Как выглядит матрица. Основные операции над матрицами (сложение, умножение, транспонирование) и их свойства. Применение матриц в математико-экономическом моделировании

>> Матрицы

4.1.Матрицы. Операции над матрицами

Прямоугольной матрицей размера mxn называется совокупность mxn чисел, расположенных в виде прямоугольной таблицы, содержащей m строк и n столбцов. Мы будем записывать ее в виде

или сокращенно в виде A = (a i j) (i = ; j = ), числа a i j , называются ее элементами; первый индекс указывает на номер строки, второй - на номер столбца. A = (a i j) и B = (b i j) одинакового размера называются равными, если попарно равны их элементы, стоящие на одинаковых местах, то есть A = B, если a i j = b i j .

Матрица, состоящая из одной строки или одного столбца, называется соответственно -строкой или вектор-столбцом. Вектор-столбцы и вектор-строки называют просто векторами.

Матрица, состоящая из одного числа, отождествляется с этим числом. A размера mxn, все элементы которой равны нулю, называются нулевой и обозначается через 0. Элементы с одинаковыми индексами называют элементами главной диагонали. Если число строк равно числу столбцов, то есть m = n, то матрицу называют квадратной порядка n. Квадратные матрицы, у которых отличны от нуля лишь элементы главной диагонали, называются диагональными и записываются так:

Если все элементы a i i диагонали равны 1, то она называется единичной и обозначается буквой Е:

.

Квадратная матрица называется треугольной, если все элементы, стоящие выше (или ниже) главной диагонали, равны нулю. Транспонированием называется такое преобразование, при котором строки и столбцы меняются местами с сохранением их номеров. Обозначается транспонирование значком Т наверху.

Если в (4.1) переставим строки со столбцами, то получим

,

которая будет транспонированной по отношению к А. В частности, при транспонировании вектора-столбца получается вектор-строка и наоборот.

Произведением А на число b называется матрица, элементы которой получаются из соответствующих элементов А умножением на число b: b A = (b a i j).

Суммой А = (a i j) и B = (b i j) одного размера называется C = (c i j) того же размера, элементы которой определяются по формуле c i j = a i j + b i j .

Произведение АВ определяется в предположении, что число столбцов А равно числу строк В.

Произведением AB, где А = (a i j) и B = (b j k), где i = , j= , k= , заданных в определенном порядке АВ, называется С = (c i k), элементы которой определяются по следующему правилу:

c i k = a i 1 b 1 k + a i 2 b 2 k +... + a i m b m k = a i s b s k . (4.2)

Иначе говоря, элемент произведения AB определяются следующим образом: элемент i-й строки и k-го столбца С равен сумме произведений элементов i-й строки А на соответствующие элементы k-го столбца В.

Пример 2.1. Найти произведение AB и .

Решение. Имеем: А размера 2x3, В размера 3x3, тогда произведение АВ = С существует и элементы С равны

С 11 = 1×1 +2×2 + 1×3 = 8, с 21 = 3×1 + 1×2 + 0×3 = 5, с 12 = 1×2 + 2×0 + 1×5 = 7,

с 22 =3×2 + 1×0 + 0×5 = 6, с 13 = 1×3 + 2×1 + 1×4 = 9, с 23 = 3×3 + 1×1 + 0×4 = 10.

, а произведение BA не существует.

Пример 2.2. В таблице указано количество единиц продукции, отгружаемой ежедневно на молокозаводах 1 и 2 в магазины М 1 , М 2 и М 3 , причем доставка единицы продукции с каждого молокозавода в магазин М 1 стоит 50 ден. ед., в магазин М 2 - 70, а в М 3 - 130 ден. ед. Подсчитать ежедневные транспортные расходы каждого завода.

Молокозавод

Решение. Обозначим через А матрицу, данную нам в условии, а через
В - матрицу, характеризующую стоимость доставки единицы продукции в магазины, т.е.,

,

Тогда матрица затрат на перевозки будет иметь вид:

.

Итак, первый завод ежедневно тратит на перевозки 4750 ден. ед., второй - 3680 ден.ед.

Пример 2.3. Швейное предприятие производит зимние пальто, демисезонные пальто и плащи. Плановый выпуск за декаду характеризуется вектором X = (10, 15, 23). Используются ткани четырех типов Т 1 , Т 2 , Т 3 , Т 4 . В таблице приведены нормы расхода ткани (в метрах) на каждое изделие. Вектор С = (40, 35, 24, 16) задает стоимость метра ткани каждого типа, а вектор P = (5, 3, 2, 2) - стоимость перевозки метра ткани каждого вида.

Расход ткани

Зимнее пальто

Демисезонное пальто

1. Сколько метров ткани каждого типа потребуется для выполнения плана?

2. Найти стоимость ткани, расходуемой на пошив изделия каждого вида.

3. Определить стоимость всей ткани, необходимой для выполнения плана.

Решение. Обозначим через А матрицу, данную нам в условии, т. е.,

тогда для нахождения количества метров ткани, необходимой для выполнения плана, нужно вектор X умножить на матрицу А:

Стоимость ткани, расходуемой на пошив изделия каждого вида, найдем, перемножив матрицу А и вектор C T:

.

Стоимость всей ткани, необходимой для выполнения плана, определится по формуле:

Наконец, с учетом транспортных расходов вся сумма будет равна стоимости ткани, т. е. 9472 ден. ед., плюс величина

X А P T =
.

Итак, X А C T + X А P T = 9472 + 1037 = 10509 (ден. ед).

Матрицы. Действия над матрицами. Свойства операций над матрицами. Виды матриц.

Матрицы (и соответственно математический раздел - матричная алгебра) имеют важное значение в прикладной математике, так как позволяют записать в достаточно простой форме значительную часть математических моделей объектов и процессов. Термин "матрица" появился в 1850 году. Впервые упоминались матрицы еще в древнем Китае, позднее у арабских математиков.

Матрицей A=A mn порядка m*n называется прямоугольная таблица чисел, содержащая m - строк и n - столбцов .

Элементы матрицы a ij , у которых i=j, называются диагональными и образуют главную диагональ .

Для квадратной матрицы (m=n) главную диагональ образуют элементы a 11 , a 22 ,..., a nn .

Равенство матриц.

A=B , если порядки матриц A и B одинаковы и a ij =b ij (i=1,2,...,m; j=1,2,...,n)

Действия над матрицами.

1. Сложение матриц - поэлементная операция

2. Вычитание матриц - поэлементная операция

3. Произведение матрицы на число - поэлементная операция

4. Умножение A*B матриц по правилу строка на столбец (число столбцов матрицы А должно быть равно числу строк матрицы B)

A mk *B kn =C mn причем каждый элемент с ij матрицы C mn равен сумме произведений элементов i-ой строки матрицы А на соответствующие элемеенты j-го столбца матрицы B , т.е.

Покажем операцию умножения матриц на примере

5. Возведение в степень

m>1 целое положительное число. А - квадратная матрица (m=n) т.е. актуально только для квадратных матриц

6. Транспонирование матрицы А. Транспонированную матрицу обозначают A T или A"

Строки и столбцы поменялись местами

Пример

Свойства опрераций над матрицами

(A+B)+C=A+(B+C)

λ(A+B)=λA+λB

A(B+C)=AB+AC

(A+B)C=AC+BC

λ(AB)=(λA)B=A(λB)

A(BC)=(AB)C

(λA)"=λ(A)"

(A+B)"=A"+B"

(AB)"=B"A"

Виды матриц

1. Прямоугольные: m и n - произвольные положительные целые числа

2. Квадратные: m=n

3. Матрица строка: m=1 . Например, (1 3 5 7) - во многих практических задачах такая матрица называется вектором

4. Матрица столбец: n=1 . Например

5. Диагональная матрица: m=n и a ij =0 , если i≠j . Например

6. Единичная матрица: m=n и

7. Нулевая матрица: a ij =0, i=1,2,...,m

j=1,2,...,n

8. Треугольная матрица: все элементы ниже главной диагонали равны 0.

9. Симметрическая матрица: m=n и a ij =a ji (т.е. на симметричных относительно главной диагонали местах стоят равные элементы), а следовательно A"=A

Например,

10. Кососимметрическая матрица: m=n и a ij =-a ji (т.е. на симметричных относительно главной диагонали местах стоят противоположные элементы). Следовательно, на главной диагонали стоят нули (т.к. при i=j имеем a ii =-a ii )

Ясно, A"=-A

11. Эрмитова матрица: m=n и a ii =-ã ii (ã ji - комплексно - сопряженное к a ji , т.е. если A=3+2i , то комплексно - сопряженное Ã=3-2i )

Определение 1. Матрицей А размера m n называется прямоугольная таблица из m строк и n столбцов, состоящая из чисел или иных математических выражений (называемых элементами матрицы),i = 1,2,3,…,m, j = 1,2,3,…,n.

, или

Определение 2. Две матрицы
и
одного размера называютсяравными , если они совпадают поэлементно, т.е. =,i = 1,2,3,…,m, j = 1,2,3,…,n.

С помощью матриц легко записывать некоторые экономические зависимости, например таблицы распределения ресурсов по некоторым отраслям экономики.

Определение 3. Если число строк матрицы совпадает с числом ее столбцов, т.е. m = n, то матрица называется квадратной порядка n , а в противном случае прямоугольной.

Определение 4. Переход от матрицы А к матрице А т, в которой строки и столбцы поменялись местами с сохранением порядка, называется транспонированием матрицы.

Виды матриц: квадратная (размера 33) -
,

прямоугольная (размера 25) -
,

диагональная -
, единичная -
, нулевая -
,

матрица-строка -
, матрица-столбец -.

Определение 5. Элементы квадратной матрицы порядка n с одинаковыми индексами называются элементами главной диагонали, т.е. это элементы:
.

Определение 6. Элементы квадратной матрицы порядка n называются элементами побочной диагонали, если сумма их индексов равна n + 1, т.е. это элементы: .

1.2. Операции над матрицами.

1 0 . Суммой двух матриц
и
одинакового размера называется матрица С = (с ij), элементы которой определяются равенством с ij = a ij + b ij , (i = 1,2,3,…,m, j = 1,2,3,…,n).

Свойства операции сложения матриц.

Для любых матриц А,В,С одного размера выполняются равенства:

1) А + В = В + А (коммутативность),

2) (А + В) + С = А + (В + С) = А + В + С (ассоциативность).

2 0 . Произведением матрицы
на число называется матрица
того же размера, что и матрица А, причемb ij = (i = 1,2,3,…,m, j = 1,2,3,…,n).

Свойства операции умножения матрицы на число.

    (А) = ()А (ассоциативность умножения);

    (А+В) = А+В (дистрибутивность умножения относительно сложения матриц);

    (+)А = А+А (дистрибутивность умножения относительно сложения чисел).

Определение 7. Линейной комбинацией матриц
и
одинакового размера называется выражение видаА+В, где  и  - произвольные числа.

3 0 . Произведением А В матриц А и В соответственно размеров mn и nk называется матрица С размера mk, такая, что элемент с ij равен сумме произведений элементов i-той строки матрицы А и j-того столбца матрицы В, т.е. с ij = a i 1 b 1 j +a i 2 b 2 j +…+a ik b kj .

Произведение АВ существует, только в том случае, если число столбцов матрицы А совпадает с числом строк матрицы В.

Свойства операции умножения матриц:

    (АВ)С = А(ВС) (ассоциативность);

    (А+В)С = АС+ВС (дистрибутивность относительно сложения матриц);

    А(В+С) = АВ+АС (дистрибутивность относительно сложения матриц);

    АВ  ВА (не коммутативность).

Определение 8. Матрицы А и В, для которых АВ = ВА, называются коммутирующими или перестановочными.

Умножение квадратной матрицы любого порядка на соответствующую единичную матрицу не меняет матрицу.

Определение 9. Элементарными преобразованиями матриц называются следующие операции:

    Перемена местами двух строк (столбцов).

    Умножение каждого элемента строки (столбца) на число, отличное от нуля.

    Прибавление к элементам одной строки (столбца) соответствующих элементов другой строки (столбца).

Определение 10. Матрица В, полученная из матрицы А с помощью элементарных преобразований называется эквивалентной (обозначается ВА).

Пример 1.1. Найти линейную комбинацию матриц 2А–3В, если

,
.

,
,


.

Пример 1.2. Найти произведение матриц
, если

.

Решение: т.к количество столбцов первой матрицы совпадает с количеством строк второй матрицы, то произведение матриц существует. В результате получаем новую матрицу
, где

В результате получим
.

Лекция 2. Определители. Вычисление определителей второго, третьего порядка. Свойства определителей n -го порядка.

Матрица А -1 называется обратной матрицей по отношению к матрице А, если А*А -1 = Е, где Е - единичная матрица n -го порядка. Обратная матрица может существовать только для квадратных матриц.

Назначение сервиса . С помощью данного сервиса в онлайн режиме можно найти алгебраические дополнения , транспонированную матрицу A T , союзную матрицу и обратную матрицу. Решение проводится непосредственно на сайте (в онлайн режиме) и является бесплатным. Результаты вычислений оформляются в отчете формата Word и в формате Excel (т.е. имеется возможность проверить решение). см. пример оформления .

Инструкция . Для получения решения необходимо задать размерность матрицы. Далее в новом диалоговом окне заполните матрицу A .

Размерность матрицы 2 3 4 5 6 7 8 9 10

См. также Обратная матрица методом Жордано-Гаусса

Алгоритм нахождения обратной матрицы

  1. Нахождение транспонированной матрицы A T .
  2. Определение алгебраических дополнений. Заменяют каждый элемент матрицы его алгебраическим дополнением.
  3. Составление обратной матрицы из алгебраических дополнений: каждый элемент полученной матрицы делят на определитель исходной матрицы. Результирующая матрица является обратной для исходной матрицы.
Следующий алгоритм нахождения обратной матрицы аналогичен предыдущему за исключением некоторых шагов: сначала вычисляются алгебраические дополнения, а затем определяется союзная матрица C .
  1. Определяют, квадратная ли матрица. Если нет, то обратной матрицы для нее не существует.
  2. Вычисление определителя матрицы A . Если он не равен нулю, продолжаем решение, иначе - обратной матрицы не существует.
  3. Определение алгебраических дополнений.
  4. Заполнение союзной (взаимной, присоединённой) матрицы C .
  5. Составление обратной матрицы из алгебраических дополнений: каждый элемент присоединённой матрицы C делят на определитель исходной матрицы. Результирующая матрица является обратной для исходной матрицы.
  6. Делают проверку: перемножают исходную и полученную матрицы. В результате должна получиться единичная матрица.

Пример №1 . Запишем матрицу в виде:


Алгебраические дополнения.
A 1,1 = (-1) 1+1
-1 -2
5 4

∆ 1,1 = (-1 4-5 (-2)) = 6
A 1,2 = (-1) 1+2
2 -2
-2 4

∆ 1,2 = -(2 4-(-2 (-2))) = -4
A 1,3 = (-1) 1+3
2 -1
-2 5

∆ 1,3 = (2 5-(-2 (-1))) = 8
A 2,1 = (-1) 2+1
2 3
5 4

∆ 2,1 = -(2 4-5 3) = 7
A 2,2 = (-1) 2+2
-1 3
-2 4

∆ 2,2 = (-1 4-(-2 3)) = 2
A 2,3 = (-1) 2+3
-1 2
-2 5

∆ 2,3 = -(-1 5-(-2 2)) = 1
A 3,1 = (-1) 3+1
2 3
-1 -2

∆ 3,1 = (2 (-2)-(-1 3)) = -1
A 3,2 = (-1) 3+2
-1 3
2 -2

∆ 3,2 = -(-1 (-2)-2 3) = 4
A 3,3 = (-1) 3+3
-1 2
2 -1

∆ 3,3 = (-1 (-1)-2 2) = -3
Тогда обратную матрицу можно записать как:
A -1 = 1 / 10
6 -4 8
7 2 1
-1 4 -3

A -1 =
0,6 -0,4 0,8
0,7 0,2 0,1
-0,1 0,4 -0,3

Другой алгоритм нахождения обратной матрицы

Приведем другую схему нахождения обратной матрицы.
  1. Находим определитель данной квадратной матрицы A .
  2. Находим алгебраические дополнения ко всем элементам матрицы A .
  3. Записываем алгебраические дополнения элементов строк в столбцы (транспонирование).
  4. Делим каждый элемент полученной матрицы на определитель матрицы A .
Как видим, операция транспонирования может применяться как в начале, над исходной матрицей, так и в конце, над полученными алгебраическими дополнениями.

Особый случай : Обратной, по отношению к единичной матрице E , является единичная матрица E .

В этой теме будут рассмотрены такие операции, как сложение и вычитание матриц, умножение матрицы на число, умножение матрицы на матрицу, транспонирование матрицы. Все обозначения, которые используются на данной странице, взяты из предыдущей темы .

Сложение и вычитание матриц.

Суммой $A+B$ матриц $A_{m\times n}=(a_{ij})$ и $B_{m\times n}=(b_{ij})$ называется матрица $C_{m\times n}=(c_{ij})$, где $c_{ij}=a_{ij}+b_{ij}$ для всех $i=\overline{1,m}$ и $j=\overline{1,n}$.

Аналогичное определение вводят и для разности матриц:

Разностью $A-B$ матриц $A_{m\times n}=(a_{ij})$ и $B_{m\times n}=(b_{ij})$ называется матрица $C_{m\times n}=(c_{ij})$, где $c_{ij}=a_{ij}-b_{ij}$ для всех $i=\overline{1,m}$ и $j=\overline{1,n}$.

Пояснение к записи $i=\overline{1,m}$: показать\скрыть

Запись "$i=\overline{1,m}$" означает, что параметр $i$ изменяется от 1 до m. Например, запись $i=\overline{1,5}$ говорит о том, что параметр $i$ принимает значения 1, 2, 3, 4, 5.

Стоит обратить внимание, что операции сложения и вычитания определены только для матриц одинакового размера. Вообще, сложение и вычитание матриц - операции, ясные интуитивно, ибо означают они, по сути, всего лишь суммирование или вычитание соответствующих элементов.

Пример №1

Заданы три матрицы:

$$ A=\left(\begin{array} {ccc} -1 & -2 & 1 \\ 5 & 9 & -8 \end{array} \right)\;\; B=\left(\begin{array} {ccc} 10 & -25 & 98 \\ 3 & 0 & -14 \end{array} \right); \;\; F=\left(\begin{array} {cc} 1 & 0 \\ -5 & 4 \end{array} \right). $$

Можно ли найти матрицу $A+F$? Найти матрицы $C$ и $D$, если $C=A+B$ и $D=A-B$.

Матрица $A$ содержит 2 строки и 3 столбца (иными словами - размер матрицы $A$ равен $2\times 3$), а матрица $F$ содержит 2 строки и 2 столбца. Размеры матрицы $A$ и $F$ не совпадают, поэтому сложить их мы не можем, т.е. операция $A+F$ для данных матриц не определена.

Размеры матриц $A$ и $B$ совпадают, т.е. данные матрицы содержат равное количество строк и столбцов, поэтому к ним применима операция сложения.

$$ C=A+B=\left(\begin{array} {ccc} -1 & -2 & 1 \\ 5 & 9 & -8 \end{array} \right)+ \left(\begin{array} {ccc} 10 & -25 & 98 \\ 3 & 0 & -14 \end{array} \right)=\\= \left(\begin{array} {ccc} -1+10 & -2+(-25) & 1+98 \\ 5+3 & 9+0 & -8+(-14) \end{array} \right)= \left(\begin{array} {ccc} 9 & -27 & 99 \\ 8 & 9 & -22 \end{array} \right) $$

Найдем матрицу $D=A-B$:

$$ D=A-B=\left(\begin{array} {ccc} -1 & -2 & 1 \\ 5 & 9 & -8 \end{array} \right)- \left(\begin{array} {ccc} 10 & -25 & 98 \\ 3 & 0 & -14 \end{array} \right)=\\= \left(\begin{array} {ccc} -1-10 & -2-(-25) & 1-98 \\ 5-3 & 9-0 & -8-(-14) \end{array} \right)= \left(\begin{array} {ccc} -11 & 23 & -97 \\ 2 & 9 & 6 \end{array} \right) $$

Ответ : $C=\left(\begin{array} {ccc} 9 & -27 & 99 \\ 8 & 9 & -22 \end{array} \right)$, $D=\left(\begin{array} {ccc} -11 & 23 & -97 \\ 2 & 9 & 6 \end{array} \right)$.

Умножение матрицы на число.

Произведением матрицы $A_{m\times n}=(a_{ij})$ на число $\alpha$ называется матрица $B_{m\times n}=(b_{ij})$, где $b_{ij}=\alpha\cdot a_{ij}$ для всех $i=\overline{1,m}$ и $j=\overline{1,n}$.

Попросту говоря, умножить матрицу на некое число - означает умножить каждый элемент заданной матрицы на это число.

Пример №2

Задана матрица: $ A=\left(\begin{array} {ccc} -1 & -2 & 7 \\ 4 & 9 & 0 \end{array} \right)$. Найти матрицы $3\cdot A$, $-5\cdot A$ и $-A$.

$$ 3\cdot A=3\cdot \left(\begin{array} {ccc} -1 & -2 & 7 \\ 4 & 9 & 0 \end{array} \right) =\left(\begin{array} {ccc} 3\cdot(-1) & 3\cdot(-2) & 3\cdot 7 \\ 3\cdot 4 & 3\cdot 9 & 3\cdot 0 \end{array} \right)= \left(\begin{array} {ccc} -3 & -6 & 21 \\ 12& 27 & 0 \end{array} \right).\\ -5\cdot A=-5\cdot \left(\begin{array} {ccc} -1 & -2 & 7 \\ 4 & 9 & 0 \end{array} \right) =\left(\begin{array} {ccc} -5\cdot(-1) & -5\cdot(-2) & -5\cdot 7 \\ -5\cdot 4 & -5\cdot 9 & -5\cdot 0 \end{array} \right)= \left(\begin{array} {ccc} 5 & 10 & -35 \\ -20 & -45 & 0 \end{array} \right). $$

Запись $-A$ есть сокращенная запись для $-1\cdot A$. Т.е., чтобы найти $-A$ нужно все элементы матрицы $A$ умножить на (-1). По сути, это означает, что знак всех элементов матрицы $A$ изменится на противоположный:

$$ -A=-1\cdot A=-1\cdot \left(\begin{array} {ccc} -1 & -2 & 7 \\ 4 & 9 & 0 \end{array} \right)= \left(\begin{array} {ccc} 1 & 2 & -7 \\ -4 & -9 & 0 \end{array} \right) $$

Ответ : $3\cdot A=\left(\begin{array} {ccc} -3 & -6 & 21 \\ 12& 27 & 0 \end{array} \right);\; -5\cdot A=\left(\begin{array} {ccc} 5 & 10 & -35 \\ -20 & -45 & 0 \end{array} \right);\; -A=\left(\begin{array} {ccc} 1 & 2 & -7 \\ -4 & -9 & 0 \end{array} \right)$.

Произведение двух матриц.

Определение этой операции громоздко и, на первый взгляд, непонятно. Поэтому сначала укажу общее определение, а потом подробно разберем, что оно означает и как с ним работать.

Произведением матрицы $A_{m\times n}=(a_{ij})$ на матрицу $B_{n\times k}=(b_{ij})$ называется матрица $C_{m\times k}=(c_{ij})$, для которой каждый элемент $c_{ij}$ равен сумме произведений соответствующих элементов i-й строки матрицы $A$ на элементы j-го столбца матрицы $B$: $$c_{ij}=\sum\limits_{p=1}^{n}a_{ip}b_{pj}, \;\; i=\overline{1,m}, j=\overline{1,n}.$$

Пошагово умножение матриц разберем на примере. Однако сразу стоит обратить внимание, что перемножать можно не все матрицы. Если мы хотим умножить матрицу $A$ на матрицу $B$, то сперва нужно убедиться, что количество столбцов матрицы $A$ равно количеству строк матрицы $B$ (такие матрицы часто называют согласованными ). Например, матрицу $A_{5\times 4}$ (матрица содержит 5 строк и 4 столбца), нельзя умножать на матрицу $F_{9\times 8}$ (9 строк и 8 столбцов), так как количество столбцов матрицы $A$ не равно количеству строк матрицы $F$, т.е. $4\neq 9$. А вот умножить матрицу $A_{5\times 4}$ на матрицу $B_{4\times 9}$ можно, так как количество столбцов матрицы $A$ равно количеству строк матрицы $B$. При этом результатом умножения матриц $A_{5\times 4}$ и $B_{4\times 9}$ будет матрица $C_{5\times 9}$, содержащая 5 строк и 9 столбцов:

Пример №3

Заданы матрицы: $ A=\left(\begin{array} {cccc} -1 & 2 & -3 & 0 \\ 5 & 4 & -2 & 1 \\ -8 & 11 & -10 & -5 \end{array} \right)$ и $ B=\left(\begin{array} {cc} -9 & 3 \\ 6 & 20 \\ 7 & 0 \\ 12 & -4 \end{array} \right)$. Найти матрицу $C=A\cdot B$.

Для начала сразу определим размер матрицы $C$. Так как матрица $A$ имеет размер $3\times 4$, а матрица $B$ имеет размер $4\times 2$, то размер матрицы $C$ таков: $3\times 2$:

Итак, в результате произведения матриц $A$ и $B$ мы должны получить матрицу $C$, состоящую из трёх строк и двух столбцов: $ C=\left(\begin{array} {cc} c_{11} & c_{12} \\ c_{21} & c_{22} \\ c_{31} & c_{32} \end{array} \right)$. Если обозначения элементов вызывают вопросы, то можно глянуть предыдущую тему: "Матрицы. Виды матриц. Основные термины" , в начале которой поясняется обозначение элементов матрицы. Наша цель: найти значения всех элементов матрицы $C$.

Начнем с элемента $c_{11}$. Чтобы получить элемент $c_{11}$ нужно найти сумму произведений элементов первой строки матрицы $A$ и первого столбца матрицы $B$:

Чтобы найти сам элемент $c_{11}$ нужно перемножить элементы первой строки матрицы $A$ на соответствующие элементы первого столбца матрицы $B$, т.е. первый элемент на первый, второй на второй, третий на третий, четвертый на четвертый. Полученные результаты суммируем:

$$ c_{11}=-1\cdot (-9)+2\cdot 6+(-3)\cdot 7 + 0\cdot 12=0. $$

Продолжим решение и найдем $c_{12}$. Для этого придётся перемножить элементы первой строки матрицы $A$ и второго столбца матрицы $B$:

Аналогично предыдущему, имеем:

$$ c_{12}=-1\cdot 3+2\cdot 20+(-3)\cdot 0 + 0\cdot (-4)=37. $$

Все элементы первой строки матрицы $C$ найдены. Переходим ко второй строке, которую начинает элемент $c_{21}$. Чтобы его найти придётся перемножить элементы второй строки матрицы $A$ и первого столбца матрицы $B$:

$$ c_{21}=5\cdot (-9)+4\cdot 6+(-2)\cdot 7 + 1\cdot 12=-23. $$

Следующий элемент $c_{22}$ находим, перемножая элементы второй строки матрицы $A$ на соответствующие элементы второго столбца матрицы $B$:

$$ c_{22}=5\cdot 3+4\cdot 20+(-2)\cdot 0 + 1\cdot (-4)=91. $$

Чтобы найти $c_{31}$ перемножим элементы третьей строки матрицы $A$ на элементы первого столбца матрицы $B$:

$$ c_{31}=-8\cdot (-9)+11\cdot 6+(-10)\cdot 7 + (-5)\cdot 12=8. $$

И, наконец, для нахождения элемента $c_{32}$ придется перемножить элементы третьей строки матрицы $A$ на соответствующие элементы второго столбца матрицы $B$:

$$ c_{32}=-8\cdot 3+11\cdot 20+(-10)\cdot 0 + (-5)\cdot (-4)=216. $$

Все элементы матрицы $C$ найдены, осталось лишь записать, что $C=\left(\begin{array} {cc} 0 & 37 \\ -23 & 91 \\ 8 & 216 \end{array} \right)$. Или, если уж писать полностью:

$$ C=A\cdot B =\left(\begin{array} {cccc} -1 & 2 & -3 & 0 \\ 5 & 4 & -2 & 1 \\ -8 & 11 & -10 & -5 \end{array} \right)\cdot \left(\begin{array} {cc} -9 & 3 \\ 6 & 20 \\ 7 & 0 \\ 12 & -4 \end{array} \right)=\left(\begin{array} {cc} 0 & 37 \\ -23 & 91 \\ 8 & 216 \end{array} \right). $$

Ответ : $C=\left(\begin{array} {cc} 0 & 37 \\ -23 & 91 \\ 8 & 216 \end{array} \right)$.

Кстати сказать, зачастую нет резона расписывать подробно нахождение каждого элемента матрицы-результата. Для матриц, размер которых невелик, можно поступать и так:

Стоит также обратить внимание, что умножение матриц некоммутативно. Это означает, что в общем случае $A\cdot B\neq B\cdot A$. Лишь для некоторых типов матриц, которые именуют перестановочными (или коммутирующими), верно равенство $A\cdot B=B\cdot A$. Именно исходя из некоммутативности умножения, требуется указывать как именно мы домножаем выражение на ту или иную матрицу: справа или слева. Например, фраза "домножим обе части равенства $3E-F=Y$ на матрицу $A$ справа" означает, что требуется получить такое равенство: $(3E-F)\cdot A=Y\cdot A$.

Транспонированной по отношению к матрице $A_{m\times n}=(a_{ij})$ называется матрица $A_{n\times m}^{T}=(a_{ij}^{T})$, для элементов которой $a_{ij}^{T}=a_{ji}$.

Попросту говоря, для того, чтобы получить транспонированную матрицу $A^T$, нужно в исходной матрице $A$ заменить столбцы соответствующими строками по такому принципу: была первая строка - станет первый столбец; была вторая строка - станет второй столбец; была третья строка - станет третий столбец и так далее. Например, найдем транспонированную матрицу к матрице $A_{3\times 5}$:

Соответственно, если исходная матрица имела размер $3\times 5$, то транспонированная матрица имеет размер $5\times 3$.

Некоторые свойства операций над матрицами.

Здесь предполагается, что $\alpha$, $\beta$ - некоторые числа, а $A$, $B$, $C$ - матрицы. Для первых четырех свойств я указал названия, остальные можно назвать по аналогии с первыми четырьмя.

  1. $A+B=B+A$ (коммутативность сложения)
  2. $A+(B+C)=(A+B)+C$ (ассоциативность сложения)
  3. $(\alpha+\beta)\cdot A=\alpha A+\beta A$ (дистрибутивность умножения на матрицу относительно сложения чисел)
  4. $\alpha\cdot(A+B)=\alpha A+\alpha B$ (дистрибутивность умножения на число относительно сложения матриц)
  5. $A(BC)=(AB)C$
  6. $(\alpha\beta)A=\alpha(\beta A)$
  7. $A\cdot (B+C)=AB+AC$, $(B+C)\cdot A=BA+CA$.
  8. $A\cdot E=A$, $E\cdot A=A$, где $E$ - единичная матрица соответствующего порядка.
  9. $A\cdot O=O$, $O\cdot A=O$, где $O$ - нулевая матрица соответствующего размера.
  10. $\left(A^T \right)^T=A$
  11. $(A+B)^T=A^T+B^T$
  12. $(AB)^T=B^T\cdot A^T$
  13. $\left(\alpha A \right)^T=\alpha A^T$

В следующей части будет рассмотрена операция возведения матрицы в целую неотрицательную степень, а также решены примеры, в которых потребуется выполнение нескольких операций над матрицами.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: