Как рассчитать объем звука формула и значения. Звук. Информационный объем звукового файла. Задачи на кодирование звуковой информации

Тема «Квадратный трехчлен и его корни» изучается в курсе алгебры 9 класса. как и любой другой урок математики, урок по этой теме требует иособых средств и методов обучения. Необходима наглядность. К таковой можно отнести данный видеоурок, который разработан специально для того, чтобы облегчить труд учителя.

Данный урок длится 6:36 минут. За это время автор успевает раскрыть тему полностью. Учителю останется только подобрать задания по теме, чтобы закрепить материал.

Урок начинается с демонстрации примеров многочленов с одной переменной. Затем на экране появляется определение корня многочлена. Это определение подкрепляется примером, где необходимо найти корни многочлена. Решив уравнение, автор получает корни многочлена.

Далее следует замечание, что к квадратным трехчленам относятся и такие многочлены второй степени, у которых второй, третий или оба коэффициента, кроме старшего, равны нулю. Эта информация подкрепляется примером, где свободный коэффициент равен нулю.

Затем автор поясняет, как найти корни квадратного трехчлена. Для этого необходимо решить квадратное уравнение. И проверить это автор предлагает на примере, где дан квадратный трехчлен. Нужно найти его корни. Решение строится на основе решения квадратного уравнения, полученного из данного квадратного трехчлена. Решение расписано на экране подробно, четко и понятно. По ходу решения данного примера автор вспоминает, как решается квадратное уравнение, записывает формулы, и получает результат. На экране записывается ответ.

Нахождение корней квадратного трехчлена автор объяснил на основе примера. Когда обучающиеся поймут суть, то можно переходить к более общим моментам, что автор и делает. Поэтому он далее обобщает все вышесказанное. Общими словами на математическом языке автор записывает правило нахождения корней квадратного трехчлена.

Далее следует замечание, что в некоторых задачах удобнее квадратный трехчлен записывать немного иначе. На экране дается эта запись. То есть получается, что из квадратного трехчлена можно выделить квадрат двучлена. Такое преобразование предлагается рассмотреть на примере. Решение данного примера приводится на экране. Как и в прошлом примере, решение строится подробно со всеми необходимыми пояснениями. Затем автор рассматривает задачу, где используется только что выданная информация. Это геометрическая задача на доказательство. В решении присутствует иллюстрация в виде чертежа. Решение задачи расписано подробно и понятно.

На этом урок завершается. Но учитель может подобрать по способностям обучающихся задания, которые будут соответствовать данной теме.

Данный видеоурок можно использовать в качестве объяснения нового материала на уроках алгебры. Он отлично подойдет для самостоятельной подготовки обучающихся к уроку.

Найти корень квадратного трехчлена можно через дискриминант. Кроме того, для приведенного многочлена второй степени действует теорема Виета, основанная на соотношении коэффициентов.

Инструкция

  • Квадратные уравнения – довольно обширная тема в школьной алгебре. Левая часть такого уравнения представляет собой многочлен второй степени вида А х² + B х + C, т.е. выражение из трех одночленов разной степени неизвестной х. Чтобы найти корень квадратного трехчлена, нужно вычислить такое значение х, при котором выполняется равенство этого выражения нулю.
  • Для решения квадратного уравнения нужно найти дискриминант. Его формула является следствием выделения полного квадрата многочлена и представляет собой определенное соотношение его коэффициентов:D = B² – 4 А C.
  • Дискриминант может принимать различные значения, в том числе быть отрицательным. И если младшие школьники могут с облегчением сказать, что корней у такого уравнения нет, то старшеклассники уже способны их определить, исходя из теории комплексных чисел. Итак, вариантов может быть три: Дискриминант – положительное число. Тогда корни уравнения равны: х1 = (-B + √D)/2 А; х2 = (-B - √D)/2 А;
    Дискриминант обратился в ноль. Теоретически в этом случае уравнение также имеет два корня, но практически они одинаковы: х1 = х2 = -B/2 А;
    Дискриминант меньше нуля. В расчет вводится некая величина i² = -1, которая позволяет записать комплексное решение: х1 = (-B + i √|D|)/2 А; х2 = (-B - i √|D|)/2 А.
  • Метод дискриминанта справедлив для любого квадратного уравнения, однако есть ситуации, когда целесообразно применить более быстрый способ, особенно при небольших целочисленных коэффициентах. Этот способ называется теоремой Виета и заключается в паре соотношений между коэффициентами в приведенном трехчлене:х² + P х + Q
    х1 + х2 = -P;
    х1 х2 = Q.Остается только подобрать корни.
  • Следует отметить, что уравнение может быть приведено к подобному виду. Для этого нужно разделить все слагаемые трехчлена на коэффициент при старшей степени А:А х² + B х + C |А
    х² + B/А х + C/А
    х1 + х2 = -B/А;
    х1 х2 = C/А.

Изучение многих физических и геометрических закономерностей часто приводит к решению задач с параметрами. Некоторые ВУЗы также включают в экзаменационные билеты уравнения, неравенства и их системы, которые часто бывают весьма сложными и требующими нестандартного подхода к решению. В школе же этот один из наиболее трудных разделов школьного курса алгебры рассматривается только на немногочисленных факультативных или предметных курсах.
На мой взгляд, функционально-графический метод является удобным и быстрым способом решения уравнений с параметром.
Как известно, в отношении уравнений с параметрами встречаются две постановки задачи.

  1. Решить уравнение (для каждого значения параметра найти все решения уравнения).
  2. Найти все значения параметра, при каждом из которых решения уравнения удовлетворяют заданным условиям.

В данной работе рассматривается и исследуется задача второго типа применительно к корням квадратного трехчлена, нахождение которых сводится к решению квадратного уравнения.
Автор надеется, что данная работа поможет учителям при разработке уроков и при подготовке учащихся к ЕГЭ.

1. Что такое параметр

Выражение вида 2 + bх + c в школьном курсе алгебры называют квадратным трехчленом относительно х, где a, b, c – заданные действительные числа, причем, a =/= 0. Значения переменной х, при которых выражение обращается в нуль, называют корнями квадратного трехчлена. Для нахождения корней квадратного трехчлена, необходимо решить квадратное уравнение 2 + bх + c = 0.
Вспомним из школьного курса алгебры основные уравнения aх + b = 0;
aх2 + bх + c = 0. При поиске их корней, значения переменных a, b, c, входящих в уравнение считаются фиксированными и заданными. Сами переменные называют параметром. Поскольку, в школьных учебниках нет определения параметра, я предлагаю взять за основу следующий его простейший вариант.

Определение. Параметром называется независимая переменная, значение которой в задаче считается заданным фиксированным или произвольным действительным числом, или числом, принадлежащим заранее оговоренному множеству.

2. Основные типы и методы решения задач с параметрами

Среди задач с параметрами можно выделить следующие основные типы задач.

  1. Уравнения, которые необходимо решить либо для любого значения параметра (параметров), либо для значений параметра, принадлежащих заранее оговоренному множеству. Например. Решить уравнения: aх = 1, (a – 2)х = a 2 4.
  2. Уравнения, для которых требуется определить количество решений в зависимости от значения параметра (параметров). Например. При каких значениях параметра a уравнение 4х 2 4 aх + 1 = 0 имеет единственный корень?
  3. Уравнения, для которых при искомых значениях параметра множество решений удовлетворяет заданным условиям в области определения.

Например, найти значения параметра, при которых корни уравнения (a – 2)х 2 2aх + a + 3 = 0 положительные.
Основные способы решения задач с параметром: аналитический и графический.

Аналитический – это способ так называемого прямого решения, повторяющего стандартные процедуры нахождения ответа в задачах без параметра. Рассмотрим пример такой задачи.

Задача № 1

При каких значениях параметра а уравнение х 2 2aх + a 2 – 1 = 0 имеет два различных корня, принадлежащих промежутку (1; 5)?

Решение

х 2 2aх + a 2 1 = 0.
По условию задачи уравнение должно иметь два различных корня, а это возможно лишь при условии: Д > 0.
Имеем: Д = 4a 2 – 2(а 2 – 1) = 4. Как видим дискриминант не зависит от а, следовательно, уравнение имеет два различных корня при любых значениях параметра а. Найдем корни уравнения: х 1 = а + 1, х 2 = а – 1
Корни уравнения должны принадлежать промежутку (1; 5), т.е.
Итак, при 2 < а < 4 данное уравнение имеет два различных корня, принадлежащих промежутку (1; 5)

Ответ: 2 < а < 4.
Такой подход к решению задач рассматриваемого типа возможен и рационален в тех случаях, когда дискриминант квадратного уравнения «хороший», т.е. является точным квадратом какого либо числа или выражения или корни уравнения можно найти по теореме обратной т.Виета. Тогда, и корни не представляют собой иррациональных выражений. В противном случае решения задач такого типа сопряжено с достаточно сложными процедурами с технической точки зрения. Да и решение иррациональных неравенств требует от ученика новых знаний.

Графический – это способ, при котором используют графики в координатной плоскости (х;у) или (х;а). Наглядность и красота такого способа решения помогает найти быстрый путь решения задачи. Решим задачу № 1 графическим способом.
Как известно из курса алгебры корни квадратного уравнения (квадратного трехчлена) являются нулями соответствующей квадратичной функции: У = х 2 – 2ах + а 2 – 1. Графиком функции является парабола, ветви направлены вверх (первый коэффициент равен 1). Геометрическая модель, отвечающая всем требованиям задачи, выглядит так.

Теперь осталось «зафиксировать» параболу в нужном положении необходимыми условиями.

    1. Так как парабола имеет две точки пересечения с осью х , то Д > 0.
    2. Вершина параболы находится между вертикальными прямыми х = 1 и х = 5, следовательно абсцисса вершины параболы х о принадлежит промежутку (1; 5), т.е.
      1 <х о < 5.
    3. Замечаем, что у (1) > 0, у (5) > 0.

Итак, переходя от геометрической модели задачи к аналитической, получаем систему неравенств.

Ответ: 2 < а < 4.

Как видно из примера, графический способ решения задач рассматриваемого типа возможен в случае, когда корни «нехорошие», т.е. содержат параметр под знаком радикала (в этом случае дискриминант уравнения не является полным квадратом).
Во втором способе решения мы работали с коэффициентами уравнения и областью значения функции у = х 2 – 2ах + а 2 – 1.
Такой способ решения нельзя назвать только графическим, т.к. здесь приходится решать систему неравенств. Скорее этот способ комбинированный: функционально-графический. Из этих двух способов последний является не только изящным, но и наиболее важным, так как в нем просматриваются взаимосвязь между всеми типами математической модели: словесное описание задачи, геометрическая модель – график квадратного трехчлена, аналитическая модель – описание геометрической модели системой неравенств.
Итак, мы рассмотрели задачу, в которой корни квадратного трехчлена удовлетворяют заданным условиям в области определения при искомых значениях параметра.

А каким еще возможным условиям могут удовлетворять корни квадратного трехчлена при искомых значениях параметра?

Тема урока : «Квадратный трехчлен и его корни».

Цель урока : познакомить обучающихся с понятием квадратного трехчлена и его корней, совершенствовать их умения и навыки в решении заданий на выделение квадрата двучлена из квадратного трехчлена.

Урок включает четыре основных этапа :

    Контроль знаний

    Объяснение нового материала

    Репродуктивное закрепление.

    Тренировочное закрепление.

    Рефлексия.

1 этап. Контроль знаний.

Учитель проводит математический диктант «под копирку» по материалу предыдущего цикла. Для диктанта используется карточки двух цветов: синего - для 1 варианта, красного –2 варианта.

    Из данных аналитических моделей функций выберите только квадратичные.

Вариант 1. у=ах+4, у=45-4х, у=х²+4х-5, у=х³+х²-1.

Вариант 2. у=8х-в, у=13+2х, у= -х²+4х, у=-х³+4х²-1.

    Изобразите схематично квадратичные функции. Можно ли однозначно определить положение квадратичной функции на координатной плоскости. Ответ попытайтесь аргументировать.

    Решите квадратные уравнения.

Вариант 1. а) х² +11х-12=0

Б) х² +11х =0

Вариант 2. а) х² -9х+20=0

Б) х² -9 х =0

4. Не решая уравнения, выясните, имеет ли оно корни.

Вариант 1. А) х² + х +12=0

Вариант 2. А) х² + х - 12=0

Полученные ответы учитель проверяет у первых двух пар. Полученные неправильные ответы обсуждаются всем классом.

Вариант 1.

Вариант 2.

1. у=х²+4х-5

1. у= -х²+4х

2. ветви вверх, но однозначно определить положение нельзя не хватает данных.

ветви вниз, но однозначно определить положение нельзя не хватает данных.

3. а) –12; 1 б) –11;0

3. а) 4;5 б) 9;0

4. Д0, есть два корня

2 этап. Давайте составим кластер. Какие ассоциации у вас возникают при рассмотрении квадратного трехчлена?

Составление кластера.


Возможные ответы:

    квадратный трехчлен используют для рассмотрения кв. функции;

    можно найти нули кв. функции

    по значению дискриминанта оценить количество корней.

    Описать реальные процессы и т.д.

Объяснение нового материала.

Параграф 2. п.3 стр.19-22.

Рассматриваются выражения, и дается определение квадратного трехчлена и корня многочлена (в ходе обсуждения ранее рассмотренных выражений)

    Формулируется определение корня многочлена.

    Формулируется определение квадратного трехчлена.

    Разбираются примеры решения трехчлена:

    Найти корни квадратного трехчлена.

    Выделим квадрат двучлена из квадратного трехчлена.

3х²-36х+140=0.

    Составляется схема ориентировочной основы действия.

Алгоритм выделения двучлена из квадратного трехчлена.

1.Опрелелить числовое значение старшего коэффициента квадратного трехчлена.

2. Выполнить тождественные и 2. Преобразовать выражение,

равносильные преобразования использовав формулы

(вынести общий множитель за скобки; квадрата суммы и разности.

преобразовать выражение, в скобках

достроив его до формулы квадрата суммы

или разности)

а²+2ав+в²= (а+в)² а²-2ав+в²= (а-в)²

3 этап. Решение типовых заданий из учебника (№ 60 а,в; 61 а, 64 а,в) Делаются у доски и комментируются.

4 этап. Самостоятельная работа на 2варианта (№ 60а,б; 65 а,б). Учащиеся сверяются с образцами решения на доске.

Домашнее задание: П.3 (теорию выучить, № 56, 61г, 64 г)

Рефлексия. Учитель дает задание: оценить свои успехи на каждом этапе урока с помощью рисунка и сдать учителю. (задание выполняется на отдельных листах, образец выдается).

Образец:

Используя, порядок расположения элементов на рисунке, определите на каком этапе урока ваше незнание преобладало. Выделите этот этап красным цветом.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: