Условия неискажённой передачи сигнала. Точные методы решения задач в линейных стационарных системах с сосредоточенными параметрами

Также как и в случае цепи с помощью цепи можно осуществлять преобразования сигнала, соответствующие приближенному дифференцированию и интегрированию. На рис.3.6а,б приведены две схемы цепи. В первой выходное напряжение снимается с индуктивности, а во второй - с активного сопротивления.

Коэффициент передачи первой цепи (рис.3.6а) имеет выражение

,

где - постоянная времени цепи. Выражение для коэффициента передачи этой цепи приведено к виду выражения (3.10).Таким образом, коэффициент передачи такой цепи одинаков по своим свойствам с коэффициентом передачи цепи, если в последней выходное напряжение снимается с активного сопротивления. Следовательно, преобразования импульса в рассматриваемой цепибудут такими же, как в упомянутой цепии в частности, будет осуществляться приближенное дифференцирование, если выполняется условие.

Для второй цепи (рис.З.6б) коэффициент передачи имеет выражение

,

которое приведено к виду, соответствующему выражению (3.15). Следовательно, в такой цепи можно осуществлять преобразование сигнала, подобное рассмотренному для цепи, если в последней выходное напряжение снимается с емкости. В частности рассматриваемую цепь можно приближенно назвать интегрирующей, если между постоянной времени цепии длительностью входного импульсасуществует неравенство.

Длительность фронта определяется так же, как и в главе 1 определялось время установления переходного процесса в цепях. Длительность фронта, где , гдеи- моменты времени, в которые выходной импульс достигает соответственно 10% и 90% амплитудного значения. Так как нарастание фронта импульса происходит на выходе интегрирующей цепи по экспоненциальному закону (первый член выражения 3.18),то можно записать равенства

откуда определяется длительность фронта .

      1. Условия неискаженной передачи сигнала

В различных радиотехнических устройствах возникает необходимость обеспечить передачу через некоторую линейную цепь импульса или другого сложного сигнала без искажения его формы. То есть, если на входе цепи действует импульс , то на выходе желательно получить импульс напряжения, имеющий ту же форму, но, может быть, другую амплитуду.

Исходя из спектрального состава негармонического напряжения, можно установить условия неискаженной передачи его линейной целью. Для этого необходимо, чтобы соотношения амплитуд и фаз гармонических составляющих выходного напряжения была соответственно такими же, как и у входного напряжения. Это означает, что как изменения амплитуд, так и запаздывание во времени всех гармонических составляющих не должны завистеть от частоты.

Отсюда следует, что коэффициент передачи такой цепи должен удовлетворять условиям

Здесь - время фазового запаздывания (фазовой задержки). При выполнении условий (3.20) можно записать:

На рис.3.7 изображены частотная и фазовая характеристики цепи, удовлетворяющей условию (3.20). Такая цепь должна иметь бесконечно широкую полосу пропускания и линейно изменяющуюся фазовую характеристику, тангенс угла наклона которой равен времени задержки . Поясним сказанное с помощью рис.3.8, на котором показаны графики входного напряженияи выходного напряжения.

Здесь начальные фазы обеих гармонических составляющих входного сигнала равны нулю, а . Если модуль коэффициента передачи, то амплитуды гармонических составляющих на входе и выходе цепи соответственно равны,. Далее, если фазовая характеристика линейна, то, полагая фазовый сдвиг гармонической составляющей частотына выходе цепи равным, находим фазовый сдвиг для гармонической составляющей частотына выходе цепи:

Таким образом, напряжение на выходе имеет ту же форму, что и напряжение на входе цепи, но “запаздывает” по времени на величину . Легко понять, что любой реальный сигнал будет передан такой цепью без искажения его формы.

Справедливость условия (3.20) можно показать и аналитически с помощью преобразования Фурье. Пусть на вход цепи подано напряжение , имеющее спектральную функцию. Выразим это напряжение с помощью интеграла Фурье:

,

или, пользуясь записью интеграла Фурье в тригонометрической форме, получим:

.

На выходе цепи, имеющей коэффициент передачи

получим напряжение, определяемое выражением

Пользуясь тригонометрической формой записи, получаем:

Действительно, напряжение на выходе имеет ту же форму, что и на входе, но изменено по величине в раз и запаздывает по отношению к входному напряжению на время.

Любая реальная цепь не удовлетворяет условиям (3.20),полоса ее пропускания обычно ограничена некоторой частотой , где модуль коэффициента передачи начинает убывать с ростом частоты.

Для выяснения некоторых свойств цепи с ограниченной полосой пропускания рассмотрим так называемый идеальный фильтр нижних частот. Частотная и фазовая характеристики такого фильтра изображены на рис.3.9а,б. В отличие от идеального, у реального фильтра нижних частот частотная характеристика на граничной частоте не имеет резкого спада, а фазовая характеристика отличается от линейной.

Для идеального фильтра в полосе его пропускания полагаем ,, гдеи здесь выбрано произвольно. Пусть в моментна фильтр подан перепад напряжения величины, для которого coгласно (2.14) можно записать выражение

.

Тогда напряжение на выходе фильтра определяется выражением

где - интегральный синус, значения которого для различных значений аргумента находятся по таблицам.

На рис.3.10 изображен график функции . Наблюдающаяся здесь осцилляция, которая простирается до, является следствием идеализации частотной характеристики фильтра. Частота осцилляции совпадает с граничной частотой фильтра. В реальной цепи на ее выходе сигнал не может предшествовать моменту подачи сигнала на ее вход. Однако замена реальной частотной характеристики фильтра идеальной позволяет установить простую связь между полосой пропускания фильтраи крутизной фронта выходного напряжения.

Лекция №4 Передача информации

Схема передачи информации. Канал передачи информации. Скорость передачи информации.

Существуют три вида информационных процессов: хранение, передача, обработка.

Хранение информации:

· Носители информации.

· Виды памяти.

· Хранилища информации.

· Основные свойства хранилищ информации.

С хранением информации связаны следующие понятия: носитель информации (память), внутренняя память, внешняя память, хранилище информации.

Носитель информации – это физическая среда, непосредственно хранящая информацию. Память человека можно назвать оперативной памятью. Заученные знания воспроизводятся человеком мгновенно. Собственную память мы еще можем назвать внутренней памятью, поскольку ее носитель – мозг – находится внутри нас.

Все прочие виды носителей информации можно назвать внешними (по отношению к человеку): дерево, папирус, бумага и т.д. Хранилище информации - это определенным образом организованная информация на внешних носителях, предназначенная для длительного хранения и постоянного использования (например, архивы документов, библиотеки, картотеки). Основной информационной единицей хранилища является определенный физический документ: анкета, книга и др. Под организацией хранилища понимается наличие определенной структуры, т.е. упорядоченность, классификация хранимых документов для удобства работы с ними. Основные свойства хранилища информации: объем хранимой информации, надежность хранения, время доступа (т.е. время поиска нужных сведений), наличие защиты информации.

Информацию, хранимую на устройствах компьютерной памяти, принято называть данными. Организованные хранилища данных на устройствах внешней памяти компьютера принято называть базами и банками данных.

Обработка информации:

· Общая схема процесса обработки информации.

· Постановка задачи обработки.

· Исполнитель обработки.

· Алгоритм обработки.

· Типовые задачи обработки информации.

Схема обработки информации:

Исходная информация – исполнитель обработки – итоговая информация.

В процессе обработки информации решается некоторая информационная задача, которая предварительно может быть поставлена в традиционной форме: дан некоторый набор исходных данных, требуется получить некоторые результаты. Сам процесс перехода от исходных данных к результату и есть процесс обработки. Объект или субъект, осуществляющий обработку, называют исполнителем обработки.

Для успешного выполнения обработки информации исполнителю (человеку или устройству) должен быть известен алгоритм обработки, т.е. последовательность действий, которую нужно выполнить, чтобы достичь нужного результата.

Различают два типа обработки информации. Первый тип обработки: обработка, связанная с получением новой информации, нового содержания знаний (решение математических задач, анализ ситуации и др.). Второй тип обработки: обработка, связанная с изменением формы, но не изменяющая содержания (например, перевод текста с одного языка на другой).

Важным видом обработки информации является кодирование – преобразование информации в символьную форму, удобную для ее хранения, передачи, обработки. Кодирование активно используется в технических средствах работы с информацией (телеграф, радио, компьютеры). Другой вид обработки информации – структурирование данных (внесение определенного порядка в хранилище информации, классификация, каталогизация данных).

Ещё один вид обработки информации – поиск в некотором хранилище информации нужных данных, удовлетворяющих определенным условиям поиска (запросу). Алгоритм поиска зависит от способа организации информации.

Передача информации:

· Источник и приемник информации.

· Информационные каналы.

· Роль органов чувств в процессе восприятия информации человеком.

· Структура технических систем связи.

· Что такое кодирование и декодирование.

· Понятие шума; приемы защиты от шума.

· Скорость передачи информации и пропускная способность канала.

Схема передачи информации:

Источник информации – информационный канал – приемник информации.

Информация представляется и передается в форме последовательности сигналов, символов. От источника к приёмнику сообщение передается через некоторую материальную среду. Если в процессе передачи используются технические средства связи, то их называют каналами передачи информации (информационными каналами). К ним относятся телефон, радио, ТВ. Органы чувств человека исполняют роль биологических информационных каналов.

Процесс передачи информации по техническим каналам связи проходит по следующей схеме (по Шеннону):

Термином «шум» называют разного рода помехи, искажающие передаваемый сигнал и приводящие к потере информации. Такие помехи, прежде всего, возникают по техническим причинам: плохое качество линий связи, незащищенность друг от друга различных потоков информации, передаваемой по одним и тем же каналам. Для защиты от шума применяются разные способы, например, применение разного рода фильтров, отделяющих полезный сигнал от шума.

Клодом Шенноном была разработана специальная теория кодирования, дающая методы борьбы с шумом. Одна из важных идей этой теории состоит в том, что передаваемый по линии связи код должен быть избыточным. За счет этого потеря какой-то части информации при передаче может быть компенсирована. Однако нельзя делать избыточность слишком большой. Это приведёт к задержкам и подорожанию связи.

При обсуждении темы об измерении скорости передачи информации можно привлечь прием аналогии. Аналог – процесс перекачки воды по водопроводным трубам. Здесь каналом передачи воды являются трубы. Интенсивность (скорость) этого процесса характеризуется расходом воды, т.е. количеством литров, перекачиваемых за единицу времени. В процессе передачи информации каналами являются технические линии связи. По аналогии с водопроводом можно говорить об информационном потоке, передаваемом по каналам. Скорость передачи информации – это информационный объем сообщения, передаваемого в единицу времени. Поэтому единицы измерения скорости информационного потока: бит/с, байт/с и др. информационный процесс передача канал

Еще одно понятие – пропускная способность информационных каналов – тоже может быть объяснено с помощью «водопроводной» аналогии. Увеличить расход воды через трубы можно путем увеличения давления. Но этот путь не бесконечен. При слишком большом давлении трубу может разорвать. Поэтому предельный расход воды, который можно назвать пропускной способностью водопровода. Аналогичный предел скорости передачи данных имеют и технические линии информационной связи. Причины этому также носят физический характер.



1. Классификация и характеристики канала связи
Канал связи – это совокупность средств, предназначенных для передачи сигналов (сообщений).
Для анализа информационных процессов в канале связи можно использовать его обобщенную схему, приведенную на рис. 1.

ИИ
ЛС
П
ПИ
П

На рис. 1 приняты следующие обозначения: X, Y, Z, W – сигналы, сообщения; f – помеха; ЛС – линия связи;ИИ, ПИ – источник и приемник информации; П – преобразователи (кодирование, модуляция, декодирование, демодуляция).
Существуют различные типы каналов, которые можно классифицировать по различным признакам:
1. По типу линий связи: проводные; кабельные; оптико-волоконные;
линии электропередачи; радиоканалы и т.д.
2. По характеру сигналов: непрерывные; дискретные; дискретно-непрерывные (сигналы на входе системы дискретные, а на выходе непрерывные, и наоборот).
3. По помехозащищенности: каналы без помех; с помехами.
Каналы связи характеризуются:
1. Емкость канала определяется как произведениевремени использования канала T к, ширины спектра частот, пропускаемых каналом F к и динамического диапазона D к . , который характеризует способность канала передавать различные уровни сигналов

V к = T к F к D к. (1)
Условие согласования сигнала с каналом:
V c £ V k ; T c £ T k ; F c £ F k ; V c £ V k ; D c £ D k .
2.Скорость передачи информации – среднее количество информации, передаваемое в единицу времени.
3.
4. Избыточность – обеспечивает достоверность передаваемой информации (R = 0¸1).
Одной из задач теории информации является определение зависимости скорости передачи информации и пропускной способности канала связи от параметров канала и характеристик сигналов и помех.
Канал связи образно можно сравнивать с дорогами. Узкие дороги – малая пропускная способность, но дешево. Широкие дороги – хорошая пропускная способность, но дорого. Пропускная способность определяется самым «узким» местом.
Скорость передачи данных в значительной мере зависит от передающей среды в каналах связи, в качестве которых используются различные типы линий связи.
Проводные:
1. Проводные – витая пара (что частично подавляет электромагнитное излучение других источников). Скорость передачи до 1 Мбит/с. Используется в телефонных сетях и для передачи данных.
2. Коаксиальный кабель. Скорость передачи 10–100 Мбит/с – используется в локальных сетях, кабельном телевидении и т.д.
3. Оптико-волоконная. Скорость передачи 1 Гбит/с.
В средах 1–3 затухание в дБ линейно зависит от расстояния, т.е. мощность падает по экспоненте. Поэтому через определенное расстояние необходимо ставить регенераторы (усилители).
Радиолинии:
1. Радиоканал. Скорость передачи 100–400 Кбит/с. Использует радиочастоты до 1000 МГц. До 30 МГц за счет отражения от ионосферы возможно распространение электромагнитных волн за пределы прямой видимости. Но этот диапазон сильно зашумлен (например, любительской радиосвязью). От 30 до 1000 МГц – ионосфера прозрачна и необходима прямая видимость. Антенны устанавливаются на высоте (иногда устанавливаются регенераторы). Используются в радио и телевидении.
2. Микроволновые линии. Скорости передачи до 1 Гбит/с. Используют радиочастоты выше 1000 МГц. При этом необходима прямая видимость и остронаправленные параболические антенны. Расстояние между регенераторами 10–200 км. Используются для телефонной связи, телевидения и передачи данных.
3. Спутниковая связь . Используются микроволновые частоты, а спутник служит регенератором (причем для многих станций). Характеристики те же, что у микроволновых линий.
2. Пропускная способность дискретного канала связи
Дискретный канал представляет собой совокупность средств, предназначенных для передачи дискретных сигналов .
Пропускная способность канала связи – наибольшая теоретически достижимая скорость передачи информации при условии, что погрешность не превосходит заданной величины.Скорость передачи информации – среднее количество информации, передаваемое в единицу времени. Определим выражения для расчета скорости передачи информации и пропускной способности дискретного канала связи.
При передаче каждого символа в среднем по каналу связи проходит количество информации, определяемое по формуле
I (Y, X) = I (X, Y) = H(X) – H (X/Y) = H(Y) – H (Y/X) , (2)
где: I (Y, X) – взаимная информация, т.е.количество информации, содержащееся в Y относительно X ; H(X) – энтропия источника сообщений; H (X/Y) – условная энтропия, определяющая потерю информации на один символ, связанную с наличием помех и искажений.
При передаче сообщения X T длительности T, состоящего из n элементарных символов, среднее количество передаваемой информации с учетом симметрии взаимного количества информации равно:
I(Y T , X T) = H(X T) – H(X T /Y T) = H(Y T) – H(Y T /X T) = n . (4)
Скорость передачи информации зависит от статистических свойств источника, метода кодирования и свойств канала.
Пропускная способность дискретного канала связи
. (5)
Максимально-возможное значение, т.е. максимум функционала ищется на всем множестве функций распределения вероятности p(x) .
Пропускная способность зависит от технических характеристик канала (быстродействия аппаратуры, вида модуляции, уровня помех и искажений и т.д.). Единицами измерения пропускной способности канала являются: , , , .
2.1 Дискретный канал связи без помех
Если помехи в канале связи отсутствуют, то входные и выходные сигналы канала связаны однозначной, функциональной зависимостью.
При этом условная энтропия равна нулю, а безусловные энтропии источника и приемника равны, т.е. среднее количество информации в принятом символе относительно переданного равно
I (X, Y) = H(X) = H(Y); H (X/Y) = 0.
Если Х Т – количество символов за время T , то скорость передачи информации для дискретного канала связи без помех равна
(6)
где V = 1/ – средняя скорость передачи одного символа.
Пропускная способность для дискретного канала связи без помех
(7)
Т.к. максимальная энтропия соответствует для равновероятных символов, то пропускная способность для равномерного распределения и статистической независимости передаваемых символов равна:
. (8)
Первая теорема Шеннона для канала:Если поток информации, вырабатываемый источником, достаточно близок к пропускной способности канала связи, т.е.
, где - сколь угодно малая величина,
то всегда можно найти такой способ кодирования, который обеспечит передачу всех сообщений источника, причем скорость передачи информации будет весьма близкой к пропускной способности канала.
Теорема не отвечает на вопрос, каким образом осуществлять кодирование.
Пример 1. Источник вырабатывает 3 сообщения с вероятностями:
p 1 = 0,1; p 2 = 0,2 и p 3 = 0,7.
Сообщения независимы и передаются равномерным двоичным кодом (m = 2 ) с длительностью символов, равной 1 мс. Определить скорость передачи информации по каналу связи без помех.
Решение: Энтропия источника равна

[бит/с].
Для передачи 3 сообщений равномерным кодом необходимо два разряда, при этом длительность кодовой комбинации равна 2t.
Средняя скорость передачи сигнала
V =1/2 t = 500 .
Скорость передачи информации
C = vH = 500×1,16 = 580 [бит/с].
2.2 Дискретный канал связи с помехами
Мы будем рассматривать дискретные каналы связи без памяти.
Каналом без памяти называется канал, в котором на каждый передаваемый символ сигнала, помехи воздействуют, не зависимо от того, какие сигналы передавались ранее. То есть помехи не создают дополнительные коррелятивные связи между символами. Название «без памяти» означает, что при очередной передаче канал как бы не помнит результатов предыдущих передач.
При наличии помехи среднее количество информации в принятом символе сообщении – Y , относительно переданного – X равно:
.
Для символа сообщения X T длительности T, состоящегоиз n элементарных символов среднее количество информации в принятом символе сообщении – Y T относительно переданного – X T равно:
I(Y T , X T) = H(X T) – H(X T /Y T) = H(Y T) – H(Y T /X T) = n = 2320 бит/с
Пропускная способность непрерывного канала с помехами определяется по формуле

=2322 бит/с.
Докажем, что информационная емкость непрерывного канала без памяти с аддитивным гауссовым шумом при ограничении на пиковую мощность не больше информационной емкости такого же канала при той же величине ограничения на среднюю мощность.
Математическое ожидание для симметричного равномерного распределения

Средний квадрат для симметричного равномерного распределения

Дисперсия для симметричного равномерного распределения

При этом, для равномерно-распределенного процесса .
Дифференциальная энтропия сигнала с равномерным распределением
.
Разность дифференциальных энтропий нормального и равномерно распределенного процесса не зависит от величины дисперсии
= 0,3 бит/отсч.
Таким образом, пропускная способность и емкость канала связи для процесса с нормальным распределением выше, чем для равномерного.
Определим емкость (объем) канала связи
V k = T k C k = 10×60×2322 = 1,3932 Мбит.
Определим количество информации, которое может быть передано за 10 минут работы канала
10× 60× 2322=1,3932 Мбит.
Задачи

Передача информации происходит от источника к получателю (приемнику) информации. Источником информации может быть все, что угодно: любой объект или явление живой или неживой природы. Процесс передачи информации протекает в некоторой материальной среде, разделяющей источника и получателя информации, которая называется каналом передачи информации. Информация передается через канал в форме некоторой последовательности сигналов, символов, знаков, которые называются сообщением . Получатель информации - это объект, принимающий сообщение, в результате чего происходят определенные изменения его состояния. Все сказанное выше схематически изображено на рисунке.

Передача информации

Человек получает информацию от всего, что его окружает, посредством органов чувств: слуха, зрения, обоняния, осязания, вкуса. Наибольший объем информации человек получает через слух и зрение. На слух воспринимаются звуковые сообщения - акустические сигналы в сплошной среде (чаще всего - в воздухе). Зрение воспринимает световые сигналы, переносящие изображение объектов.

Не всякое сообщение информативно для человека. Например, сообщение на непонятном языке хотя и передается человеку, но не содержит для него информации и не может вызвать адекватных изменений его состояния.

Информационный канал может иметь либо естественную природу (атмосферный воздух, через который переносятся звуковые волны, солнечный свет, отраженный от наблюдаемых объектов), либо быть искусственно созданным. В последнем случае речь идет о технических средствах связи.

Технические системы передачи информации

Первым техническим средством передачи информации на расстояние стал телеграф, изобретенный в 1837 году американцем Сэмюэлем Морзе. В 1876 году американец А.Белл изобретает телефон. На основании открытия немецким физиком Генрихом Герцем электромагнитных волн (1886 г.), А.С. Поповым в России в 1895 году и почти одновременно с ним в 1896 году Г.Маркони в Италии, было изобретено радио. Телевидение и Интернет появились в ХХ веке.

Все перечисленные технические способы информационной связи основаны на передаче на расстояние физического (электрического или электромагнитного) сигнала и подчиняются некоторым общим законам. Исследованием этих законов занимается теория связи , возникшая в 1920-х годах. Математический аппарат теории связи - математическую теорию связи , разработал американский ученый Клод Шеннон.

Клод Элвуд Шеннон (1916–2001), США

Клодом Шенноном была предложена модель процесса передачи информации по техническим каналам связи, представленная схемой.

Техническая система передачи информации

Под кодированием здесь понимается любое преобразование информации, идущей от источника, в форму, пригодную для ее передачи по каналу связи. Декодирование - обратное преобразование сигнальной последовательности .

Работу такой схемы можно пояснить на знакомом всем процессе разговора по телефону. Источником информации является говорящий человек. Кодирующим устройством - микрофон телефонной трубки, с помощью которого звуковые волны (речь) преобразуются в электрические сигналы. Каналом связи является телефонная сеть (провода, коммутаторы телефонных узлов, через которые проходит сигнал). Декодирующим устройством является телефонная трубка (наушник) слушающего человека - приемника информации. Здесь пришедший электрический сигнал превращается в звук.

Современные компьютерные системы передачи информации - компьютерные сети, работают по тому же принципу. Есть процесс кодирования, преобразующий двоичный компьютерный код в физический сигнал того типа, который передается по каналу связи. Декодирование заключается в обратном преобразовании передаваемого сигнала в компьютерный код. Например, при использовании телефонных линий в компьютерных сетях функции кодирования-декодирования выполняет прибор, который называется модемом.

Пропускная способность канала и скорость передачи информации

Разработчикам технических систем передачи информации приходится решать две взаимосвязанные задачи: как обеспечить наибольшую скорость передачи информации и как уменьшить потери информации при передаче. Клод Шеннон был первым ученым, взявшимся за решение этих задач и создавшим новую для того времени науку - теорию информации .

К.Шеннон определил способ измерения количества информации, передаваемой по каналам связи. Им было введено понятие пропускной способности канала , как максимально возможной скорости передачи информации. Эта скорость измеряется в битах в секунду (а также килобитах в секунду, мегабитах в секунду).

Пропускная способность канала связи зависит от его технической реализации. Например, в компьютерных сетях используются следующие средства связи:

Телефонные линии,

Электрическая кабельная связь,

Оптоволоконная кабельная связь,

Радиосвязь.

Пропускная способность телефонных линий - десятки, сотни Кбит/с; пропускная способность оптоволоконных линий и линий радиосвязи измеряется десятками и сотнями Мбит/с.

Шум, защита от шума

Термином “шум” называют разного рода помехи, искажающие передаваемый сигнал и приводящие к потере информации. Такие помехи прежде всего возникают по техническим причинам: плохое качество линий связи, незащищенность друг от друга различных потоков информации, передаваемых по одним и тем же каналам. Иногда, беседуя по телефону, мы слышим шум, треск, мешающие понять собеседника, или на наш разговор накладывается разговор совсем других людей.

Наличие шума приводит к потере передаваемой информации. В таких случаях необходима защита от шума.

В первую очередь применяются технические способы защиты каналов связи от воздействия шумов. Например, использование экранированного кабеля вместо “голого” провода; применение разного рода фильтров, отделяющих полезный сигнал от шума, и пр.

Клодом Шенноном была разработана теория кодирования , дающая методы борьбы с шумом. Одна из важных идей этой теории состоит в том, что передаваемый по линии связи код должен быть избыточным . За счет этого потеря какой-то части информации при передаче может быть компенсирована. Например, если при разговоре по телефону вас плохо слышно, то, повторяя каждое слово дважды, вы имеете больше шансов на то, что собеседник поймет вас правильно.

Однако нельзя делать избыточность слишком большой. Это приведет к задержкам и удорожанию связи. Теория кодирования позволяет получить такой код, который будет оптимальным. При этом избыточность передаваемой информации будет минимально возможной, а достоверность принятой информации - максимальной.

В современных системах цифровой связи для борьбы с потерей информации при передаче часто применяется следующий прием. Все сообщение разбивается на порции - пакеты . Для каждого пакета вычисляется контрольная сумма (сумма двоичных цифр), которая передается вместе с данным пакетом. В месте приема заново вычисляется контрольная сумма принятого пакета и, если она не совпадает с первоначальной суммой, передача данного пакета повторяется. Так будет происходить до тех пор, пока исходная и конечная контрольные суммы не совпадут.

Рассматривая передачу информации в пропедевтическом и базовом курсах информатики, прежде всего следует обсудить эту тему с позиции человека как получателя информации. Способность к получению информации из окружающего мира - важнейшее условие существования человека. Органы чувств человека - это информационные каналы человеческого организма, осуществляющее связь человека с внешней средой. По этому признаку информацию делят на зрительную, звуковую, обонятельную, тактильную, вкусовую. Обоснование того факта, что вкус, обоняние и осязание несут человеку информацию, заключается в следующем: мы помним запахи знакомых объектов, вкус знакомой пищи, на ощупь узнаем знакомые предметы. А содержимое нашей памяти - это сохраненная информация.

Следует рассказать ученикам, что в мире животных информационная роль органов чувств отличается от человеческой. Важную информационную функцию для животных выполняет обоняние. Обостренное обоняние служебных собак используется правоохранительными органами для поиска преступников, обнаружения наркотиков и пр. Зрительное и звуковое восприятие животных отличается от человеческого. Например, известно, что летучие мыши слышат ультразвук, а кошки видят в темноте (с точки зрения человека).

В рамках данной темы ученики должны уметь приводить конкретные примеры процесса передачи информации, определять для этих примеров источник, приемник информации, используемые каналы передачи информации.

При изучении информатики в старших классах следует познакомить учеников с основными положениями технической теории связи: понятия кодирование, декодирование, скорость передачи информации, пропускная способность канала, шум, защита от шума. Эти вопросы могут быть рассмотрены в рамках темы “Технические средства компьютерных сетей”.

Сигнал проходит через линейную цепь без искажений, если форма его на выходе не меняется, но могут измениться только его величина и появиться запаздывание по времени. Это возможно только в случае равномерной частотной характеристики и линейной фазовой характеристики цепи.

Справедливость такого условия можно показать и аналитически с помощью преобразования Фурье. Пусть на вход цепи подано напряжение U BX (t) , имеющее спектральную функцию (или Фурье-образ) . Выразим это напряжение с помощью интеграла Фурье:

Пусть цепь имеет коэффициент передачи с модулем K и с фазой, линейно растущей с частотой:

Тогда на выходе получим напряжение, определяемое выражением

Окончательно U ВЫХ (t) = K U ВХ (t – t 0) . (3.53)

Действительно, напряжение на выходе имеет ту же форму, что и на входе, но изменено по величине в K раз и запаздывает по отношению к входному напряжению на время t 0 . Для этого в (3.52) коэффициент передачи K должен быть постоянным, а фаза, как и написано в (3.52), должна линейно расти с частотой. Это нужно для того, чтобы гармоники с большей частотой запаздывали на большее число периодов.

Обычно передача сигнала (от "входа" к "выходу") может быть описана интегро-дифференциальным оператором :

Переходя к преобразованию Фурье, можно записать это соотношение в виде:

где K(ω) – комплексная рациональная функция (коэффициент передачи). Если K точно известно, то можно точно восстановить исходный сигнал, применив к полученному сигналу преобразование, обратное оператору .

Часто удобнее (из-за технических ограничений) иметь дело не с самой функцией U ВЫХ (t), а с рядом её дискретных отсчётов. Тогда естественно возникает вопрос, а эквивалентно ли представление функции в виде дискретных отсчётов самой функции? Здесь на помощь приходит теорема Котельникова. В зарубежной литературе она известна как теорема отсчётов – Sampling Theorem или теорема Найквиста – Nyquist-Shannon Theorem.


Теорема Котельникова (теорема отсчётов)

Зададим непрерывный сигнал U(t) набором отсчётов: U n = U(nΔ), где Δ - интервал дискретизации, 1/Δ - частота дискретизации (см. рис. 3.32).

Рис. 3.32. График функции U(t) и набор дискретных отсчётов U n c интервалом дискретизации Δ.

Это – наивысшая гармоника или наивысшая частота сплошного спектра сигнала.

Тогда справедлива теорема Котельникова (приводится без доказательства):

Если спектр сигнала ограничен и верхняя частота спектра меньше



то по дискретному набору U n можно точно восстановить исходный сигнал:

f c – частота Найквиста. Подчеркнём, что размерность f c – Гц.

В физическом эксперименте спектр любой функции всегда ограничен. Однако для математика функция, ограниченная по времени интервалом Т , имеет бесконечный спектр. В качестве примера можно привести формально неограниченный спектр прямоугольного сигнала, рассмотренный выше (см. рис. 3.11). На практике можно выбрать наивысшую частоту спектра f c так, чтобы “хвосты” спектра (содержащие частоты выше f с ) содержали достаточно малую долю энергии сигнала. Величина малости определяется в каждом случае желаемой точностью воспроизведения сигнала.

Смысл теоремы в том, что наивысшая гармоника или наивысшая частота сплошного спектра сигнала должна быть задана двумя отсчётами.


Диоды

С точки зрения проводимости твёрдые вещества делятся на три категории: металлы, диэлектрики и полупроводники.

1. В металле есть свободные электроны, и поэтому их сопротивление мало.

2. В диэлектрике свободных электронов нет, все электроны распределены по атомам. Энергия отрыва (ионизации) электрона от атома велика. Естественным масштабом для оценки величины энергии ионизации является тепловая энергия, приходящаяся на колебательную степень свободы ~ 4·10 –21 Дж = 0,03 эВ (k – постоянная Больцмана). Например, для алмаза энергия ионизации ε АЛМАЗ ~ 5,4 эВ >> .

3. В беспримесном полупроводнике электроны тоже распределены по атомам, но энергия ионизации меньше, например, для кремния Si ε Si ~1,1 эВ, для галлия ε Ga ~ 0,67 эВ. Поскольку энергия отрыва электрона от атома всё-таки значительно больше , то сопротивление беспримесных полупроводников тоже довольно значительно.

4. Несобственный полупроводник – это полупроводник, легированный примесями, атомы которых легко “расстаются” с электронами или присоединяют их. Различают n -тип (например, донор мышьяк As в Si) и р -тип (например, акцептор индий In в Si). Концентрация примесей обычно лежит в пределах ~ 10 14 ... 10 17 см -3 . В 1 см 3 Si порядка 0.5 10 23 атомов. Энергия отрыва (или присоединения) мала, например, ε As ~ 0,01 ... 0,04 эВ ~ kТ.



Кремний Si, легированный пятивалентным или трёхвалентным индием In

мышьяком As (проводимость n -типа) (проводимость p -типа).

В данном случае перенос заряда В данном случае перенос заряда

осуществляется электронами. осуществляется дырками.

От количества свободных носителей и их подвижности зависит проводимость вещества. В чистых полупроводниковых веществах количество свободных носителей малó. Это и определяет низкую проводимость (или высокое удельное сопротивление) чистых полупроводников. При наличии примесей удельная проводимость может сильно изменяться. Например, у чистого германия проводимость около 2 Ом -1 м -1 . При введении в германий всего 10 -5 примеси мышьяка, удельная проводимость увеличивается до 2·10 4 Ом -1 м -1 .

На использовании несобственных (легированных) полупроводников основана большая часть современной электроники. Простейший прибор из этого класса – полупроводниковый диод, с которого мы и начнём рассмотрение.


Полупроводниковый диод

В основе большинства полупроводниковых диодов и транзисторов лежит контакт двух полупроводников с различным типом электропроводности. Такой контакт называют электронно-дырочным переходом или p-n -переходом. Он может быть получен, например, путём диффузии донорной примеси в полупроводник p -типа.

В зоне контакта электроны из n полупроводника диффундируют в область p полупроводника. Встречая на своём пути дырки, электроны рекомбинируют с ними и выходят из игры. Этот процесс поддерживается постоянно, и таким образом реализуется состояние динамического равновесия: в приграничном слое в р полупроводнике постоянно присутствует слой отрицательного заряда. Аналогично положительно заряженные дырки из р полупроводника диффундируют в приграничный слой n полупроводника, в котором возникает слой положительного заряда (см. рис. 4.2a). Эти поверхностные заряды образуют систему, подобную плоскому конденсатору так, что распределение потенциала имеет вид ступеньки (рис. 4.2а).

Рис. 4.2. Схема действия полупроводникового диода.

Прямое напряжение

(U Д > 0) – малое сопротивление.

Обратное напряжение

(U Д < 0) – большое сопротивление.

Говорят, что возникает контактная разность потенциалов. Ток неосновных носителей при этом практически ничтожен, так как он лимитируется малым числом неосновных носителей.

Теперь рассмотрим, что будет, если к р полупроводнику приложить положительное напряжение, а к n полупроводнику – отрицательное, как показано на рис. 4.2б. В этом случае возникает ток, причём положительные дырки движутся слева направо, а отрицательные электроны справа налево. В области контакта эти потоки встречаются и рекомбинируют. За счёт этого притока темп рекомбинации в области контакта становится больше, чем в случае отсутствия тока через контакт. Увеличение рекомбинации в контакте приводит к тому, что объёмные заряды в области контакта уменьшаются, следовательно, уменьшается и контактная разность потенциалов. Это в свою очередь уменьшает сопротивление контакта. Таким образом, при такой полярности напряжения ток нелинейно возрастает при увеличении напряжения. Такой режим диода называют работой в прямом направлении. В прямом направлении сопротивление диода нелинейно уменьшается с увеличением напряжения.

Рассмотрим, что будет, если приложить напряжение обратной полярности, как показано на рис. 4.2в. В этом случае возникает такой ток, что положительные дырки двигаются справа налево, а отрицательные электроны – слева направо. При этом основные носители – и электроны, и дырки – движутся прочь от области контакта. В результате процессы рекомбинации в области контакта замедляются. Это приводит к увеличению объёмных зарядов вблизи контакта, а, следовательно, и к увеличению контактной разности потенциалов. В свою очередь это значительно увеличивает сопротивление контакта. Такой режим диода называют работой в обратном направлении. В обратном направлении сопротивление диода велико, и ток практически отсутствует.

Если продолжать увеличение напряжения обратной полярности, то при некотором напряжении произойдёт пробой перехода. Это связано с тем, что в закрытом состоянии перехода почти всё приложенное напряжение действует в тонком пограничном слое. Поэтому в нём формируется большая напряжённость электрического поля, способная ускорить электрон на малом расстоянии до энергий, достаточных для "выбивания" электрона из ковалентной связи. Далее уже оба электрона будут ускорены, они выбьют ещё электроны и так далее. Получится подобие электронной лавины, приводящей к пробою перехода.

Можно дать и простое, наглядное объяснение таких сильных отличий проводимости перехода в разных направлениях. При включении перехода в прямом направлении (рис. 4.2б) дырки в левой области будут двигаться к границе раздела, и электроны из правой области также будут двигаться к границе раздела. На границе они будут рекомбинировать. Ток на всех участках цепи обеспечивается основными носителями, сам переход обогащён носителями тока. Проводимость перехода будет большой.

При включении перехода в обратном направлении и дырки в левой области будут двигаться от границы раздела, и электроны из правой области также будут двигаться от границы раздела. На границе раздела областей, в итоге, не останется основных носителей тока. Ток на этой границе обеспечивается очень малым числом неосновных носителей, образовавшихся вблизи тонкого перехода. Проводимость перехода будет малой.

Таким образом, р-n переход хорошо проводит ток в прямом направлении и практически не проводит ток в обратном направлении. Такие полупроводниковые диоды широко применяются в электронике. На рис. 4.3 изображена типичная вольт-амперная характеристика (ВАХ) диода. Типичные величины прямого напряжения порядка U ПРЯМ ~ 0.5 В.

Из сказанного выше ясно также, что диод в закрытом состоянии обладает ёмкостью. Характерная нелинейная зависимость ёмкости от обратного напряжения на диоде приведена на рис. 4.5. Ёмкость С перехода зависит от площади S контакта, типичная величина – C/S ~ 10 3 пФ/см 2 . Комбинация сопротивления контакта и ёмкости определяет его быстродействие в радиотехнических устройствах, которое обычно измеряют величиной предельной частоты, вплоть до которой используется данный диод. Типичная частота для точечного p-n -перехода f = (RC) –1 ~ 10 12 Гц, для плоскостного p-n -перехода f = (RC) –1 ~ 10 9 Гц.

Рис. 4.3. Рис. 4.4.

Вот как выглядит вольт-амперная Та же характеристика, но масштаб

характеристика силового для обратного тока увеличен в 1000 раз.

кремниевого диода Д233. Обратите внимание! Во многих

учебниках ВАХ диода рисуют как на

этом рисунке, а про смену масштаба
пишут очень маленькими буквами!


Зависимость ёмкости диода (варикапа) BB201 от обратного напряжения.

Рис. 4.6. Здесь изображена прямая часть Рис. 4.7. Это прямая часть вольт-амперной

вольт-амперной характеристики точечного характеристики силового

германиевого диода Д2Е. Она хорошо кремниевого диода Д233.

описывается квадратичной зависимостью.

Заметьте, что при напряжениях в несколько десятых вольта сопротивления диодов очень большое, и ток в прямом направлении через него практически не идёт. А при напряжении

больше 0.5 В дифференциальное сопротивление порядка единиц Ом. Это свойство

используется в ограничителях входного напряжения.

Рис. 4.8.

Аналогично выглядит и характеристика высокочастотного кремниевого диода КД521А. Касательная к характеристике в выбранной точке даёт дифференциальное сопротивление около 7 Ом.

ВАХ кремниевого диода сильно отличается от германиевого и уже нельзя говорить о квадратичной зависимости. Сплошная кривая i ~ U 4 .

Зависимость обратного тока от напряжения у всех диодов выглядит примерно одинаково. Обратный ток очень мал и он растёт с ростом напряжения.

В предыдущем мы рассмотрели вопросы, связанные с кодированием и передачей информации по каналу связи в идеальном случае, когда процесс передачи информации осуществляется без ошибок. В действительности этот процесс неизбежно сопровождается ошибками (искажениями). Канал передачи, в котором возможны искажения, называется каналом с помехами (или шумами). В частном случае ошибки возникают в процессе самого кодирования, и тогда кодирующее устройство может рассматриваться как канал с помехами.

Совершенно очевидно, что наличие помех приводит к потере информации. Чтобы в условиях наличия помех получить на приемнике требуемый объем информации, необходимо принимать специальные меры. Одной из таких мер является введение так называемой «избыточности» в передаваемые сообщения; при этом источник информации выдает заведомо больше символов, чем это было бы нужно при отсутствии помех. Одна из форм введения избыточности - простое повторение сообщения. Таким приемом пользуются, например, при плохой слышимости по телефону, повторяя каждое сообщение дважды. Другой общеизвестный способ повышения надежности передачи состоит в передаче слова «по буквам» - когда вместо каждой буквы передается хорошо знакомое слово (имя), начинающееся с этой буквы.

Заметим, что все живые языки естественно обладают некоторой избыточностью. Эта избыточность часто помогает восстановить правильный текст «по смыслу» сообщения. Вот почему встречающиеся вообще нередко искажения отдельных букв телеграмм довольно редко приводят к действительной потере информации: обычно удается исправить искаженное слово, пользуясь одними только свойствами языка. Этого не было бы при отсутствии избыточности. Мерой избыточности языка служит величина

где - средняя фактическая энтропия, приходящаяся на один передаваемый символ (букву), рассчитанная для достаточно длинных отрывков текста, с учетом зависимости между символами, - число применяемых символов (букв), - максимально возможная в данных условиях энтропия на один передаваемый символ, которая была бы, если бы все символы были равновероятны и независимы.

Расчеты, проведенные на материале наиболее распространенных европейских языков, показывают, что их избыточность достигает 50% и более (т. е., грубо говоря, 50% передаваемых символов являются лишними и могли бы не передаваться, если бы не опасность искажений).

Однако для безошибочной передачи сведений естественная избыточность языка может оказаться как чрезмерной, так и недостаточной: все зависит от того, как велика опасность искажений («уровень помех») в канале связи.

С помощью методов теории информации можно для каждого уровня помех найти нужную степень избыточности источника информации. Те же методы помогают разрабатывать специальные помехоустойчивые коды (в частности, так называемые «самокорректирующиеся» коды). Для решения этих задач нужно уметь учитывать потерю информации в канале, связанную с наличием помех.

Рассмотрим сложную систему, состоящую из источника информации , канала связи и приемника (рис. 18.9.1).

Источник информации представляет собой физическую систему , которая имеет возможных состояний

с вероятностями

Будем рассматривать эти состояния как элементарные символы, которые может передавать источник через канал к приемнику . Количество информации на один символ, которое дает источник, будет равно энтропии на один символ:

.

Если бы передача сообщений не сопровождалась ошибками, то количество информации, содержащееся в системе относительно , было бы равно самой энтропии системы . При наличии ошибок оно будет меньше:

Естественно рассматривать условную энтропию как потерю информации на один элементарный символ, связанную с наличием помех.

Умея определять потерю информации в канале, приходящуюся на один элементарный символ, переданный источником информации, можно определить пропускную способность канала с помехами, т. е. максимальное количество информации, которое способен передать канал в единицу времени.

Предположим, что канал может передавать в единицу времени элементарных символов. В отсутствие помех пропускная способность канала была бы равна

так как максимальное количество информации, которое может содержать один символ, равно , а максимальное количество информации, которое могут содержать символов, равно , и оно достигается, когда символы появляются независимо друг от друга.

Теперь рассмотрим канал с помехами. Его пропускная способность определится как

, (18.9.3)

где - максимальная информация на один символ, которую может передать канал при наличии помех.

Определение этой максимальной информации в общем случае - дело довольно сложное, так как она зависит от того, как и с какими вероятностями искажаются символы; происходит ли их перепутывание, или же простое выпадение некоторых символов; происходят ли искажения символов независимо друг от друга и т. д.

Однако для простейших случаев пропускную способность канала удается сравнительно легко рассчитать.

Рассмотрим, например, такую задачу. Канал связи передает от источника информации к приемнику элементарные символы 0 и 1 в количестве символов в единицу времени. В процессе передачи каждый символ, независимо от других, с вероятностью может быть искажен (т. е. заменен противоположным). Требуется найти пропускную способность канала.

Определим сначала максимальную информацию на один символ, которую может передавать канал. Пусть источник производит символы 0 и 1 с вероятностями и .

Тогда энтропия источника будет

Определим информацию на один элементарный символ:

.

Чтобы найти полную условную энтропию , найдем сначала частные условные энтропии: (энтропию системы при условии, что система приняла состояние ) и (энтропию системы при условии, что система приняла состояние ). Вычислим , для этого предположим, что передан элементарный символ 0. Найдем условные вероятности того, что при этом система находится в состоянии и в состоянии . Первая из них равна вероятности того, что сигнал не перепутан:

;

вторая - вероятности того, что сигнал перепутан:

Условная энтропия будет:

Найдем теперь условную энтропию системы при условии, что (передан сигнал единица):

; ,

Таким образом,

Полная условная энтропия получится, если осреднить условные энтропии и с учетом вероятностей и значений . Так как частные условные энтропии равны, то

Мы получили следующий вывод: условная энтропия совсем не зависит от того, с какими вероятностями встречаются символы 0; 1 в передаваемом сообщении, а зависит только от вероятности ошибки .

Вычислим полную информацию, передаваемую одним символом:

где - вероятность того, что на выходе появится символ 0. Очевидно, при заданных свойствах канала информация на один символ достигает максимума, когда максимально. Мы знаем, что такая функция достигает максимума при , т. е. когда на приемнике оба сигнала равновероятны. Легко убедиться, что это достигается, когда источник передает оба символа с одинаковой вероятностью . При том же значении достигает максимума и информация на один символ. Максимальное значение равно

На один символ теряется информация 0,0808 (дв. ед). Пропускная способность канала равна

двоичные единицы в единицу времени.

С помощью аналогичных расчетов может быть определена пропускная способность канала и в более сложных случаях: когда число элементарных символов более двух и когда искажения отдельных символов зависимы. Зная пропускную способность канала, можно определить верхний предел скорости передачи информации по каналу с помехами. Сформулируем (без доказательства) относящуюся к этому случаю вторую теорему Шеннона.

2-я теорема Шеннона

Пусть имеется источник информации , энтропия которого в единицу времени равна , и канал с пропускной способностью . Тогда если

то при любом кодировании передача сообщений без задержек и искажений невозможна. Если же

то всегда можно достаточно длинное сообщение закодировать так, чтобы оно было передано без задержек и искажений с вероятностью, сколь угодно близкой к единице.

Пример 2. Имеются источник информации с энтропией в единицу времени (дв. ед.) и два канала связи; каждый из них может передавать в единицу времени 70 двоичных знаков (0 или 1); каждый двоичный знак заменяется противоположным с вероятностью . Требуется выяснить: достаточна ли пропускная способность этих каналов для передачи информации, поставляемой источником?

Решение. Определяем потерю информации на один символ:

Максимальное количество информации, передаваемое по одному каналу в единицу времени:

Максимальное количество информации, которое может быть передано по двум каналам в единицу времени:

чего недостаточно для обеспечения передачи информации от источника.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: