значения разных знаков, т.е. f(a)ґ f(b) Ј 0 (), тогда на отрезке имеется хотя бы один корень.

Возьмем середину отрезка с=(a+b)/2 . Если f(a)ґ f(c) Ј 0 , то корень явно принадлежит отрезку от a до (a+b)/2 и в противном случае от (a+b)/2 до b .

Поэтому берем подходящий из этих отрезков, вычисляем значение функции в его середине и т.д. до тех пор, пока длина очередного отрезка не окажется меньше заданной предельной абсолютной погрешности (b-a)e .

Так как каждое очередное вычисление середины отрезка c и значения функции f(c) сужает интервал поиска вдвое, то при исходном отрезке и предельной погрешности e количество вычислений n определяется условием (b-a)/2 n e , или n~log 2 ((b-a)/e ) . Например, при исходном единичном интервале и точности порядка 6 знаков (e ~ 10 -6 ) после десятичной точки достаточно провести 20 вычислений (итераций) значений функции.

С точки зрения машинной реализации () этот метод наиболее прост и используется во многих стандартных программных средствах, хотя существуют и другие более эффективные по затратам времени методы.

1.3. Уточнение корней методом хорд

В отличие от метода дихотомии, обращающего внимание лишь на знаки значений функции, но не на сами значения, метод хорд использует пропорциональное деление интервала ().

Рис. 3. Метод хорд

Здесь вычисляются значения функции на концах отрезка, и строится "хорда", соединяющая точки (a,f(a)) и (b,f(b)) . Точка пересечения ее с осью абсцисс

принимается за очередное приближение к корню. Анализируя знак f(z) в сопоставлении со знаком f(x) на концах отрезка, сужаем интервал до [a,z ] или [z,b ] и продолжаем процесс построения хорд до тех пор, пока разница между очередными приближениями не окажется достаточно малой (в пределах допустимой погрешности) |Z n -Z n-1 |e .

Можно доказать, что истинная погрешность найденного приближения:

Где X * - корень уравнения, Z n и Z n+1 - очередные приближения, m и M - наименьшее и наибольшее значения f(x) на интервале [a,b ].

1.4. Уточнение корней методом касательных (Ньютона)

Обширную группу методов уточнения корня представляют итерационные методы - методы последовательных приближений. Здесь в отличие от метода дихотомии задается не начальный интервал местонахождения корня, а его начальное приближение.

Наиболее популярным из итерационных методов является метод Ньютона (метод касательных) .

Пусть известно некоторое приближенное значение Z n корня X * . Применяя формулу Тейлора и ограничиваясь в ней двумя членами, имеем

откуда

.

Геометрически этот метод предлагает построить касательную к кривой y=f(x) в выбранной точке x=Z n , найти точку пересечения её с осью абсцисс и принять эту точку за очередное приближение к корню ().

Очевидно, что этот метод обеспечивает сходящийся процесс приближений лишь при выполнении некоторых условий (например при непрерывности и знакопостоянстве первой и второй производной функции в окрестности корня) и при их нарушении либо дает расходящийся процесс (), либо приводит к другому корню ().

Очевидно, что для функций, производная от которых в окрестности корня близка к нулю, использовать метод Ньютона едва ли разумно.

Если производная функции мало изменяется в окрестности корня, то можно использовать видоизменение метода

.

Существуют и другие модификации метода Ньютона.

1.5. Уточнение корней методом простой итерации

Другим представителем итерационных методов является метод простой итерации .

Здесь уравнение f(x)=0 заменяется равносильным уравнением x=j (x) и строится последовательность значений

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ

ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«САМАРСКИЙ ГОСУДАРСТВЕННЫЙ

АРХИТЕКТУРНО-СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ»

Кафедра прикладной математики и вычислительной техники

Excel и Mathcad

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

к выполнению лабораторных работ

по дисциплине «Вычислительная математика»

Решение нелинейных уравнений в Excel и Mathcad : Метод. указ. / Сост. , - Самара: СГАСУ, 20с.

Методические указания разработаны в соответствии с Государственным образовательным стандартом изучения дисциплины «Вычислительная математика».

Рассмотрена реализация численных методов при решении нелинейных уравнений и систем уравнений в Excel и MathCad. Приведены варианты заданий для индивидуального выполнения и вопросы для самоконтроля и тестирования.

Предназначены для студентов специальности 230201 – «Информационные системы и технологии» всех форм обучения.

Рецензент к. ф-м. н.

Ó , составление, 2012

ã СГАСУ, 2012

1.2 Отделение корней

1.5 Метод хорд

1.6 Метод Ньютона (касательных)

1.7 Комбинированный метод

1.8 Метод итераций

2.2 Решение систем нелинейных уравнений методом Ньютона

3 Задания к лабораторным работам

Лабораторная № 1. Отделение корней и стандартные инструменты решения нелинейного уравнения

Лабораторная № 2. Сравнение методов уточнения корней нелинейного уравнения

Лабораторная № 3. Решение систем нелинейных уравнений

Лабораторная № 4. Программирование методов решения нелинейных уравнений и систем

4 Вопросы и тесты для самоконтроля


1 Решение нелинейного уравнения

1.1 Общие сведения о решении нелинейного уравнения

Как правило, нелинейное уравнения общего вида f(х)=0 невозможно решить аналитически. Для практических задач достаточно найти приближенное значение x , в определенном смысле близкое к точному решению уравнения хточн .

В большинстве случаев поиск приближенного решения включает два этапа. На первом этапе отделяют корни, т. е. находят такие отрезки, внутри которых находится строго один корень. На втором этапе уточняют корень на одном из таких отрезков, т. е. находят его значение с требуемой точностью.

Достигнутая точность может оцениваться либо «по функции» (в найденной точке x , функция достаточно близка к 0, т. е. выполняется условие |f(x)|≤ e f , где e f требуемая точность по оси ординат), либо «по аргументу» (найден достаточно маленький отрезок [ a, b] , внутри которого находится корень, т. е. | b– a|≤ e x , где e x требуемая точность по оси абсцисс).

1.2 Отделение корней

Отделение корней может производиться сочетанием графического и аналитического исследования функции. Такое исследование опирается на теорему Вейерштрасса, в соответствии с которой для непрерывной на отрезке [ a, b] функции f(х ) и любого числа y , отвечающего условию f(a)≤y≤ f(b) , существует на этом отрезке точка x , в которой функция равна y . Следовательно, для непрерывной функции достаточно найти отрезок, на концах которого функция имеет разные знаки, и можно быть уверенным, что на этом отрезке есть корень уравнения f(х)=0 .

Для ряда методов уточнения желательно, чтобы найденный на первом этапе отрезок содержал только один корень уравнения. Это условие выполняется, если функция на отрезке монотонна. Монотонность, можно проверить либо по графику функции, либо по знаку производной.

Пример Найти с точностью до целых все корни нелинейного уравнения y(x)= x3 ‑ 10 x + 7=0 а) построив таблицу и б) построив график. Найти корень уравнения на выделенном отрезке, используя опции «Подбор параметра» и «Поиск решения».

Решение Создадим в Excel таблицу, содержащую аргументы и значения функции и по ней построим точечную диаграмму . На рисунке 1 приведен снимок решения.

На графике видно, что уравнение имеет три корня, принадлежащие отрезкам [-4, -3], и . Эти отрезки можно выявить и наблюдая за сменой знаков функции в таблице. По построенному графику можно сделать вывод, что на указанных отрезках функция f (x ) монотонна и, следовательно, на каждом из них содержится только по одному корню.

Такой же анализ может быть выполнен и в пакете Mathcad. Для этого достаточно набрать определение функции f (x ) , используя оператор присваивания (:=) и естественные общепринятые обозначения математических операций и стандартных функций, задать цикл для изменения аргумента, например, а затем вывести на экран таблицу значений функции (располо­жен­ными в одной строке командами x = f (x )= ) и график. Цикл можно задать, например, командой x :=-5,-4.5…5 . Шаг цикла формируется путем задания начального и следующего за ним значений переменной, а перед конечным значением переменной ставится точка с запятой, которая будет визуально отображена на экране в виде многоточия.

https://pandia.ru/text/78/157/images/image002_56.jpg" width="640" height="334">

Рисунок 1 – Таблица и график для отделения корней нелинейного уравнения

1.3 Уточнение корней стандартными средствами Excel и Mathcad

Во всех методах уточнения корней необходимо задать начальное прибли­же­ние, которое затем и будет уточняться. Если уравнение имеет несколько кор­ней, в зависимости от выбранного начального приближения будет найден один из них. При неудачно выбранном начальном приближении решение может и не быть найдено. Если в результате первого этапа расчетов уже выделен отрезок, содержа­щий единственный корень уравнения, в качестве начального приближения можно взять любую точку этого отрезка.

В Excel для уточнения значений корней можно использовать опции «Подбор параметра» и «Поиск решения». Пример оформления решения приведен на рисунках 2 и 3.

https://pandia.ru/text/78/157/images/image004_31.jpg" width="501" height="175 src=">

Рисунок 3 – Результаты использования средств решения уравнения в Excel

В Mathcad для уточнения корней уравнения можно использовать функцию root (….) или блок решения . Пример использования функции root(…) приведен на рисунке 4, а блока решения на рисунке 5. Следует обратить внимание, что в блоке решения (после заголовка блока Given ) между левой и правой частями уравнения должен стоять жирный знак равенства (тождества), который можно получить выбором из соответствующей палитры инструментов, либо нажатием одновременно клавиши Ctrl и = .


243" height="31">

Рисунок 5 – Решение уравнения с использованием блока решения в Mathcad

Как видим, каждый стандартный инструмент находит решение уравнения с определенной точностью. Эта точность зависит от метода, используемого в пакете и, в определенной степени, настроек пакета. Управлять точностью результата здесь достаточно сложно, а часто и невозможно.

В то же время, очень просто построить собственную таблицу или написать программу, реализующие один из методов уточнения корней. Здесь можно использовать критерии точности расчета, задаваемые пользователем. При этом достигается и понимание процесса расчетов без опоры на принцип Митрофанушки: «Извозчик есть, довезет».

Далее рассмотрены несколько наиболее распространенных методов. Отметим очевидный момент: при прочих равных условиях тот метод уточнения корней будет более эффективен, в котором результат с той же погрешностью найден с меньшим числом вычислений функции f(x) (при этом достигается и максимальная точность при одинаковом числе вычислений функции).

1.4 Метод деления отрезка пополам

В этом методе на каждом шаге отрезок делится на две равные части. Затем сравнивают знаки функции на концах каждой из двух половинок (например, по знаку произведения значений функций на концах), определяют ту из них, в которой содержится решение (знаки функции на концах должны быть разные), и. сужают отрезок, перенося в найденную точку его границу (а или b ). Условием окончания служит малость отрезка, где содержится корень («точность по x »), либо близость к 0 значения функции в средине отрезка («точность по y»). Решением уравнения считают середину отрезка, найденного на последнем шаге.

Пример . Построить таблицу для уточнения корня уравнения x 3 –10 x +7=0 на отрезке [-4, -3] методом деления отрезка пополам. Определить сколько шагов надо сделать методом деления отрезка пополам и какая при этом достигается точность по х, для достижения точности по y , равной 0,1; 0,01; 0, 001.

Решение Для решения можно использовать табличный процессор Excel, позволяющий автоматически продолжать строки. На первом шаге заносим в таблицу значения левого и правого концов выбранного начального отрезка и вычисляем значение середины отрезка с =(a +b )/2, а затем вводим формулу для вычисления функции в точке a (f (a )) и растягиваем (копируем) её для вычисления f (c ) и f (b ). В последнем столбца вычисляем выражение (b -a )/2, характеризующего степень точности вычислений. Все набранные формулы можно скопировать во вторую строку таблицы.

На втором шаге нужно автоматизировать процесс поиска той половины отрезка, где содержится корень. Для этого испльзуется логическая функция ЕСЛИ (Меню : ВставкаФункцияЛогические). Для нового левого края отрезка мы проверяем истинность условия f (a )*f (c )>0, если оно верно, то мы в качестве нового значения левого конца отрезка берем число c a , c a . Аналогично, для нового правого края отрезка мы проверяем истинность условия f (c )* f (b )>0, если оно верно, то мы в качестве нового значения правого конца отрезка берем число c (т. к. это условие показывает, что корня на отрезке [c , b ] нет), иначе оставляем значение b .

Вторую строку таблицы можно продолжить (скопировать) на необходимое число последующих строк.

Итерационный процесс завершается, когда очередное значение в последнем столбце становится меньшим, чем заданный показатель точности ex. При этом, значение середины отрезка в последнем приближении, принимается в качестве приближенного значения искомого корня нелинейного уравнения. На рисунке 6 приведен снимок решения. Для построения аналогичного процесса в Mathcad можно использовать бланк, подобный приведенному на рисунке 7. Число шагов N может варьиро­вать­ся до достижения в таблице результатов требуемой точности. При этом таблица будет автоматически удлиняться или укорачиваться.

Итак, одним из трех корней нелинейного уравнения x 3 – 10x + 7=0, найденным с точностью e=0,0001, является x = - 3,46686. Как мы видим, он действительно принадлежит отрезку [-4; -3].

https://pandia.ru/text/78/157/images/image018_6.jpg" width="563" height="552 src=">

Рисунок 7 – Уточнение корня методом деления отрезка пополам в Mathcad

1.5 Метод хорд

В этом методе нелинейная функция f(x) на отделенном интервале [а, b ] заменяется линейной – уравнением хорды, т. е. прямой соединяющей граничные точки графика на отрезке. Условие применимости метода – монотонность функции на начальном отрезке, обеспечивающая единственность корня на этом отрезке. Расчет по методу хорд аналогичен расчету методом деления отрезка пополам, но теперь на каждом шаге новая точка x внутри отрезка [a , b ] рассчитывается по любой из следующих формул:

(х) > 0 ), или правая его граница: x0 = b (если f(b) f"(х)>0 ). Расчет нового приближения на следующем шаге i +1 производится по формуле:

https://pandia.ru/text/78/157/images/image021_4.jpg" width="596" height="265 src=">

Рисунок 8 – Уточнение корня методом касательных в E xcel

Расчеты в Mathcad выполняются аналогично. При этом значительное облегчение доставляет наличие в этом пакете оператора, автоматически вычисляющего производную функции.

Наиболее трудоемким элементом расчетов по методу Ньютона является вычисление производной на каждом шаге.

При определенных условиях может использоваться упрощенный метод Ньютона , в котором производная вычисляется только один раз – в начальной точке. При этом используется видоизмененная формула

.

Естественно, что упрощенный метод, как правило, требует большего числа шагов.

Если вычисление производной связано с серьезными трудностями (например, если функция задана не аналитическим выражением, а вычисляющей ее значения программой) используется модифицированный метод Ньютона, получивший название – метод секущих . Здесь производная приближенно вычисляется по значениям функции в двух последовательных точках, то есть используется формула

.

В методе секущих необходимо задаться не одной, а двумя начальными точками – x 0 и x 1 . Точка x1 обычно задается сдвигом x0 к другой границе отрезка на малую величину, например, на 0.01.

1.7 Комбинированный метод

Можно показать, что если на начальном отрезке у функции f(x) сохраняются неизменными знаки первой и второй производных, то методы хорд и Ньютона приближаются к корню с разных. В комбинированном методе для повышения эффективности на каждом шаге использует оба алгоритма одновременно. При этом интервал, где содержится корень, сокращается с обеих сторон, что обусловливает другое условие окончания поиска. Поиск можно прекратить, как только в середине интервала, полученного на очередном шаге значение функции станет по модулю меньшим, чем предварительно заданной погрешности e f .

Если, в соответствии со сформулированным выше правилом, метод Ньютона применяется к правой границе отрезка, для вычислений используются формулы:

https://pandia.ru/text/78/157/images/image025_10.gif" width="107" height="45 src=">.

Если метод Ньютона применяется к левой границе, – в предыдущих формулах меняются местами обозначения a и b .

1.8 Метод итераций

Для применения этого метода исходное уравнение f(x)=0 преобразуют к виду: x =y (х) . Затем выбирают начальное значение х0 и подставляют его в левую часть уравнения, получая, в общем случае, x 1 = y (х0) ¹ х0 ¹ y (х1) , поскольку х0 взято произвольно и не является корнем уравнения. Полученное значение х1 рассматривают как очередное приближение к корню. Его снова подставляют в правую часть уравнения и получают следующее значение х2= y (х1) ). Расчет продолжают по формуле хi+1= y (хi) . Получающаяся таким образом последовательность: х0, х1, х2, х3 х4,... при определенных условиях сходиться к корню хточн .

Можно показать, что итерационный процесс сходится при условии
|y (x ) | < 1 на [a , b ].

Существуют различные способы преоб­ра­зо­вания уравнения f(x) = 0 к виду y (х) = х , причем в конкретном случае одни из них приведут к сходящемуся, а другие – к расходящемуся процессу вычислений.

Один из способов, заключается в применении формулы

https://pandia.ru/text/78/157/images/image027_10.gif" width="188" height="44 src=">

где М = max |y (x )| на [a , b ].

2 Решение систем нелинейных уравнений

2.1 Общие сведения о решении систем нелинейных уравнений

Систему n нелинейных уравнений с n неизвестными x1, x2 , ..., xn записывают в виде:

где F1, F2 ,…, Fn – функции независимых переменных, среди которых есть нелинейные.

Как и в случае систем линейных уравнений, решением системы является такой вектор X *, который при подстановке обращает одновременно все уравнения системы в тождества.

https://pandia.ru/text/78/157/images/image030_8.gif" width="191" height="56">

Начальные значения x 0 и y 0 определяются графически. Для нахождения каждого последующего приближения (xi +1 , yi +1 ) используют вектор значений функций и матрицу значений их первых производных, рассчитанные в предыдущей точке (xi , yi ) .

https://pandia.ru/text/78/157/images/image032_5.gif" width="276" height="63 src=">

Для расчета новых приближений на шаге i+1 используется матричная формула

https://pandia.ru/text/78/157/images/image034_4.gif" width="303" height="59 src=">.

Приведенные формулы особенно легко записать в Mathcad, где имеются операторы для вычисления производных и действий с матрицами. Однако при правильном использовании матричных операций эти формулы достаточно просто записываются и в Excel. Правда, здесь придется заранее получить формулы для вычисления производных. Для аналитического вычисления производных также может быть использован Mathcad.

2.3 Решение систем нелинейных уравнений методами итераций

Для реализации этих методов исходную систему уравнений необходимо путем алгебраических преобразований явно выразить каждую переменную через остальные. Для случая двух уравнений с двумя неизвестными новая система будет иметь вид

https://pandia.ru/text/78/157/images/image036_5.gif" width="114" height="57 src=">.

Если одно из решений системы и начальные значения x 0 и y 0 лежат в области D , задаваемой неравенствами: a x b , c y d , то расчет по методу простых итераций сходится при выполнении в области D соотношений:

https://pandia.ru/text/78/157/images/image038_5.gif" width="75 height=48" height="48">< 1.

В методе итераций Зейделя для каждого расчета используют уже найденные наиболее точные значения каждой переменной. Для рассматриваемого случая двух переменных такая логика приводит к формулам

0 " style="border-collapse:collapse;border:none">

Инструмент (опция)

Начальное приближение

Корень x

f(x)

3.Отсортировать полученные результаты по точности решения.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: