Подключение жк экрана к ардуино. Подключение LCD к плате Ардуино (Arduino). Подключение шины данных

Жидкокристаллический дисплей (LCD) мод. 1602 (даташит) - отличный выбор для ваших проектов.

Первое, что радует - низкая цена. Второе - наличие готовых библиотек под Arduino. Третье - наличие нескольких модификаций, которые в том числе идут с различными подсветками (голубая, зеленая). В этой статье рассмотрим основы подключения данного дисплея к Arduino и приведем пример небольшого проекта для отображения уровня освещенности на дисплее с использованием фоторезистора.

Контакты и схема подключения LCD 1602 к Arduino

Контакты на этом дисплее пронумерованы от 1 до 16. Нанесены они на задней части платы. Как именно они подключаются к Arduino, показано в таблице ниже.

Табл. 1. Подключение контактов LCD 1620 к Arduino

Подключение 1602 к ArduinoЕсли дисплей 1602 питается от Arduino через 5-ти вольтовой USB-кабель и соответствующий пин, для контакта контраста дисплея (3-й коннектор – Contrast) можно использовать номинал 2 кОм. Для Back LED+ контакта можно использовать резистор на 100 Ом. Можно использовать и переменный резистор – потенциометр для настройки контраста вручную.

На основании таблицы 1 и схемы, приведенной ниже, подключите ваш жидкокристаллический дисплей к Arduino. Для подключения вам понадобится набор проводников. Желательно использовать разноцветные проводники, чтобы не запутаться.

Табл. 2. Предпочтительные цвета проводников

Схема подключения LCD дисплея 1602 к Arduino:


Базовый пример программы для работы LCD 1602 с Arduino

В примере используются 0, 1, 2, 3, 4, и 5 пины Arduino для подключения соответствующих пинов 4, 6, 11, 12, 13 и 14 с дисплея 1602 (смотри табл. 1). После этого в коде для Arduino мы инициализируем lcd() следующим образом:

LiquidCrystal lcd(0, 1, 2, 3, 4, 5);

Этот кусок кода объясняет Arduino, как именно подключен LCD дисплей.

Весь соурс файл проекта метеостанции, в которой используется дисплей LCD 1602 можно скачать по этой ссылке .

LCD 1602A, Arduino и датчик освещенности (фоторезистор)

В примере мы рассмотрим подключение модификации дисплея - 1602A и фоторезистора. В результате данного проекты мы сможем отображать на дисплее числовые значения, пропорциональные интенсивности освещения.


Данный пример будет хорошим стартом для начинающих разбираться с Arduino. Стоит обратить внимание, что у дисплея 1602 существуют различные модификации. Соответственно, расположение контактов на них могут несколько отличаться.

Необходимые материалы

  • 1 Arduino UNO;
  • 1 макетная плата (63 рельсы);
  • 1 датчик освещенности (фоторезистор);
  • 1 потенциометр на 50 кОм;
  • 1 LCD дисплей 1602A;
  • 1 резистор на 10кОм;
  • 1 рельса коннекторов (на 16 пинов);
  • 1 USB кабель.

LCD Дисплей 1602A

Дисплеи, как правило, продаются без распаянных коннекторов. То есть, паяльник в руках придется подержать. Вам понадобится 16 пинов. Запаивайте со стороны коротких ног, длинные оставляйте для дальнейшего подключения к плате или другим периферийным устройствам.

После распайки можете устанавливать дисплей на макетной плате. Желательно, на самой нижней дорожке, чтобы у вас осталась возможность соединять дисплей через дополнительные коннекторы с платой.

Подключение дисплея 1602A к Arduino

Первое что необходим о – запитать дисплей. Подключите два кабеля от +5 вольт и земли к соответствующим рядам плюс-минус на макетной плате.

Подключите: пин на 5 вольт (5V) с Arduino к одной из дорожек макетной платы.

Подключите: пин Земля (GND) Arduino к другой дорожек (макетной платы).

После этого подключаем питание экрана и его подсветку к дорожкам, на макетной плате, на которых у нас получается 5 вольт и минус.

Подключите: дорожку GND (минус) на макетной плате к 1 пину на LCD экране (он обозначен как VSS).

Подключите: дорожку 5 вольт (плюс) на макетной плате ко 2 пину на LCD экране (он обозначен как VDD).

Подключите: дорожку 5 вольт (плюс) на макетной плате к 15 пину на LCD экране (он обозначен как A).

Подключите: дорожку GND (минус) на макетной плате к 16 пину на LCD экране (он обозначен как K).

Подключаем нашу Arduino к персональному компьютеру через USB-кабель и вуаля! Экран должен включиться.

Следующий шаг – подключение потенциометра для регулировки контрастности дисплея. В большинстве гайдов, используется потенциометр на 10 кОм, но 50 кОм тоже подойдет. Из-за большего диапазона значений сопротивлений на выходе потенциометра, более точная настройка становится сложнее, но для нас в данном случае это не критично. Установите потенциометр на макетной плате и подключите три его пина.

Подключите: первый пин на потенциометре к минусу на макетке.

Подключите: средний пин потенциометра к 3 пину на дисплее (он обозначен как V0).

Подключите: третий пин на потенциометре к плюсу на макетке.

После подачи питания на плату через USB-кабель, на дисплее первый ряд должен заполниться прямоугольниками. Если вы их не увидели, немного проверните ручку потенциометра слева направо, чтобы отрегулировать контраст. В дальнейшем, когда мы будем отображать числовые значения на экране, вы сможете более точно отрегулировать контрастность. Если ваш дисплей выглядит примерно так, вы все делаете верно:

Продолжим. Теперь нам надо обеспечить обмен данными между Arduino и LCD дисплеем 1602A для отображения символов.

Для этого подключите 4 пин дисплея (RS) к 7 пину Arduino (желтый коннектор). 5 пин дисплея (RW) – к ряду пинов земля на макетке (черный кабель).

6 пин дисплея (E) – к 8 пину Arduino (ШИМ).

11 пин дисплея (D4) – к 9 пину Arduino (ШИМ).

12 пин дисплея (D5) – к 10 пину Arduino (ШИМ).

13 пин дисплея (D6) – к 11 пину Arduino (ШИМ).

14 пин дисплея (D7) – к 12 пину Arduino (ШИМ).

Программа для Arduino IDE – отображение надписи на дисплее 1602A

Представленный ниже кусок кода достаточно скопипастить в Arduino IDE и загрузить на плату:

#include <LiquidCrystal.h>

LiquidCrystal lcd(7, 8, 9, 10, 11 , 12);

lcd.begin(16, 2);

lcd.setCursor(0,1);

lcd.write("LIGHT: ");

После загрузки программы на плату, на дисплее во второй строке отобразится следующая надпись:

Своеобразный "hello world!" на LCD 1602A запущен. Я вас поздравляю.

Подключаем фоторезистор и заливаем всю программу в Arduino

Теперь подключим фоторезистор. Подключите три провода к свободным рельсам на макетной плате (условно пронумеруем их 1, 2, 3). Оставьте в рельсах немного места для самого датчика освещенности и резистора.

Рельсу GND с макетной платы подключаем к рельсе 1. A0 (аналоговый вход) с Arduino - к рельсе 2. 5 вольт с макетной платы - к рельсе 3.

Дальше подключаем наш датчик и резистор к подготовленным рельсам. Какие именно ноги идут к земле, а какие - к питанию для нашего датчика освещенности и резистора неважно (в отличие от, например, светодиода, в котором есть катод и анод). Так что тут не перепутаете.

Датчик освещенности подключаем к рельсе 1 и рельсе 2. Резистор – к рельсе 2 и к рельсе 3.

Теперь вернемся к нашей программе и добавим несколько строк в пустующее пока что тело функции loop():

int sensorValue = analogRead(A0);

lcd.setCursor(7,1);

lcd.print(sensorValue);

После заливки на Arduino окончательной версии нашей программы, на дисплее будут отображаться текущие значения уровня освещенности.

Дисплеи LCD 1602 размера, созданные на базе HD44780 контроллера, в наши дни всё ещё остаются одними из самых доступных, простых и востребованных, чтобы разрабатывать какие бы то ни было электронные устройства. Неудивительно, что их можно увидеть как в простых, собранных буквально на коленке агрегатах, так и в более серьезных промышленных, например автоматах для приготовления кофе. Именно с таким дисплеем и собираются наиболее популярные модули и шилды по тематике Arduino, например LCD I2C модуль и LCD Keypad Shield.

Данная статья подробно с изображениями рассказывает, как подключить LCD к Arduino и отобразить информацию.

Дисплеи 1602 имеют два различных исполнения :

Жёлтая подсветка с чёрными буквами
- либо (это бывает гораздо чаще) синяя подсветка с белыми.

Размерность дисплеев на HD44780 контроллере бывает самой разной, а управляются они одинаково. Наиболее распространённые из размерностей – 16 на 02 (то есть по 16 символов в двух строках) или 20 на 04. Сами же символы имеют разрешение в 5 на 8 точек.

Большая часть дисплеев не поддерживает кириллицу (за исключением дисплеев CTK-маркировки). Но такая проблема частично решаема, и далее статья подробно рассказывает, как это сделать.

На дисплее есть 16-PIN разъём для подключения. Выводы имеют маркировку с тыльной стороны платы , она следующая:

1 (VSS) – питание на минус для контроллера.
2 (VDD) – питание на плюс для контроллера.
3 (VO) – настройки управления контрастом.
4 (RS) – выбор для регистра.
5 (R/W) – чтение и запись, в частности, запись при соединении с землёй.
6 (E) – активация (enable).
7–10 (DB0-DB3) – младшие биты от восьмибитного интерфейса.
11–14 (DB4-DB7) – старшие биты от интерфейса
15 (A) – положительный анод на питание подсветки.
16 (K) – отрицательный катод на питание подсветки.

Шаг 2: Подключаем ЖК-дисплей

Перед тем как подключать дисплей и передавать на него информацию, стоит проверить его работоспособность. Сперва подайте напряжение на VSS и VDD контроллер, запитайте подсветку (A, K), далее настройте контрастность. Для таких настроек подойдёт потенциометр с 10 кОм, форма его не важна. На крайние ноги подают +5V и GND, а ножку по центру соединяют с VO выводом.

Когда на схему подаётся питание, нужно добиться необходимого контраста, если он настраивается неправильно, то и изображение на экране видно не будет. Чтобы настроить контраст, нужно «поиграть» с потенциометром. Когда схема будет собрана правильно и контраст настроен верно, верхняя строка на экране должна заполниться прямоугольниками.

Чтобы дисплей работал, применяется встроенная в Arduino IDE среду специальная библиотека LiquidCrystal.h, о которой я напишу ниже. Он может действовать в 8-битном и в 4-битном режиме. В первом варианте применяют лишь младшие и старшие биты (BB0-DB7), во втором – только младшие (BB4-DB7).

Но применение 8-битного режима в этом дисплее – неправильное решение, преимущества в скорости почти нет, поскольку частота обновления у него всегда меньше 10 раз за секунду. Чтобы выводился текст, надо присоединить выводы DB7, DB6, DB5, DB4, E и RS к выводам контроллера. Присоединять их допустимо к любым пинам Arduino, главное – задание верной последовательности в коде.

Если необходимого символа пока что нет в памяти контроллера, то можно его определить вручную (всего до семи символов). Ячейка в рассматриваемых дисплеях имеет расширение в пять на восемь точек. Задача создания символа в том, чтобы написать битовую маску и расставить единички в местах, где точки должны гореть, а нолики – где не должны.

Рассмотренная выше схема подключения не всегда хороша, т. к. на Arduino занимается минимум шесть цифровых выходов.

Шаг 3: Схема обхода

Изучим вариант, как обойти это и обойтись только двумя. Нужен добавочный модуль-конвертор для LCD в IIC/I2C. Как он припаивается к дисплею и присоединяется к Arduino, можно увидеть на изображениях ниже.

Но такой вариант подключения действует лишь со специальной библиотекой LiquidCrystal_I2C1602V1, которую, впрочем, нетрудно найти в Сети и установить, после чего можно без проблем им пользоваться.

Шаг 4: Библиотека LiquidCrystal.h

Библиотеку LiquidCrystal.h можно скачать с официального ресурса - . Также вы можете скачать ниже по ссылкам:

Скетч

После того, как вы скачали архив замените папку LiquidCrystal в папке с библиотеками вашего каталога установки Arduino.

Вы можете увидеть примерный скетч в Файл -> Примеры -> LiquidCrystal -> HelloWorld_SPI (File -> Examples -> LiquidCrystal -> HelloWorld_SPI).

На этом наш очередной урок завершен. Желаем вам качественных проектов!

В уроке поговорим о знакосинтезирующих жидкокристаллических индикаторах, о подключении их к плате Ардуино и управлении индикаторами с помощью библиотек LiquidCrystal и LiquidCrystalRus.

Светодиодные семисегментные индикаторы хотя и являются самым дешевым вариантом индикации для электронных устройств, но их применение ограничено двумя существенными недостатками.

  • Практически сложно подключить к микроконтроллеру более 8ми разрядов светодиодных индикаторов. Требуется большое число выводов, значительные токи индикаторов, сложные ключи, низкая частота регенерации и т.п.
  • Невозможно отображать на семисегментных индикаторах символьную информацию.

Для вывода текстовой информации или чисел размером более 4 разряда гораздо практичнее использовать жидкокристаллические знакосинтезирующие индикаторы (дисплеи). К их достоинствам следует отнести:

  • удобный для подключения к микроконтроллерам интерфейс;
  • малая потребляемая мощность;
  • низкое напряжение питания;
  • долговечность.

На рынке существует большое число разнообразных жидкокристаллических (LCD) индикаторов разных производителей. Практически все они аналогичны по параметрам, сигналам интерфейсов, командам управления. В данный момент наиболее распространенными ЖК индикаторами на российском рынке являются устройства производства компании Winstar, Тайвань. Я буду ссылаться на индикаторы этой фирмы. Но информация вполне применима и для символьных LCD дисплеев других производителей.

Общие сведения.

Знакосинтезирующие или символьные индикаторы отображают информацию в виде знакомест определенной разрядности. Одно знакоместо отображает один символ. Количество знакомест определяет разрядность индикатора. Информация на индикаторах может выводиться на нескольких строках, поэтому для индикаторов такого типа всегда указывается число символов в строке и число строк.

Отображение информации происходит на жидкокристаллической матрице со светодиодной подсветкой. Подсветка бывает самых разных цветов, что значительно оживляет монохромную текстовую информацию.

Для управления жидкокристаллической матрицей и организации интерфейса индикатора используется встроенный контроллер HD44780 или его полные аналоги. Этот контроллер определяет сигналы интерфейса индикатора и команды управления.

HD44780 стал де-факто стандартом для символьных жидкокристаллических (LCD) дисплеев. Техническую документацию по контроллеру HD44780 в формате PDF можно посмотреть по этой ссылке - . Может кому-то больше понравится документация одного из аналогов этого контроллера – SPLC780D. Ссылка в формате PDF – .

Символьные LCD индикаторы фирмы Winstar.

Мне известны следующие варианты ЖК индикаторов этой фирмы.

Тип индикатора Формат отображения, символов x строк Габариты, мм Размеры видимой области, мм Ссылка на документацию, формат PDF
WH0802A1 8 x 2 58 x 32 38 x 16
WH1202A 12 x 2 55,7 x 32 46 x 14,5
WH1601A 16 x 1 80 x 36 66 x 16
WH1601B 16 x 1 85 x 28 66 x 16
WH1601L 16 x 1 122 x 33 99 x 13
WH1602A 16 x 2 84 x 44 66 x 16
WH1602B 16 x 2 80 x 36 66 x 16
WH1602C 16 x 2 80 x 36 66 x 16
WH1602D 16 x 2 85 x 30 66 x 16
WH1602J 16 x 2 80 x 36 66 x 16
WH1602L1 16 x 2 122 x 44 99 x 24
WH1602M 16 x 2 85 x 32,6 66 x 16
WH1602O 16 x 2 85 x 25,2 66 x 16
WH1602P 16 x 2 85 x 25,2 66 x 16
WH1602S 16 x 2 59 x 29,3 52 x 15
WH1602T 16 x 2 65,4 x 28,2 54,8 x 19
WH1602W 16 x 2 80 x 36 66 x 16
WH1602V2 16 x 2 66,7 x 23,3 61 x 15,9
WH1604A 16 x 4 87 x 60 62 x 26
WH1604B 16 x 4 70,6 x 60 60 x 32,6
WH2002A 20 x 2 116 x 37 85 x 18,6
WH2002D 20 x 2 89 x 21,5 75 x 15
WH2002L 20 x 2 180 x 40 149 x 23
WH2002M 20 x 2 146 x 43 123 x 23
WH2004A 20 x 4 98 x 60 77 x 25,2
WH2004B 20 x 4 98 x 60 77 x 25,2
WH2004D 20 x 4 77 x 47 60 x 22
WH2004G 20 x 4 87 x 58 74,4 x 24,8
WH2004H 20 x 4 87 x 58 74,4 x 24,8
WH2004L 20 x 4 146 x 62,5 123,5 x 43
WH2402A 24 x 2 118 x 36 94,5 x 16
WH4002A 40 x 2 182 x 33,5 154,4 x 16,5
WH4004A 40 x 4 190 x 54 147 x 29,5

Подключение LCD индикатора к микроконтроллеру.

Схемы подключения, временные диаграммы, параметры сигналов, команды управления, коды символов подробно расписаны в документации на контроллер HD44780. Я приведу только самые необходимые данные о подключении индикаторов к микроконтроллерам.

Как правило, LCD индикаторы имеют 16 выводов.

Номер вывода Сигнал I - вход O - выход Назначение сигнала
1 Vss - Земля (общий провод)
2 Vdd - Питание + 5 В
3 Vo - Управление контрастностью дисплея. Вход для подключения среднего вывода делителя напряжения + 5 В. Можно использовать подстроечный резистор сопротивлением 10-20 кОм.
4 RS I Выбор регистра: 0 – регистр команд; 1 – регистр данных. Низкий уровень сигнала означает, что на шине данных сформирована команда, высокий уровень – на шине данные.
5 R/W I Направление передачи данных:

0 – запись;

1 – чтение.

Во многих приложениях функция чтения не используется, поэтому сигнал часто подключается к земле.

6 E I Строб операции шины (по отрицательному фронту).
7 DB0 I/O Младшие биты восьми битного режима. При четырех битном интерфейсе не используются.
8 DB1 I/O
9 DB2 I/O
10 DB3 I/O
11 DB4 I/O Старшие биты восьми битного режима или биты данных четырех битного интерфейса.
12 DB5 I/O
13 DB6 I/O
14 DB7 I/O
15 A - Анод питания подсветки (+).
16 K - Катод питания подсветки (-). Ток должен быть ограничен.

Номер вывода (первый столбец) приведен для наиболее распространенного варианта. Лучше проверьте, загрузив документацию на Ваш тип индикатора из таблицы предыдущего раздела.

Символьные ЖК дисплеи поддерживают два варианта подключения к микроконтроллеру:

  • С использованием 8ми битной шины данных. Подключаются все сигналы шины DB0-DB7. За один цикл обмена передается байт информации.
  • С применением 4х битной шины данных. Подключаются только 4 старшие разряда DB4-DB7. Информация передается по четыре бита за один такт шины.

Первый вариант обеспечивает передачу данных на дисплей с большей скоростью. Второй – требует для подключения индикатора на 4 вывода меньше. Несомненно, важнее сократить число выводов для подключения, чем увеличить скорость обмена. Тем более, что LCD индикаторы довольно медленные устройства со временем цикла регенерации 10-20 мс.

Подключение символьного ЖК (LCD) дисплея к плате Ардуино.

Я буду подключать индикатор WH2004A (4 строки по 20 символов) в четырех битном режиме обмена к плате Arduino UNO R3. Документацию на LCD дисплей WH2004 можете посмотреть по этой ссылке .

Схема выглядит так.

Резисторы R2 и R3 определяют контрастность индикатора. Можете подключить подстроечный резистор и установить необходимую четкость изображения. Я часто использую индикаторы WH2004, и в своих схемах выбираю такие номиналы резисторов.

Светодиоды подсветки индикатора я подключил к источнику питания 5 В через резистор R1 (30 Ом). Этим я задал ток порядка 25 мА. Тускло, но светится. В темноте видно хорошо. Хотя индикаторы WH2004 допускают ток подсветки до 580 мА.

Библиотека для управления LCD индикаторами в системе Ардуино LiquidCrystal.

Существует стандартная библиотека для управления ЖК индикаторами на базе контроллера HD44780. Подробно опишу ее методы.

LiquidCristal(…)

Конструктор класса. Может иметь разное число аргументов.

  • LiquidCristal(rs, en, d4, d5, d6, d7) – четырех битный интерфейс, сигнал RW не используется (подключен к земле).
  • LiquidCristal(rs,rw, en, d4, d5, d6, d7) – четырех битный интерфейс, сигнал RW используется.
  • LiquidCristal(rs, en, d0, d1, d2, d3, d4, d5, d6, d7) – восьми битный интерфейс, сигнал RW не используется (подключен к земле).
  • LiquidCristal(rs, rw, en, d0, d1, d2, d3, d4, d5, d6, d7) – восьми битный интерфейс, сигнал RW используется.

Аргументы:

  • rs – номер вывода сигнала RS;
  • rw – номер вывода сигнала RW;
  • en – номер вывода сигнала E;
  • d0, d1, d2, d3, d4, d5, d6, d7 – номера выводов шины данных.

LiquidCrystal disp(6, 7, 2, 3, 4, 5);

void begin(cols, rows)

Инициализирует интерфейс индикатора. Задает размерность индикатора. Метод должен быть вызван первым, до использования других функций класса.

Аргументы:

  • cols – количество символов в строке;
  • rows – число строк.

disp.begin(20, 4); // используем дисплей – 4 строки по 20 символов

void clear()

Очистка экрана, установка курсора в верхний левый угол.

disp.clear(); // сброс дисплея

void home()

Установка курсора в верхний левый угол.

disp.home(); // в начало экрана

void setCursor(col, row)

Устанавливает курсор в заданную позицию.

  • col – координата X, нумерация с 0;
  • row – координата Y, нумерация с 0.

setCursor(0,1); // курсор в начало второй строки

byte write(data)

Выводит символ на экран. Возвращает количество переданных байтов.

Следующий скетч выводит на экран данные с последовательного порта. Данные можно передать монитором порта Arduino IDE.

// вывод данных последовательного порта на LCD индикатор
#include


char data;

void setup()
{
Serial.begin(9600); // инициализируем последовательны порт
disp.begin(20, 4); //
}

void loop()
{
if (Serial.available()) { // если есть данные
data= Serial.read(); // читаем символ
if((data != 0xd) && (data != 0xa)) { // перевод строки
disp.write(data); // выводим символ на экран
}
}
}

У меня индикатор большой – 4 строки по 20 символов. В нем установлены два контроллера HD44780. Поэтому последовательно передаваемые символы заполняют сначала первую строку, затем третью, дальше вторую и четвертую. Т.е. через строку. Надо учитывать это свойство для определенных типов индикаторов. В документации на каждый LCD индикатор указывается последовательность адресации символов.

byte print(data)

Выводит на экран текст. Возвращает количество переданных байтов.

Аргументы:

data – данные для вывода на экран. Могут иметь типы char, byte, int, long, string.

Может быть второй, необязательный аргумент.

byte print(data, BASE)

  • BASE – задает систему исчисления:
  • BIN – двоичная;
  • DEC – десятичная;
  • OCT – восьмеричная:
  • HEX – шестнадцатеричная.

Пример программы, печатающей на дисплее текстовую строку.

// вывод текстовой строки на LCD индикатор
#include

LiquidCrystal disp(6, 7, 2, 3, 4, 5); // создаем объект

void setup()
{
disp.begin(20, 4); // инициализируем дисплей 4 строки по 20 символов
disp.print("Test string");
}

void loop()
{ }

void cursor()

Включает режим отображения курсора. Позиция, куда будет выведен следующий символ, подчеркивается.

disp.cursor(); // разрешаем отображение курсора

void noCursor()

Запрещает отображение курсора.

disp.noCursor(); // запрещаем отображение курсора

void blink()

Включает режим мигающего курсора. Используется совместно с функцией cursor(). Результат зависит от конкретной модели индикатора.

disp.blink(); // разрешаем мигающий курсор

void noBlink()

Отключает режим мигающего курсора.

disp.noBlink(); // запрещаем мигающий курсор

void display()

Включает экран после того, как он был выключен функцией noDisplay(). На экране отобразится информация, которая была до выключения.

disp.display(); // включаем дисплей

void noDisplay()

Выключает экран. Информация сохраняется в памяти и появляется при включении дисплея.

disp.noDisplay(); // выключаем дисплей

void scrollDisplayLeft()

Прокручивает содержимое дисплея на один символ влево.

disp. scrollDisplayLeft(); // сдвигаем все влево

void scrollDisplayRight()

Прокручивает содержимое дисплея на один символ вправо.

disp. scrollDisplayRight(); // сдвигаем все вправо

void autoscroll()

Включение режима автоматической прокрутки текста. При выводе каждого символа, весь текст на экране будет сдвигаться на один символ. В какую сторону сдвигается информация определяют функции leftToRight() и rightToLeft().

disp. autoscroll()(); // включаем автопрокрутку

void noAutoscroll()

Выключение автоматической прокрутки текста.

disp. noAutoscroll()(); // запрещаем автопрокрутку

void leftToRight()

Задает режим вывода теста слева-направо. Новые символы будут появляться справа от предыдущих.

leftToRight(); // режим слева-направо

void rightToLeft()

Задает режим вывода теста справа-налево. Новые символы будут появляться слева от предыдущих.

rightToLeft(); // режим справа-налево

void createChar(num, data)

Метод для создания пользовательского символа. Контроллер допускает создание до 8 символов (0…7) размером 5x8 пикселей. Изображение символа задается массивом размерностью 8 байт. 5 младших битов каждого байта определяют состояние пикселей строки.

Для вывода пользовательского символа можно использовать функцию write() с номером символа.

// создание пользовательского символа
#include

LiquidCrystal disp(6, 7, 2, 3, 4, 5); // создаем объект

byte smile = {
B00000000,
B00010001,
B00000000,
B00000000,
B00010001,
B00001110,
B00000000,
B00000000
};

void setup()
{
disp.createChar(0, smile); // создаем символ
disp.begin(20, 4); // инициализируем дисплей 4 строки по 20 символов
disp.print("Smile ");
disp.write(byte(0)); // выводим символ
}

void loop()
{ }

Вот пример программы, выводящей на экран русский алфавит.

// вывод русского алфавита
#include

LiquidCrystalRus disp(6, 7, 2, 3, 4, 5); // создаем объект

void setup()
{
disp.begin(20, 4); // инициализируем дисплей 4 строки по 20 символов
disp.print("абвгдеёжзийклмнопрст");
disp.print("АБВГДЕЁЖЗИЙКЛМНОПРСТ");
disp.print("уфхцчшщьыьэюя ");

Рубрика: . Вы можете добавить в закладки.

Инструкция

Действие ультразвукового дальномера HC-SR04 основано на принципе эхолокации. Он излучает звуковые импульсы в пространство и принимает отражённый от препятствия сигнал. По времени распространения звуковой волны к препятствию и обратно определяется расстояние до объекта.
Запуск звуковой волны начинается с подачи положительного импульса длительностью не менее 10 микросекунд на ножку TRIG дальномера. Как только импульс заканчивается, дальномер излучает в пространство перед собой пачку звуковых импульсов частотой 40 кГц. В это же время запускается алгоритм определения времени задержки отражённого сигнала, а на ножке ECHO дальномера появляется логическая единица. Как только датчик улавливает отражённый сигнал, на выводе ECHO появляется логический ноль. По длительности этого сигнала ("Задержка эхо" на рисунке) определяется расстояние до объекта.
Диапазон измерения расстояния дальномера HC-SR04 - до 4 метров с разрешением 0,3 см. Угол наблюдения - 30 градусов, эффективный угол - 15 градусов. Ток потребления в режиме ожидания 2 мА, при работе - 15 мА.

Питание ультразвукового дальномера осуществляется напряжением +5 В. Два других вывода подключаются к любым цифровым портам Arduino, мы подключим к 11 и 12.

Теперь напишем скетч, определяющий расстояние до препятствия и выводящий его в последовательный порт. Сначала задаём номера выводов TRIG и ECHO - это 12 и 11 пины. Затем объявляем триггер как выход, а эхо - как вход. Инициализируем последовательный порт на скорости 9600 бод. В каждом повторении цикла loop() считываем дистанцию и выводим в порт.
Функция getEchoTiming() генерирует импульс запуска. Она как раз создаёт ток 10 мксек импульс, который является триггером для начала излучения дальномером звукового пакета в пространство. Далее она запоминает время от начала передачи звуковой волны до прихода эха.
Функция getDistance() рассчитывает дистанцию до объекта. Из школьного курса физики мы помним, что расстояние равно скорость умножить на время: S = V*t. Скорость звука в воздухе 340 м/сек, время в микросекундах мы знаем, это "duratuion". Чтобы получить время в секундах, нужно разделить на 1.000.000. Так как звук проходит двойное расстояние - до объекта и обратно - нужно разделить расстояние пополам. Вот и получается, что расстояние до объекта S = 34000 см/сек * duration / 1.000.000 сек / 2 = 1,7 см/сек / 100, что мы и написали в скетче. Операцию умножения микроконтроллер выполняет быстрее, чем деления, поэтому "/ 100" я заменил на эквивалентное "* 0,01".

Также для работы с ультразвуковым дальномером написано множество библиотек. Например, вот эта: http://robocraft.ru/files/sensors/Ultrasonic/HC-SR04/ultrasonic-HC-SR04.zip. Установка библиотеки происходит стандартно: скачать, разархивировать в директорию libraries , которая находится в папке с Arduino IDE. После этого библиотекой можно пользоваться.
Установив библиотеку, напишем новый скетч. Результат его работы тот же - в мониторе последовательного порта выводится дистанция до объекта в сантиметрах. Если в скетче написать float dist_cm = ultrasonic.Ranging(INC); , то дистанция будет отображаться в дюймах.

Итак, мы с вами подключили к Arduino ультразвуковой дальномер HC-SR04 и получили с него данные двумя разными способами: с использованием специальной библиотеки и без.
Преимущество использования библиотеки в том, что количество кода значительно сокращается и улучшается читаемость программы, вам не приходится вникать в тонкости работы устройства и вы сразу же можете его использовать. Но в этом же кроется и недостаток: вы хуже понимаете, как работает устройство и какие в нём происходят процессы. В любом случае, каким способом пользоваться - решать только вам.

Жидкокристаллический дисплей (Liquid Crystal Display) сокращенно LCD построен на технологии жидких кристаллов. При проектировании электронные устройства, нам нужно недорогое устройство для отображения информации и второй не менее важный фактор наличии готовых библиотек для Arduino. Из всех доступных LCD дисплеев на рынке, наиболее часто используемой является LCD 1602A, который может отображать ASCII символа в 2 строки (16 знаков в 1 строке) каждый символ в виде матрицы 5х7 пикселей. В этой статье рассмотрим основы подключения дисплея к Arduino.

Технические параметры

Напряжение питания: 5 В
Размер дисплея: 2.6 дюйма
Тип дисплея: 2 строки по 16 символов
Цвет подсветки: синий
Цвет символов: белый
Габаритные: 80мм x 35мм x 11мм

Описание дисплея

LCD 1602A представляет собой электронный модуль основанный на драйвере HD44780 от Hitachi. LCD1602 имеет 16 контактов и может работать в 4-битном режиме (с использованием только 4 линии данных) или 8-битном режиме (с использованием всех 8 строк данных), так же можно использовать интерфейс I2C . В этой статье я расскажу о подключении в 4-битном режиме.

Назначение контактов:
VSS: «-» питание модуля
VDD: «+» питание модуля
VO: Вывод управления контрастом
RS: Выбор регистра
RW: Выбор режима записи или чтения (при подключении к земле, устанавливается режим записи)
E: Строб по спаду
DB0-DB3: Биты интерфейса
DB4-DB7: Биты интерфейса
A: «+» питание подсветки
K: «-» питание подсветки

На лицевой части модуля располагается LCD дисплей и группа контактов.

На задней части модуля расположено два чипа в «капельном» исполнении (ST7066U и ST7065S) и электрическая обвязка, рисовать принципиальную схему не вижу смысла, только расскажу о резисторе R8 (100 Ом), который служит ограничительным резистором для светодиодной подсветки, так что можно подключить 5В напрямую к контакту A. Немного попозже напишу статью в которой расскажу как можно менять подсветку LCD дисплея с помощью ШИП и транзистора.

Подключение LCD 1602A к Arduino (4-битном режиме)

Необходимые детали:
Arduino UNO R3 x 1 шт.
LCD-дисплей 1602A (2×16, 5V, Синий) x 1 шт.
Провод DuPont, 2,54 мм, 20 см, F-F (Female - Female) x 1 шт.
Потенциометр 10 кОм x 1 шт.
Разъем PLS-16 x 1 шт.
Макетная плата MB-102 x 1 шт.
Кабель USB 2.0 A-B x 1 шт.

Подключение :
Для подключения будем использовать макетную плату, схема и таблица подключение LCD1602a к Arduino в 4-битном режиме можно посмотреть на рисунке ниже.

Подключение дисплея к макетной плате будет осуществляться через штыревые контакты PLS-16 (их необходимо припаять к дисплею). Установим модуль дисплея в плату breadboard и подключим питание VDD (2-й контакт) к 5В (Arduino) и VSS (1-й контакт) к GND (Arduino), далее RS (4-й контакт) подключаем к цифровому контакту 8 (Arduino). RW (5-й контакт) заземляем, подключив его к GND (Arduino), затем подключить вывод E к контакту 8 (Arduino). Для 4-разрядного подключения необходимо четыре контакта (DB4 до DB7). Подключаем контакты DB4 (11-й контакт), DB5 (12-й контакт), DB6 (13-й контакт) и DB7 (14-й контакт) с цифровыми выводами Arduino 4, 5, 6 и 7. Потенциометр 10K используется для регулировки контрастности дисплея, схема подключения LCD дисплея 1602а, показана ниже

Библиотека уже входит в среду разработки IDE Arduino и нет необходимости ее устанавливать. Скопируйте и вставьте этот пример кода в окно программы IDE Arduino и загрузите в контроллер.

/* Тестирование производилось на Arduino IDE 1.6.11 Дата тестирования 20.09.2016г. */ #include LiquidCrystal lcd(8, 9, 4, 5, 6, 7); void setup() { lcd.begin(16, 2); // Инициализирует LCD 16x2 } void loop() { lcd.setCursor(0,0); // Установить курсор на первыю строку lcd.print("Hello, world"); // Вывести текст lcd.setCursor(0,1); // Установить курсор на вторую строку lcd.print("www.robotchip.ru"); // Вывести текст }

Тестирование производилось на Arduino IDE 1.6.11

Дата тестирования 20.09.2016г.

#include

LiquidCrystal lcd (8 , 9 , 4 , 5 , 6 , 7 ) ;

void setup ()

lcd . begin (16 , 2 ) ; // Инициализирует LCD 16x2

void loop ()

lcd . print ("Hello, world" ) ; // Вывести текст

lcd . print ("www.robotchip.ru" ) ; // Вывести текст

Скачать программу

Немного о программе .
Для облегчения связи между Arduino и LCD дисплеем, используется встроенный в библиотеке в IDE Arduino « LiquidCrystal.h « — которая написана для LCD дисплеев, использующих HD44780 (Hitachi) чипсет (или совместимые микросхемы). Эта библиотека может обрабатывать как 4 — битном режиме и 8 — битном режиме подключение LCD.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: