Венгерский алгоритм для прямоугольной матрицы. Алгоритм венгерского метода решения задач о назначениях. Задача о назначении на узкие места

ЛЕКЦИЯ 8

Распределения вероятностей дискретных случайных величин. Биномиальное распределение. Распределение Пуассона. Геометрическое распределение. Производящая функция.

6. РАСПРЕДЕЛЕНИЯ ВЕРОЯТНОСТЕЙ
ДИСКРЕТНЫХ СЛУЧАЙНЫХ ВЕЛИЧИН

Биномиальное распределение

Пусть производится n независимых испытаний, в каждом из которых событие A может либо появится, либо не появится. Вероятность p появления события A во всех испытаниях постоянна и не изменяется от испытания к испытанию. Рассмотрим в качестве случайной величины X число появлений события A в этих испытаниях. Формула, позволяющая найти вероятность появления события A
ровно k раз в n испытаниях, как известно, описывается формулой Бернулли

Распределение вероятностей, определяемое формулой Бернулли, называется биномиальным .

Этот закон назван "биномиальным" потому, что правую часть можно рассматривать как общий член разложения бинома Ньютона

Запишем биномиальный закон в виде таблицы

X n n –1 k
P p n np n –1 q q n

Найдем числовые характеристики этого распределения.

.

Запишем равенство, являющееся бином Ньютона

.

и продифференцируем его по p. В результате получим

.

Умножим левую и правую часть на p :

.

Учитывая, что p+q =1, имеем

(6.2)

Итак, математическое ожидание числа появлений событий в n независимых испытаниях равно произведению числа испытаний n на вероятность p появления события в каждом испытании .

Дисперсию вычислим по формуле

Для этого найдем

.

Предварительно продифференцируем формулу бинома Ньютона два раза по p :

и умножим обе части равенства на p 2:

Следовательно,

Итак, дисперсия биномиального распределения равна

. (6.3)

Данные результаты можно получить и из чисто качественных рассуждений. Общее число X появлений события A во всех испытаниях складываются из числа появлений события в отдельных испытаниях. Поэтому если X 1 – число появлений события в первом испытании, X 2 – во втором и т.д., то общее число появлений события A во всех испытаниях равно X=X 1 +X 2 +…+X n . По свойству математического ожидания:



Каждое из слагаемых правой части равенства есть математическое ожидание числа событий в одном испытании, которое равно вероятности события. Таким образом,

По свойству дисперсии:

Так как , а математическое ожидание случайной величины , которое может принимать только два значения, а именно 1 2 с вероятностью p и 0 2 с вероятностью q , то . Таким образом, В результате, получаем

Воспользовавшись понятием начальных и центральных моментов, можно получить формулы для асимметрии и эксцесса:

. (6.4)

Многоугольник биномиального распределения имеет следующий вид (см. рис. 6.1). Вероятность P n (k ) сначала возрастает при увеличении k , достигает наибольшего значения и далее начинает убывать. Биномиальное распределение асимметрично, за исключением случая p =0,5. Отметим, что при большом числе испытаний n биномиальное распределение весьма близко к нормальному. (Обоснование этого предложения связано с локальной теоремой Муавра-Лапласа.)

Число m 0 наступлений события называется наивероятнейшим , если вероятность наступления события данное число раз в этой серии испытаний наибольшая (максимум в многоугольнике распределения) . Для биномиального распределения

. (6.5)

Замечание. Данное неравенство можно доказать, используя рекуррентную формулу для биномиальных вероятностей:

(6.6)

Пример 6.1. Доля изделий высшего сорта на данном предприятии составляет 31%. Чему равно математического ожидание и дисперсия, также наивероятнейшее число изделий высшего сорта в случайно отобранной партии из 75 изделий?

Решение. Поскольку p =0,31, q =0,69, n =75, то

M[X ] = np = 75×0,31 = 23,25; D[X ] = npq = 75×0,31×0,69 = 16,04.

Для нахождения наивероятнейшего числа m 0 , составим двойное неравенство

Отсюда следует, что m 0 = 23.

Распределение Пуассона

Как было уже отмечено, биномиальное распределение приближается к нормальному при n ®¥. Однако это не имеет места, если наряду с увеличением n одна из величин p или q стремится к нулю. В этом случае имеет место асимптотическая формула Пуассона, т.е. при n ®¥, p ®0

, (6.7)

где l=np . Эта формула определяет закон распределения Пуассона , который имеет самостоятельное значение, а не только как частный случай биномиального распределения. В отличие от биномиального распределения здесь случайная величина k может принимать бесконечное множество значений: k =0,1,2,…

Закон Пуассона описывает число событий k, происходящих за одинаковые промежутки времени при условии, что события происходят независимо друг от друга с постоянной средней интенсивностью, которая характеризуется параметром l. Многоугольник распределения Пуассона показан на рис. 6.2. Отметим, что при больших l рас
пределение Пуассона приближается к нормальному. Поэтому распределение Пуассона применяется, как правило, в тех случаях, когда l имеет порядок единицы, при этом число испытаний n должно быть велико, а вероятность появления события p в каждом испытании мала. В связи с этим закон Пуассона часто называют еще законом распределения редких явлений .

Примерами ситуаций, в которых возникает распределение Пуассона, могут служить распределения: 1) числа определенных микробов в единице объема; 2) числа вылетевших электронов с накаленного катода за единицу времени; 3) числа a-частиц, испускаемых радиоактивным источником за определенных промежуток времени; 4) числа вызовов, поступающих на телефонную станцию за определенное время суток и т.д.

Запишем закон Пуассона в виде таблицы

X k
P

Проверим, что сумма всех вероятностей равна единице:

Найдем числовые характеристики этого распределения. По определению математического ожидания для ДСВ имеем

Отметим, что в последней сумме суммирование начинается с k =1, т.к. первый член суммы, соответствующий k =0, равен нулю.

Для нахождения дисперсии найдем предварительно математического ожидание квадрата случайной:

Таким образом, математическое ожидание и дисперсия случайной величины, распределенной по закону Пуассона, совпадают и равны параметру этого распределения

. (6.8)

В этом состоит отличительная особенность распределения Пуассона. Так, если на основании опытных данных было получено, что математическое ожидание и дисперсия некоторой величины близки между собой, то есть основания предполагать, что данная случайная величина распределена в соответствии с законом Пуассона.

Воспользовавшись понятием начальных и центральных моментов, можно показать, что для распределения Пуассона коэффициент асимметрии и эксцесс равны:

. (6.9)

Поскольку параметр l всегда положителен, то у распределения Пуассона всегда положительная асимметрия и эксцесс.

Покажем теперь, что формулу Пуассона можно рассматривать как математическую модель простейшего потока событий.

Потоком событий называют последовательность событий, которые наступают в случайные моменты времени. Поток называется простейшим , если он обладает свойствами стационарности , отсутствия последействия и ординарности .

Интенсивностью потока l называют среднее число событий, которые появляются в единицу времени.

Если постоянная интенсивности потока l известна, то вероятность появления k событий простейшего потока за время t определяется формулой Пуассона:

. (6.10)

Эта формула отражает все свойства простейшего потока. Более того, любой простейший поток описывается формулой Пуассона, поэтому простейшие потоки часто называют пуассоновскими .

Свойство стационарности k событий в любом промежутке времени зависит только от числа k и от длительности t промежутка времени и не зависит от начала его отсчета. Другими словами, если поток обладает свойством стационарности, то вероятность появления k событий за промежуток времени t есть функция, зависящая только от k и от t .

В случае простейшего потока из формулы Пуассона (6.10) следует, что вероятность k событий за время t , при заданной интенсивности является функцией только двух аргументов: k и t , что характеризует свойство стационарности.

Свойство отсутствия последействия состоит в том, что вероятность появления k событий в любом промежутке времени зависит от того, появлялись или не появлялись события в моменты времени, предшествующие началу рассматриваемого промежутка. Другими словами, предыстория потока не влияет на вероятности появления событий в ближайшем будущем.

В случае простейшего потока в формуле Пуассона (6.10) не используется информация о появлении событий до начала рассматриваемого промежутка времени, что характеризует свойство отсутствия последействия.

Свойство ординарности состоит в том, что появление двух или более событий за малый промежуток времени практически невозможно. Другими словами, вероятность появление более одного события за малый промежуток времени пренебрежимо мала по сравнению с вероятностью появления только одного события.

Покажем, что формула Пуассона (6.10) отражает свойство ординарности. Положив k =0 и k =1, найдем соответственно вероятности не появления событий и появления одного события:

Следовательно, вероятность появления более одного события равна

Используя разложение функции в ряд Маклорена, после элементарных преобразований получим

.

Сравнивая P t (1) и P t (k >1), заключаем, что при малых значениях t вероятность появления более одного события пренебрежимо мала по сравнению с вероятностью наступления одного события, что характеризует свойство ординарности.

Пример 6.2. В наблюдениях Резерфорда и Гейгера радиоактивное вещество за промежуток времени 7,5 сек испускало в среднем 3,87 a-частицы. Найти вероятность того, что за 1 сек это вещество испустит хотя бы одну частицу.

Решение. Как мы уже отмечали, распределение числа a-частиц, испускаемых радиоактивным источником за определенных промежуток времени описывается формулой Пуассона, т.е. образует простейший поток событий. Поскольку интенсивность испускания a-частиц за 1 сек равно

,

то формула Пуассона (6.10) примет вид

Таким образом, вероятность того, что за t =1 сек вещество испустит хотя бы одну частицу будет равно

Геометрическое распределение

Пусть производится стрельба по заданной мишени до первого попадания, при этом вероятность p попадания в цель в каждом выстреле одна и та же и не зависит от результатов предыдущих выстрелов. Другими словами, в рассматриваемом опыте осуществляется схема Бернулли. В качестве случайной величины X будем рассматривать число произведенных выстрелов. Очевидно, что возможными значениями случайной величины X являются натуральные числа: x 1 =1, x 2 =2, … тогда вероятность того, что понадобится k выстрелов будет равна

. (6.11)

Полагая в этой формуле k =1,2, … получим геометрическую прогрессию с первым членом p и множителем q :

По этой причине распределение, определяемое формулой (6.11) называется геометрическим .

Используя формулу суммы бесконечно убывающей геометрической прогрессии, легко убедится, что

.

Найдем числовые характеристики геометрического распределения.

По определению математического ожидания для ДСВ имеем

.

Дисперсию вычислим по формуле

.

Для этого найдем

.

Следовательно,

.

Итак, математическое ожидание и дисперсия геометрического распределения равна

. (6.12)

6.4.* Производящая функция

При решении задач, связанных с ДСВ, часто используются методы комбинаторики. Одним из наиболее развитых теоретических методов комбинаторного анализа является метод производящих функций, который является одним из самых сильных методов и в применениях. Кратко познакомимся с ним.

Если случайная величина x принимает только целые неотрицательные значения, т.е.

,

то производящей функцией распределения вероятностей случайной величины x называется функция

, (6.13)

где z – действительная или комплексная переменная. Отметим, что между множеством производящих функций j x (x ) и множеством распределений {P(x=k )} существует взаимно однозначное соответствие .

Пусть случайная величина x имеет биномиальное распределение

.

Тогда, используя формулу бинома Ньютона, получим

,

т.е. производящая функция биномиального распределения имеет вид

. (6.14)

Добавление. Производящая функция распределения Пуассона

имеет вид

. (6.15)

Производящая функция геометрического распределения

имеет вид

. (6.16)

При помощи производящих функций удобно находить основные числовые характеристики ДСВ. Например, первый и второй начальный моменты связаны с производящей функцией следующими равенствами:

, (6.17)

. (6.18)

Метод производящих функций часто бывает удобен тем, что в некоторых случаях функцию распределения ДСВ очень трудно определить, тогда как производящую функцию порой легко найти. Например, рассмотрим схему последовательных независимых испытаний Бернулли, но внесем в нее одно изменение. Пусть вероятность осуществления события A от испытания к испытанию меняется. Это означает, что формула Бернулли для такой схемы становится неприменимой. Задача нахождения функции распределения в таком случае представляет значительные трудности. Однако для данной схемы легко находится производящая функция, а, следовательно, легко находятся и соответствующие числовые характеристики.

Широкое применение производящих функций основано на том, что изучение сумм случайных величин можно заменить изучением произведений соответствующих производящих функций. Так, если x 1 , x 2 , …, x n независимы, то

Пусть p k =P k (A ) – вероятность "успеха" в k -м испытании в схеме Бернулли (соответственно, q k =1–p k – вероятность "неуспеха" в k -м испытании). Тогда, в соответствие с формулой (6.19), производящая функция будет иметь вид

. (6.20)

Пользуясь данной производящей функцией, можем написать

.

Здесь учтено, что p k +q k =1. Теперь по формуле (6.1) найдем второй начальный момент. Для этого предварительно вычислим

и .

В частном случае p 1 =p 2 =…=p n =p (т.е. в случае биномиального распределения) из полученных формул следует, что Mx=np , Dx=npq .

Пусть производится стрельба по заданной мишени до первого попадания, при этом вероятность p попадания в цель в каждом выстреле одна и та же и не зависит от результатов предыдущих выстрелов. Другими словами, в рассматриваемом опыте осуществляется схема Бернулли. В качестве случайной величины X будем рассматривать число произведенных выстрелов. Очевидно, что возможными значениями случайной величины X являются натуральные числа: x 1 =1, x 2 =2, … тогда вероятность того, что понадобится k выстрелов будет равна

Полагая в этой формуле k =1,2, … получим геометрическую прогрессию с первым членом p и множителем q :

По этой причине распределение, определяемое формулой (6.11) называется геометрическим .

Используя формулу суммы бесконечно убывающей геометрической прогрессии, легко убедится, что

.

Найдем числовые характеристики геометрического распределения.

По определению математического ожидания для ДСВ имеем

.

Дисперсию вычислим по формуле

.

Для этого найдем

.

Следовательно,

.

Итак, математическое ожидание и дисперсия геометрического распределения равна

. (6.12)

6.4.* Производящая функция

При решении задач, связанных с ДСВ, часто используются методы комбинаторики. Одним из наиболее развитых теоретических методов комбинаторного анализа является метод производящих функций, который является одним из самых сильных методов и в применениях. Кратко познакомимся с ним.

Если случайная величина  принимает только целые неотрицательные значения, т.е.

,

то производящей функцией распределения вероятностей случайной величины  называется функция

, (6.13)

где z – действительная или комплексная переменная. Отметим, что между множеством производящих функций   (x ) и множеством распределений {P(=k )} существует взаимно однозначное соответствие .

Пусть случайная величина  имеет биномиальное распределение

.

Тогда, используя формулу бинома Ньютона, получим

,

т.е. производящая функция биномиального распределения имеет вид

. (6.14)

Добавление. Производящая функция распределения Пуассона

имеет вид

. (6.15)

Производящая функция геометрического распределения

имеет вид

. (6.16)

При помощи производящих функций удобно находить основные числовые характеристики ДСВ. Например, первый и второй начальный моменты связаны с производящей функцией следующими равенствами:

, (6.17)

. (6.18)

Метод производящих функций часто бывает удобен тем, что в некоторых случаях функцию распределения ДСВ очень трудно определить, тогда как производящую функцию порой легко найти. Например, рассмотрим схему последовательных независимых испытаний Бернулли, но внесем в нее одно изменение. Пусть вероятность осуществления события A от испытания к испытанию меняется. Это означает, что формула Бернулли для такой схемы становится неприменимой. Задача нахождения функции распределения в таком случае представляет значительные трудности. Однако для данной схемы легко находится производящая функция, а, следовательно, легко находятся и соответствующие числовые характеристики.

Широкое применение производящих функций основано на том, что изучение сумм случайных величин можно заменить изучением произведений соответствующих производящих функций. Так, если  1 ,  2 , …,  n независимы, то

Пусть p k =P k (A ) – вероятность "успеха" в k -м испытании в схеме Бернулли (соответственно, q k =1–p k – вероятность "неуспеха" в k -м испытании). Тогда, в соответствие с формулой (6.19), производящая функция будет иметь вид

. (6.20)

Пользуясь данной производящей функцией, можем написать

.

Здесь учтено, что p k + q k =1. Теперь по формуле (6.1) найдем второй начальный момент. Для этого предварительно вычислим

и
.

В частном случае p 1 =p 2 =…=p n =p (т.е. в случае биномиального распределения) из полученных формул следует, что M=np , D=npq .

Статистика приходит к нам на помощь при решении многих задач, например: когда нет возможности построить детерминированную модель, когда слишком много факторов или когда нам необходимо оценить правдоподобие построенной модели с учётом имеющихся данных. Отношение к статистике неоднозначное. Есть мнение, что существует три вида лжи: ложь, наглая ложь и статистика. С другой стороны, многие «пользователи» статистики слишком ей верят, не понимая до конца, как она работает: применяя, например, тест к любым данным без проверки их нормальности. Такая небрежность способна порождать серьёзные ошибки и превращать «поклонников» теста в ненавистников статистики. Попробуем поставить токи над i и разобраться, какие модели случайных величин должны использоваться для описания тех или иных явлений и какая между ними существует генетическая связь.

В первую очередь, данный материал будет интересен студентам, изучающим теорию вероятностей и статистику, хотя и «зрелые» специалисты смогут его использовать в качестве справочника. В одной из следующих работ я покажу пример использования статистики для построения теста оценки значимости показателей биржевых торговых стратегий.

В работе будут рассмотрены :


В конце статьи будет задан для размышлений. Свои размышления по этому поводу я изложу в следующей статье.

Некоторые из приведённых непрерывных распределений являются частными случаями .

Дискретные распределения

Дискретные распределения используются для описания событий с недифференцируемыми характеристиками, определёнными в изолированных точках. Проще говоря, для событий, исход которых может быть отнесён к некоторой дискретной категории: успех или неудача, целое число (например, игра в рулетку, в кости), орёл или решка и т.д.

Описывается дискретное распределение вероятностью наступления каждого из возможных исходов события. Как и для любого распределения (в том числе непрерывного) для дискретных событий определены понятия матожидания и дисперсии. Однако, следует понимать, что матожидание для дискретного случайного события - величина в общем случае нереализуемая как исход одиночного случайного события, а скорее как величина, к которой будет стремиться среднее арифметическое исходов событий при увеличении их количества.

В моделировании дискретных случайных событий важную роль играет комбинаторика, так как вероятность исхода события можно определить как отношение количества комбинаций, дающих требуемый исход к общему количеству комбинаций. Например: в корзине лежат 3 белых мяча и 7 чёрных. Когда мы выбираем из корзины 1 мяч, мы можем сделать это 10-ю разными способами (общее количество комбинаций), но только 3 варианта, при которых будет выбран белый мяч (3 комбинации, дающие требуемый исход). Таким образом, вероятность выбрать белый мяч: ().

Следует также отличать выборки с возвращением и без возвращения. Например, для описания вероятности выбора двух белых мячей важно определить, будет ли первый мяч возвращён в корзину. Если нет, то мы имеем дело с выборкой без возвращения () и вероятность будет такова: - вероятность выбрать белый мяч из начальной выборки умноженная на вероятность снова выбрать белый мяч из оставшихся в корзине. Если же первый мяч возвращается в корзину, то это выборка с возвращением (). В этом случае вероятность выбора двух белых мячей составит .

Если несколько формализовать пример с корзиной следующим образом: пусть исход события может принимать одно из двух значений 0 или 1 с вероятностями и соответственно, тогда распределение вероятности получения каждого из предложенных исходов будет называться распределение Бернулли:

По сложившейся традиции, исход со значением 1 называется «успех», а исход со значением 0 - «неудача». Очевидно, что получение исхода «успех или неудача» наступает с вероятностью .

Матожидание и дисперсия распределения Бернулли:


Количество успехов в испытаниях, исход которых распределен по с вероятностью успеха (пример с возвращением мячей в корзину), описывается биномиальным распределением:


По другому можно сказать, что биномиальное распределение описывает сумму из независимых случайных величин, умеющих распределение с вероятностью успеха .
Матожидание и дисперсия:



Биномиальное распределение справедливо только для выборки с возвращением, то есть, когда вероятность успеха остаётся постоянной для всей серии испытаний.

Если величины и имеют биномиальные распределения с параметрами и соответственно, то их сумма также будет распределена биномиально с параметрами .

Представим ситуацию, что мы вытягиваем мячи из корзины и возвращаем обратно до тех пор, пока не будет вытянут белый шар. Количество таких операций описывается геометрическим распределением. Иными словами: геометрическое распределение описывает количество испытаний до первого успеха при вероятности наступления успеха в каждом испытании . Если подразумевается номер испытания, в котором наступил успех, то геометрическое распределение будет описываться следующей формулой:


Матожидание и дисперсия геометрического распределения:

Геометрическое распределение генетически связано с распределением, которое описывает непрерывную случайную величину: время до наступления события, при постоянной интенсивности событий. Геометрическое распределение также является частным случаем .

Распределение Паскаля является обобщением распределения: описывает распределение количества неудач в независимых испытаниях, исход которых распределен по с вероятностью успеха до наступления успехов в сумме. При , мы получим распределение для величины .


где - число сочетаний из по .

Матожидание и дисперсия отрицательного биномиального распределения:



Сумма независимых случайных величин, распределённых по Паскалю, также распределена по Паскалю: пусть имеет распределение , а - . Пусть также и независимы, тогда их сумма будет иметь распределение

До сих пор мы рассматривали примеры выборок с возвращением, то есть, вероятность исхода не менялась от испытания к испытанию.

Теперь рассмотрим ситуацию без возвращения и опишем вероятность количества успешных выборок из совокупности с заранее известным количеством успехов и и неудач (заранее известное количество белых и чёрных мячей в корзине, козырных карт в колоде, бракованных деталей в партии и т.д.).

Пусть общая совокупность содержит объектов, из них помечены как «1», а как «0». Будем считать выбор объекта с меткой «1», как успех, а с меткой «0» как неудачу. Проведём n испытаний, причём выбранные объектв больше не будут участвовать в дальнейших испытаниях. Вероятность наступления успехов будет подчиняться гипергеометрическому распределению:


где - число сочетаний из по .

Матожидание и дисперсия:


Распределение Пуассона


(взято отсюда)

Распределение Пуассона значительно отличается от рассмотренных выше распределений своей «предметной» областью: теперь рассматривается не вероятность наступления того или иного исхода испытания, а интенсивность событий, то есть среднее количество событий в единицу времени.

Распределение Пуассона описывает вероятность наступления независимых событий за время при средней интенсивности событий :


Матожидание и дисперсия распределения Пуассона:

Дисперсия и матожидание распределения Пуассона тождественно равны.

Распределение Пуассона в сочетании с , описывающим интервалы времени между наступлениями независимых событий, составляют математическую основу теории надёжности.

Плотность вероятности произведения случайных величин x и y () с распределениями и может быть вычислена следующим образом:

Некоторые из приведённых ниже распределений являются частными случаями распределения Пирсона, которое, в свою очередь, является решением уравнения:


где и - параметры распределения. Известны 12 типов распределения Пирсона, в зависимости от значений параметров.

Распределения, которые будут рассмотрены в этом разделе, имеют тесные взаимосвязи друг с другом. Эти связи выражаются в том, что некоторые распределения являются частными случаями других распределений, либо описывают преобразования случайных величин, имеющих другие распределения.

На приведённой ниже схеме отражены взаимосвязи между некоторыми из непрерывных распределений, которые будут рассмотрены в настоящей работе. На схеме сплошными стрелками показано преобразование случайных величин (начало стрелки указывает на изначальное распределение, конец стрелки - на результирующее), а пунктирными - отношение обобщения (начало стрелки указывает на распределение, являющееся частным случаем того, на которое указывает конец стрелки). Для частных случаев распределения Пирсона над пунктирными стрелками указан соответствующий тип распределения Пирсона.


Предложенный ниже обзор распределений охватывает многие случаи, которые встречаются в анализе данных и моделировании процессов, хотя, конечно, и не содержит абсолютно все известные науке распределения.

Нормальное распределение (распределение Гаусса)


(взято отсюда)

Плотность вероятности нормального распределения с параметрами и описывается функцией Гаусса:

Если и , то такое распределение называется стандартным.

Матожидание и дисперсия нормального распределения:



Область определения нормального распределения - множество дествительных чисел.

Нормальное распределение является распределение типа VI.

Сумма квадратов независимых нормальных величин имеет , а отношение независимых Гауссовых величин распределено по .

Нормальное распределение является бесконечно делимым: сумма нормально распределенных величин и с параметрами и соответственно также имеет нормальное распределение с параметрами , где и .

Нормальное распределение хорошо моделирует величины, описывающие природные явления, шумы термодинамической природы и погрешности измерений.

Кроме того, согласно центральной предельной теореме, сумма большого количества независимых слагаемых одного порядка сходится к нормальному распределению, независимо от распределений слагаемых. Благодаря этому свойству, нормальное распределение популярно в статистическом анализе, многие статистические тесты рассчитаны на нормально распределенные данные.

На бесконечной делимости нормального распределении основан z-тест. Этот тест используется для проверки равенства матожидания выборки нормально распределённых величин некоторому значению. Значение дисперсии должно быть известно . Если значение дисперсии неизвестно и рассчитывается на основании анализируемой выборки, то применяется t-тест, основанный на .

Пусть у нас имеется выборка объёмом n независимых нормально распределенных величин из генеральной совокупности со стандартным отклонением выдвинем гипотезу, что . Тогда величина будет иметь стандартное нормальное распределение. Сравнивая полученное значение z с квантилями стандартного распределения можно принимать или отклонять гипотезу с требуемым уровнем значимости.

Благодаря широкой распространённости распределения Гаусса, многие, не очень хорошо знающие статистику исследователи забывают проверять данные на нормальность, либо оценивают график плотности распределения «на глазок», слепо полагая, что имеют дело с Гауссовыми данными. Соответственно, смело применяя тесты, предназначенные для нормального распределения и получая совершенно некорректные результаты. Наверное, отсюда и пошла молва про статистику как самый страшный вид лжи.

Рассмотрим пример: нам надо измерить сопротивления набора резистров некоторого номинала. Сопротивление имеет физическую природу, логично предположить, что распределение отклонений сопротивления от номинала будет нормальным. Меряем, получаем колоколообразную функцию плотности вероятности для измеренных значений с модой в окрестности номинала резистров. Это нормальное распределение? Если да, то будем искать бракованные резистры используя , либо z-тест, если нам заранее известна дисперсия распределения. Думаю, что многие именно так и поступят.

Но давайте внимательнее посмотрим на технологию измерения сопротивления: сопротивление определяется как отношение приложенного напряжения к протекающему току. Ток и напряжение мы измеряли приборами, которые, в свою очередь, имеют нормально распределенные погрешности. То есть, измеренные значения тока и напряжения - это нормально распределенные случайные величины с матожиданиями, соответствующими истинным значениям измеряемых величин. А это значит, что полученные значения сопротивления распределены по , а не по Гауссу.

Распределение описывает сумму квадратов случайных величин , каждая из которых распределена по стандартному нормальному закону :

Где - число степеней свободы, .

Матожидание и дисперсия распределения :



Область определения - множество неотрицательных натуральных чисел. является бесконечно делимым распределением. Если и - распределены по и имеют и степеней свободы соответственно, то их сумма также будет распределена по и иметь степеней свободы.

Является частным случаем (а следовательно, распределением типа III) и обобщением . Отношение величин, распределенных по распределено по .

На распределении основан критерий согласия Пирсона. с помощью этого критерия можно проверять достоверность принадлежности выборки случайной величины некоторому теоретическому распределению.

Предположим, что у нас имеется выборка некоторой случайной величины . На основании этой выборки рассчитаем вероятности попадания значений в интервалов (). Пусть также есть предположение об аналитическом выражении распределения, в соответствие с которым, вероятности попадания в выбранные интервалы должны составлять . Тогда величины будут распределены по нормальному закону.

Приведем к стандартному нормальному распределению: ,
где и .

Полученные величины имеют нормальное распределение с параметрами (0, 1), а следовательно, сумма их квадратов распределена по с степенью свободы. Снижение степени свободы связано с дополнительным ограничением на сумму вероятностей попадания значений в интервалы: она должна быть равна 1.

Сравнивая значение с квантилями распределения можно принять или отклонить гипотезу о теоретическом распределении данных с требуемым уровнем значимости.

Распределение Стьюдента используется для проведения t-теста: теста на равенство матожидания выборки распределённых случайных величин некоторому значению, либо равенства матожиданий двух выборок с одинаковой дисперсией (равенство дисперсий необходимо проверять ). Распределение Стьюдента описывает отношение распределённой случайной величины к величине, распределённой по .

Пусть и независимые случайные величины, имеющие со степенями свободы и соответственно. Тогда величина будет иметь распределение Фишера со степенями свободы , а величина - распределение Фишера со степенями свободы .
Распределение Фишера определено для действительных неотрицательных аргументов и имеет плотность вероятности:


Матожидание и дисперсия распределения Фишера:



Матожидание определено для , а диспересия - для .

На распределении Фишера основан ряд статистических тестов, таких как оценка значимости параметров регрессии, тест на гетероскедастичность и тест на равенство дисперсий выборок (f-тест, следует отличать от точного теста Фишера).

F-тест: пусть имеются две независимые выборки и распределенных данных объёмами и соответственно. Выдвинем гипотезу о равенстве дисперсий выборок и проверим её статистически.

Рассчитаем величину . Она будет иметь распределение Фишера со степенями свободы .

Сравнивая значение с квантилями соответствующего распределения Фишера, мы можем принять или отклонить гипотезу о равенстве дисперсий выборок с требуемым уровнем значимости.

Экспоненциальное (показательное) распределение и распределение Лапласа (двойное экспоненциальное, двойное показательное)


(взято отсюда)

Экспоненциальное распределение описывает интервалы времени между независимыми событиями, происходящими со средней интенсивностью . Количество наступлений такого события за некоторый отрезок времени описывается дискретным . Экспоненциальное распределение вместе с составляют математическую основу теории надёжности.

Кроме теории надёжности, экспоненциальное распределение применяется в описании социальных явлений, в экономике, в теории массового обслуживания, в транспортной логистике - везде, где необходимо моделировать поток событий.

Экспоненциальное распределение является частным случаем (для n=2), а следовательно, и . Так-как экспоненциально распределённая величина является величиной хи-квадрат с 2-мя степенями свободы, то она может быть интерпретирована как сумма квадратов двух независимых нормально распределенных величин.

Кроме того, экспоненциальное распределение является честным случаем


Т.е. дискретная случ. величина Х имеет геом. распред. с параметром р и знаменателем q , если она принимает значения 1,2,3,… k , … с вероятностями

Р(Х) = pq k -1 , где q =1-р .

Распределение называется геом., т.к. вер-ти р 1 , р 2 , … образуют геом.прогрессию, у которой первый член – р , а знаменатель – q .

Если количество испытаний не ограничено, т.е. если случайная величина может принимать значения 1, 2, ..., ∞, то мат.ожидание и дисперсию геометр. распределения можно найти по формулам Mх = 1/p, Dх = q/p 2

Пример. Из орудия производится стрельба по цели до первого попадания. Вероятность попадания в цель p = 0,6 при каждом выстреле. С.в. X - число возможных выстрелов до первого попадания.

А) Составить ряд распределения, найти функцию распределения, построить её график и найти все числовые характеристики. б) Найти математическое ожидание и дисперсию для случая, если стрелок намеревается произвести не более трёх выстрелов.

а) Случайная величина может принимать значения 1, 2, 3, 4,..., ∞
P(1) = p = 0,6
P(2) = qp = 0,4 · 0,6 = 0,24
P(3) = q 2 p = 0,4 2 · 0,6 = 0,096 ...
P(k) = q k-1 p = 0,4 k-1 · 0,6 ...
Ряд распределения:



Контроль: Σp i = 0,6/(1-0,4) = 1 (сумма геометрической прогрессии)

Ф-ция распределения - это вероятность того, что с.в. Х примет значение меньшее, чем конкретное числовое значение х. Значения функции распределения находим суммированием вероятностей.

Если x ≤ 1, то F(x) = 0

Если 1 < x ≤ 2, то F(x) = 0,6
Если 2 < x ≤ 3, то F(x) = 0,6 + 0,24 = 0,84
Если 3 < x ≤ 4, то F(x) = 0,84 + 0,096 = 0,936 ...
Если k-1 < x ≤ k, то F(x) = 0,6(1-0,4 k-1)/(1-0,4) = 1-0,4 k-1 (частичная сумма геом-ой прогрессии) ...

Mх = 1/p = 1/0,6 ≈ 1,667
Dх = q/p 2 = 0,4/0,36 ≈ 1,111
σ = √Dх ≈ 1,054

х
р 0,6 0,24 0,16

б) Случайная величина может принимать значения 1, 2, 3.
P(1) = p = 0,6
P(2) = qp = 0,4 · 0,6 = 0,24
P(3) = q 2 p + q 3 = 0,4 2 · 0,6 + 0,4 3 = 0,16
Ряд распределения:

Контроль: Σp i = 0,6 + 0,24 + 0,16 = 1
Функция распределения.

Если x ≤ 1, то F(x) = 0
Если 1 < x ≤ 2, то F(x) = 0,6
Если 2 < x ≤ 3, то F(x) = 0,6 + 0,24 = 0,84
Если x > 3, то F(x) = 0,84 + 0,16 = 1
M(X) = 1 · 0,6 + 2 · 0,24 + 3 · 0,16 = 1,56
D(X) = 1 2 · 0,6 + 2 2 · 0,24 + 3 2 · 0,16 - 1,56 2 = 0,5664
σ(Х) ≈ 0,752

Асимметрия и эксцесс

Асимметрия – это свойство распределения выборки, которое характеризует несимметричность распределения случайной величины. На практике симметричные распределения встречаются редко и чтобы выявить и оценить степень асимметрии, вводят понятие асимметрии. В случае отрицательного коэффициента асимметрии более пологий «спуск» наблюдается слева, в противном случае – справа. В первом случае асимметрию называют левосторонней, а во втором – правосторонней.

Коэффициент асимметрии дискретной случайной величины вычисляется по формуле:
As(X) = (x 1 -M X ) 3 p 1 + (x 2 - M X ) 3 p 2 + ... + (x n - M X ) 3 p n

Коэфф. асимметрии непрерывной сл.вел. вычисляется по формуле:

Эксцесс – это мера крутости кривой распределения. Коэффициент эксцесса дискретной случайной величины вычисляется по формуле:

Ex(X) = [(x 1 - M X) 4 p 1 + (x 2 - M X) 4 p 2 + ... + (x n - M X) 4 p n ] / σ 4 - 3

Коэффициент эксцесса непрерывной случайной величины вычисляется по формуле:

Пример .

Закон распределения дискретной случайной величины X – это перечень всех возможных значений сл.вел. X , которые она может принимать, и соответствующих вероятностей. Сумма всех вер-ей должна равняться 1. Проверка: 0,1 + 0,2 + 0,5 + 0,1 + 0,1 = 1.

  1. Математическое ожидание : M(X) = -2·0,1 - 1·0,2 + 0·0,5 + 1·0,1 + 2·0,1 = -0,1
  2. Дисперсия – это математическое ожидание квадрата отклонений значений сл.вел. X от её мат.ож.: D(X) = (-2 + 0,1) 2 ·0,1 + (- 1 + 0,1) 2 ·0,2 + (0 + 0,1) 2 ·0,5 + (1 + 0,1) 2 ·0,1 + (2 + 0,1) 2 ·0,1 = 1,09
    или D(X) = (-2) 2 ·0,1 + (-1) 2 ·0,2 + 0 2 ·0,5 + 1 2 ·0,1 + 2 2 ·0,1 - (-0,1) 2 = 1,1 - 0,01 = 1,09
  3. Ср. кв. откл. – это корень квадратный из дисперсии: σ = √1,09 ≈ 1,044
  4. Коэф. асимметрии As(X) = [(-2 + 0,1) 3 ·0,1 + (- 1 + 0,1) 3 ·0,2 + (0 + 0,1) 3 ·0,5 + (1 + 0,1) 3 ·0,1 + (2 + 0,1) 3 ·0,1] / 1,044 3 = 0,200353
  5. Коэф. эксцесса Ex (X) = [(-2 + 0,1) 4 ·0,1 + (- 1 + 0,1) 4 ·0,2 + (0 + 0,1) 4 ·0,5 + (1 + 0,1) 4 ·0,1 + (2 + 0,1) 4 ·0,1]/1,044 4 - 3 = 0,200353
  6. Функция распределения – это вероятность того, что случайная величина X примет значение меньшее, чем какое – либо числовое значение x : F(X) = P(X < x ). Функция распределения – функция неубывающая. Она принимает значения в интервале от 0 до 1.

P(X < -0,1) = F(-0,1) = 0,3 P(X > -0,05) = P(0) + P(1) + P(2) = 0,5 + 0,1 + 0,1 = 0,7

2) Непрерывные случайные величины. Нормальное распределение.

Непрерывная случайная величина принимает не какие-либо конкретные числовые значения, а любые значения на числовом отрезке. Описание закона распределения в непрерывном случае существенно сложнее, чем в дискретном.

Непрерывной называют случайную величину, которая может принимать любые значения из некоторого заданного интервала, например, время ожидания транспорта, температура воздуха в каком-либо месяце, отклонение фактического размера детали от номинального, и т.д. Интервал, на котором она задана, может быть бесконечным в одну или обе стороны.

Главное различие в задачах вычисления вероятностей для дис­кретного и непрерывного случаев состоит в следующем. В дискрет­ном случае длясобытий типа х = с (случайная величина принимает определенное значение) ищется вероятность Р (с ). В непрерывном слу­чае вероятности такого типа равны нулю , поэтому интерес предста­вляют вероятности событий типа «случайная величина принимает значения из некоторого отрезка», т.е. а х b . Или для событий типа х с ищется вероятность р (х с ). Получили график функции распределения F(х с ).

р
7 / 8
4 / 8
3 / 8
1 / 8
х

Итак, разнообразие случайных величин весьма велико. Число принимаемых ими значений может быть конечным, счетным или несчетным; значения могут быть расположены дискретно или заполнять интервалы сплошь. Для того чтобы задавать вероятности значений случайных величин, столь различных по своей природе, и притом задавать их одним и тем же способом, в теории вероятностей вводят понятие функции распределения случайной величины .

Пусть - случайная величина и х - произвольное действительное число. Вероятность того, что примет значение, меньшее, чем х, называется функцией распределения вероятностей случайной величины : F(x) = Р( <х}.

Резюмируем сказанное: случайной величиной называется величина, значения которой зависят от случая и для которой определена функция распределения вероятностей.

Для непрерывных случайных величин (когда множество возможных значений случайной величины несчетно) закон распределения задается при помощи функции. Чаще всего это функция распределения : F(x ) = P(X<х ) .

Функция F(x ) обладает следующими свойствами :

1. 0 ≤ F(x ) ≤ 1 ;

2. F(x ) не убывает ;

3. F(x ) непрерывна слева ;

4. F(-) = 0, F() = 1.

С помощью функции распределения можно вычислять вероятности попадания случайной величины Х в различные промежутки вида х 1 х 2 P(х 1 х 2 ) = F(x 2)- F(x 1)

Пример. Известно, что . Найти F(2).

По определению . След, . .

Пример. Ф-я распред. сл.вел.Х имеет вид:
. Найти вероятность того, что сл. вел. Х примет значение в промежутке :

Вер-ть попадания непр.случ.величины в (-; х]:

Для дискрет.сл.вел. мы находили мат. ожид., дисперсию, среднекв. отклонение. Их аналогами для непр.сл.вел. являются:

Пример. Случ.вел. Х задана плотностью распределения на отрезке : f(x) = 1.



Плотность вероятности непрерывной случайной величины или функция распределения вероятностей - аналог закона распределения дискретной с.в. Но если закон распределения дискретной с.в. графически изображается в виде точек, соединённых для наглядности ломаной линией, то плотность вероятностей графически представляет собой непрерывную гладкую линию. Аналитически задаётся формулой.

Если закон распределения дискретной с.в. ставит каждому значению x в соответствие определённую вероятность, то про плотность распределения такого сказать нельзя. Для непрерывных с.в. можно найти только вероятность попадания в какой-либо интервал. Считается, что для каждого отдельного значения непрерывной с.в. вероятность равна нулю.

Основное свойство плотности вероятности: несобственный интеграл от плотности вероятности в пределах от -∞ до +∞ равен единице (геометрически это выражается тем, что площадь фигуры, ограниченной сверху графиком плотности вероятности, снизу - осью OX, равна 1).

Функция распределения случайной величины - это функция, определяющая для каждого значения x вероятность того, что случайная величина (ξ) примет значение меньшее, чем x: F(x) = P(ξ < x). Численно функция распределения равна площади фигуры, ограниченной сверху графиком плотности вероятности, снизу осью ОХ, с боков - рассматриваемым интервалом.

Можно выделить наиболее часто встречающиеся законы распределения дискретных случайных величин:

  • Биномиальный закон распределения
  • Пуассоновский закон распределения
  • Геометрический закон распределения
  • Гипергеометрический закон распределения

Для данных распределений дискретных случайных величин расчет вероятностей их значений, а также числовых характеристик (математическое ожидание, дисперсия, и т.д.) производится по определенных «формулам». Поэтому очень важно знать данные типы распределений и их основные свойства.


1. Биномиальный закон распределения.

Дискретная случайная величина $X$ подчинена биномиальному закону распределения вероятностей, если она принимает значения $0,\ 1,\ 2,\ \dots ,\ n$ с вероятностями $P\left(X=k\right)=C^k_n\cdot p^k\cdot {\left(1-p\right)}^{n-k}$. Фактически, случайная величина $X$ - это число появлений события $A$ в $n$ независимых испытаний . Закон распределения вероятностей случайной величины $X$:

$\begin{array}{|c|c|}
\hline
X_i & 0 & 1 & \dots & n \\
\hline
p_i & P_n\left(0\right) & P_n\left(1\right) & \dots & P_n\left(n\right) \\
\hline
\end{array}$

Для такой случайной величины математическое ожидание $M\left(X\right)=np$, дисперсия $D\left(X\right)=np\left(1-p\right)$.

Пример . В семье двое детей. Считая вероятности рождения мальчика и девочки равными $0,5$, найти закон распределения случайной величины $\xi $ - числа мальчиков в семье.

Пусть случайная величина $\xi $ - число мальчиков в семье. Значения, которые может принимать $\xi:\ 0,\ 1,\ 2$. Вероятности этих значений можно найти по формуле $P\left(\xi =k\right)=C^k_n\cdot p^k\cdot {\left(1-p\right)}^{n-k}$, где $n=2$ - число независимых испытаний, $p=0,5$ - вероятность появления события в серии из $n$ испытаний. Получаем:

$P\left(\xi =0\right)=C^0_2\cdot {0,5}^0\cdot {\left(1-0,5\right)}^{2-0}={0,5}^2=0,25;$

$P\left(\xi =1\right)=C^1_2\cdot 0,5\cdot {\left(1-0,5\right)}^{2-1}=2\cdot 0,5\cdot 0,5=0,5;$

$P\left(\xi =2\right)=C^2_2\cdot {0,5}^2\cdot {\left(1-0,5\right)}^{2-2}={0,5}^2=0,25.$

Тогда закон распределения случайной величины $\xi $ есть соответствие между значениями $0,\ 1,\ 2$ и их вероятностями, то есть:

$\begin{array}{|c|c|}
\hline
\xi & 0 & 1 & 2 \\
\hline
P(\xi) & 0,25 & 0,5 & 0,25 \\
\hline
\end{array}$

Сумма вероятностей в законе распределения должна быть равна $1$, то есть $\sum _{i=1}^{n}P(\xi _{{\rm i}})=0,25+0,5+0,25=1 $.

Математическое ожидание $M\left(\xi \right)=np=2\cdot 0,5=1$, дисперсия $D\left(\xi \right)=np\left(1-p\right)=2\cdot 0,5\cdot 0,5=0,5$, среднее квадратическое отклонение $\sigma \left(\xi \right)=\sqrt{D\left(\xi \right)}=\sqrt{0,5}\approx 0,707$.

2. Закон распределения Пуассона.

Если дискретная случайная величина $X$ может принимать только целые неотрицательные значения $0,\ 1,\ 2,\ \dots ,\ n$ с вероятностями $P\left(X=k\right)={{{\lambda }^k}\over {k!}}\cdot e^{-\lambda }$, то говорят, что она подчинена закону распределения Пуассона с параметром $\lambda $. Для такой случайной величины математическое ожидание и дисперсия равны между собой и равны параметру $\lambda $, то есть $M\left(X\right)=D\left(X\right)=\lambda $.

Замечание . Особенность этого распределения заключается в том, что мы на основании опытных данных находим оценки $M\left(X\right),\ D\left(X\right)$, если полученные оценки близки между собой, то у нас есть основание утверждать, что случайная величина подчинена закону распределения Пуассона.

Пример . Примерами случайных величин, подчиненных закону распределения Пуассона, могут быть: число автомашин, которые будут обслужены завтра автозаправочной станцией; число бракованных изделий в произведенной продукции.

Пример . Завод отправил на базу $500$ изделий. Вероятность повреждения изделия в пути равна $0,002$. Найти закон распределения случайной величины $X$, равной числу поврежденных изделий; чему равно $M\left(X\right),\ D\left(X\right)$.

Пусть дискретная случайная величина $X$ - число поврежденных изделий. Такая случайная величина подчинена закону распределения Пуассона с параметром $\lambda =np=500\cdot 0,002=1$. Вероятности значений равны $P\left(X=k\right)={{{\lambda }^k}\over {k!}}\cdot e^{-\lambda }$. Очевидно, что все вероятности всех значений $X=0,\ 1,\ \dots ,\ 500$ перечислить невозможно, поэтому мы ограничимся лишь первыми несколькими значениями.

$P\left(X=0\right)={{1^0}\over {0!}}\cdot e^{-1}=0,368;$

$P\left(X=1\right)={{1^1}\over {1!}}\cdot e^{-1}=0,368;$

$P\left(X=2\right)={{1^2}\over {2!}}\cdot e^{-1}=0,184;$

$P\left(X=3\right)={{1^3}\over {3!}}\cdot e^{-1}=0,061;$

$P\left(X=4\right)={{1^4}\over {4!}}\cdot e^{-1}=0,015;$

$P\left(X=5\right)={{1^5}\over {5!}}\cdot e^{-1}=0,003;$

$P\left(X=6\right)={{1^6}\over {6!}}\cdot e^{-1}=0,001;$

$P\left(X=k\right)={{{\lambda }^k}\over {k!}}\cdot e^{-\lambda }$

Закон распределения случайной величины $X$:

$\begin{array}{|c|c|}
\hline
X_i & 0 & 1 & 2 & 3 & 4 & 5 & 6 & ... & k \\
\hline
P_i & 0,368; & 0,368 & 0,184 & 0,061 & 0,015 & 0,003 & 0,001 & ... & {{{\lambda }^k}\over {k!}}\cdot e^{-\lambda } \\
\hline
\end{array}$

Для такой случайной величины математическое ожидание и дисперсия равным между собой и равны параметру $\lambda $, то есть $M\left(X\right)=D\left(X\right)=\lambda =1$.

3. Геометрический закон распределения.

Если дискретная случайная величина $X$ может принимать только натуральные значения $1,\ 2,\ \dots ,\ n$ с вероятностями $P\left(X=k\right)=p{\left(1-p\right)}^{k-1},\ k=1,\ 2,\ 3,\ \dots $, то говорят, что такая случайная величина $X$ подчинена геометрическому закону распределения вероятностей. Фактически, геометрическое распределения представляется собой испытания Бернулли до первого успеха.

Пример . Примерами случайных величин, имеющих геометрическое распределение, могут быть: число выстрелов до первого попадания в цель; число испытаний прибора до первого отказа; число бросаний монеты до первого выпадения орла и т.д.

Математическое ожидание и дисперсия случайной величины, подчиненной геометрическому распределению, соответственно равны $M\left(X\right)=1/p$, $D\left(X\right)=\left(1-p\right)/p^2$.

Пример . На пути движения рыбы к месту нереста находится $4$ шлюза. Вероятность прохода рыбы через каждый шлюз $p=3/5$. Построить ряд распределения случайной величины $X$ - число шлюзов, пройденных рыбой до первого задержания у шлюза. Найти $M\left(X\right),\ D\left(X\right),\ \sigma \left(X\right)$.

Пусть случайная величина $X$ - число шлюзов, пройденных рыбой до первого задержания у шлюза. Такая случайная величина подчинена геометрическому закону распределения вероятностей. Значения, которые может принимать случайная величина $X:$ 1, 2, 3, 4. Вероятности этих значений вычисляются по формуле: $P\left(X=k\right)=pq^{k-1}$, где: $p=2/5$ - вероятность задержания рыбы через шлюз, $q=1-p=3/5$ - вероятность прохода рыбы через шлюз, $k=1,\ 2,\ 3,\ 4$.

$P\left(X=1\right)={{2}\over {5}}\cdot {\left({{3}\over {5}}\right)}^0={{2}\over {5}}=0,4;$

$P\left(X=2\right)={{2}\over {5}}\cdot {{3}\over {5}}={{6}\over {25}}=0,24;$

$P\left(X=3\right)={{2}\over {5}}\cdot {\left({{3}\over {5}}\right)}^2={{2}\over {5}}\cdot {{9}\over {25}}={{18}\over {125}}=0,144;$

$P\left(X=4\right)={{2}\over {5}}\cdot {\left({{3}\over {5}}\right)}^3+{\left({{3}\over {5}}\right)}^4={{27}\over {125}}=0,216.$

$\begin{array}{|c|c|}
\hline
X_i & 1 & 2 & 3 & 4 \\
\hline
P\left(X_i\right) & 0,4 & 0,24 & 0,144 & 0,216 \\
\hline
\end{array}$

Математическое ожидание:

$M\left(X\right)=\sum^n_{i=1}{x_ip_i}=1\cdot 0,4+2\cdot 0,24+3\cdot 0,144+4\cdot 0,216=2,176.$

Дисперсия:

$D\left(X\right)=\sum^n_{i=1}{p_i{\left(x_i-M\left(X\right)\right)}^2=}0,4\cdot {\left(1-2,176\right)}^2+0,24\cdot {\left(2-2,176\right)}^2+0,144\cdot {\left(3-2,176\right)}^2+$

$+\ 0,216\cdot {\left(4-2,176\right)}^2\approx 1,377.$

Среднее квадратическое отклонение:

$\sigma \left(X\right)=\sqrt{D\left(X\right)}=\sqrt{1,377}\approx 1,173.$

4. Гипергеометрический закон распределения.

Если $N$ объектов, среди которых $m$ объектов обладают заданным свойством. Случайных образом без возвращения извлекают $n$ объектов, среди которых оказалось $k$ объектов, обладающих заданным свойством. Гипергеометрическое распределение дает возможность оценить вероятность того, что ровно $k$ объектов в выборке обладают заданным свойством. Пусть случайная величина $X$ - число объектов в выборке, обладающих заданным свойством. Тогда вероятности значений случайной величины $X$:

$P\left(X=k\right)={{C^k_mC^{n-k}_{N-m}}\over {C^n_N}}$

Замечание . Статистическая функция ГИПЕРГЕОМЕТ мастера функций $f_x$ пакета Excel дает возможность определить вероятность того, что определенное количество испытаний будет успешным.

$f_x\to $ статистические $\to $ ГИПЕРГЕОМЕТ $\to $ ОК . Появится диалоговое окно, которое нужно заполнить. В графе Число_успехов_в_выборке указываем значение $k$. Размер_выборки равен $n$. В графе Число_успехов_в_совокупности указываем значение $m$. Размер_совокупности равен $N$.

Математическое ожидание и дисперсия дискретной случайной величины $X$, подчиненной геометрическому закону распределения, соответственно равны $M\left(X\right)=nm/N$, $D\left(X\right)={{nm\left(1-{{m}\over {N}}\right)\left(1-{{n}\over {N}}\right)}\over {N-1}}$.

Пример . В кредитном отделе банка работают 5 специалистов с высшим финансовым образованием и 3 специалиста с высшим юридическим образованием. Руководство банка решило направить 3 специалистов Для повышения квалификации, отбирая их в случайном порядке.

а) Составьте ряд распределения числа специалистов с высшим финансовым образованием, которые могут быть направлены на повышение квалификации;

б) Найдите числовые характеристики этого распределения.

Пусть случайная величина $X$ - число специалистов с высшим финансовым образованием среди трех отобранных. Значения, которые может принимать $X:0,\ 1,\ 2,\ 3$. Данная случайная величина $X$ распределена по гипергеометрическому распределению с параметрами: $N=8$ - размер совокупности, $m=5$ - число успехов в совокупности, $n=3$ - размер выборки, $k=0,\ 1,\ 2,\ 3$ - число успехов в выборке. Тогда вероятности $P\left(X=k\right)$ можно рассчитать по формуле: $P(X=k)={C_{m}^{k} \cdot C_{N-m}^{n-k} \over C_{N}^{n} } $. Имеем:

$P\left(X=0\right)={{C^0_5\cdot C^3_3}\over {C^3_8}}={{1}\over {56}}\approx 0,018;$

$P\left(X=1\right)={{C^1_5\cdot C^2_3}\over {C^3_8}}={{15}\over {56}}\approx 0,268;$

$P\left(X=2\right)={{C^2_5\cdot C^1_3}\over {C^3_8}}={{15}\over {28}}\approx 0,536;$

$P\left(X=3\right)={{C^3_5\cdot C^0_3}\over {C^3_8}}={{5}\over {28}}\approx 0,179.$

Тогда ряд распределения случайной величины $X$:

$\begin{array}{|c|c|}
\hline
X_i & 0 & 1 & 2 & 3 \\
\hline
p_i & 0,018 & 0,268 & 0,536 & 0,179 \\
\hline
\end{array}$

Рассчитаем числовые характеристики случайной величины $X$ по общим формулам гипергеометрического распределения.

$M\left(X\right)={{nm}\over {N}}={{3\cdot 5}\over {8}}={{15}\over {8}}=1,875.$

$D\left(X\right)={{nm\left(1-{{m}\over {N}}\right)\left(1-{{n}\over {N}}\right)}\over {N-1}}={{3\cdot 5\cdot \left(1-{{5}\over {8}}\right)\cdot \left(1-{{3}\over {8}}\right)}\over {8-1}}={{225}\over {448}}\approx 0,502.$

$\sigma \left(X\right)=\sqrt{D\left(X\right)}=\sqrt{0,502}\approx 0,7085.$



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: