Почему мозг не работает как компьютер. Почему лучший компьютер по-прежнему уступает человеческому мозгу? Вы недостаточно двигаетесь

Печально осознавать, что в эпоху технического прогресса человеческий мозг по-прежнему остаётся загадкой. Кроме того, мы тратим миллионы долларов на развитие гигантских суперкомпьютеров и используем огромное количество энергии из невосполнимых ресурсов, чтобы обеспечить питанием эти приборы. А сравнительно маленький по размерам человеческий мозг по многим показателям по-прежнему превосходит самые мощные компьютеры. /сайт/

Суперкомпьютеру требуется 82 944 процессоров и 40 минут работы, чтобы симулировать одну секунду мозговой активности человека.

В прошлом году суперкомпьютер K использовался учёными из Окинавского технологического университета в Японии и Исследовательского центра Юлих в Германии в попытке симулировать 1 секунду активности человеческого мозга.

Компьютер смог воссоздать модель из 1,73 миллиарда нейронов (нервных клеток). Однако в человеческом мозге около 100 миллиардов нейронов. То есть в человеческом мозге примерно столько нейронов, сколько звёзд в Млечном пути. Несмотря на то, что компьютеру удалось успешно симулировать 1 секунду мозговой активности, это заняло 40 минут.

Работник Корейского научного института проверяет суперкомпьютеры в Тэджоне, Южная Корея, 5 ноября 2004 г. Фото: Chung Sung-Jun/Getty Images

Версия на английском

Установили бы Вы себе на телефон приложение для чтения статей сайта epochtimes?

Популярно утверждение, что человеческий мозг мощнее любого компьютера.
В настоящей заметке такая постоновка вопроса подвергается сомнению.
И предлагается рассматривать мозг с иных позиций.

Фёдор Проходский, редактор

Ваш мозг не обрабатывает информацию, не извлекает знания и не хранит воспоминания. Короче говоря, ваш мозг - не компьютер. Американский психолог Роберт Эпштейн объясняет, почему представление о мозге как о машине неэффективно ни для развития науки, ни для понимания человеческой природы.

Несмотря на все усилия, неврологи и когнитивные психологи никогда не найдут в мозге копии Пятой симфонии Бетховена, слов, картинок, грамматических правил или любых других внешних сигналов. Конечно же, мозг человека не совсем уж пустой. Но он не содержит большинства вещей, которые, по мнению людей, в нем содержатся - даже таких простых вещей, как «воспоминания».

Наше ложное представление о мозге имеет глубокие исторические корни, но особенно запутало нас изобретение компьютеров в 1940-х годах. На протяжении полувека психологи, лингвисты, нейрофизиологи и другие эксперты по вопросам человеческого поведения утверждали, что человеческий мозг работает подобно компьютеру.

Чтобы представить, насколько легкомысленна эта идея, рассмотрим мозг младенцев. Здоровый новорожденный обладает более чем десятью рефлексами. Он поворачивает голову в том направлении, где ему чешут щечку, и всасывает все, что попадает в рот. Он задерживает дыхание при погружении в воду. Он так сильно хватает вещи, попавшие ему в руки, что почти может удерживать свой собственный вес. Но, возможно, важнее всего то, что новорожденные обладают мощными механизмами обучения, позволяющими им быстро изменяться, чтобы они могли более эффективно взаимодействовать с окружающим миром.

Чувства, рефлексы и механизмы обучения - это то, что есть у нас с самого начала, и, если задуматься, это достаточно много. Если бы нам не хватало каких-либо из этих способностей, наверное, нам было бы трудно выжить.

Но вот, чего в нас нет с рождения: информации, данных, правил, знаний, лексики, представлений, алгоритмов, программ, моделей, воспоминаний, образов, процессоров, подпрограмм, кодеров, декодеров, символов и буферов - элементов, которые позволяют цифровым компьютерам вести себя в какой-то степени разумно. Мало того, что этих вещей нет в нас с рождения, они не развиваются в нас и при жизни.

Мы не храним слова или правила, говорящие нам, как ими пользоваться. Мы не создаем образы визуальных импульсов, не храним их в буфере кратковременной памяти и не передаем затем образы в устройство долгосрочной памяти. Мы не вызываем информацию, изображения или слова из реестра памяти. Все это делают компьютеры, но не живые существа.

Компьютеры в буквальном смысле слова обрабатывают информацию - цифры, слова, формулы, изображения. Сначала информация должна быть переведена в формат, который может распознать компьютер, то есть в наборы единиц и нулей («битов»), собранные в небольшие блоки («байты»).

Компьютеры перемещают эти наборы с места на место в различные области физической памяти, реализованной в виде электронных компонентов. Иногда они копируют наборы, а иногда различными способами трансформируют их - скажем, когда вы исправляете ошибки в рукописи или ретушируете фотографию. Правила, которым следует компьютер при перемещении, копировании или работе с массивом информации, тоже хранятся внутри компьютера. Набор правил называется «программой» или «алгоритмом». Совокупность работающих вместе алгоритмов, которую мы используем для разных целей (например, для покупки акций или знакомств в интернете) называется «приложением».

Это известные факты, но их нужно проговорить, чтобы внести ясность: компьютеры работают на символическом представлении мира. Они действительно хранят и извлекают. Они действительно обрабатывают. Они действительно имеют физическую память. Они действительно управляются алгоритмами во всем без исключения.

При этом люди ничего такого не делают. Так почему так много ученых говорит о нашей умственной деятельности так, как если бы мы были компьютерами?

В 2015 году эксперт по искусственному интеллекту Джордж Заркадакис выпустил книгу «По нашему образу», в которой он описывает шесть различных концепций, используемых людьми в течение последних двух тысяч лет для описания устройства человеческого интеллекта.

В наиболее ранней версии, изложенной в Библии, люди были созданы из глины или грязи, которую разумный Бог затем пропитал своим духом. Этот дух и «описывает» наш разум - по крайней мере, с грамматической точки зрения.

Изобретение гидравлики в III веке до нашей эры стало причиной популярности гидравлической концепции человеческого сознания. Идея состояла в том, что ток различных жидкостей в теле - «телесных жидкостей» - приходится и на физические, и на духовные функции. Гидравлическая концепция существовала на протяжении более чем 1600 лет, все это время затрудняя развитие медицины.

К XVI веку появились устройства, приводимые в действие пружинами и зубчатыми передачами, что вдохновило Рене Декарта на суждения о том, что человек - это сложный механизм. В XVII веке британский философ Томас Гоббс предположил, что мышление происходит благодаря небольшим механическим движениям в мозгу. К началу XVIII века открытия в области электричества и химии привели к появлению новой теории человеческого мышления, опять-таки имеющей больше метафорический характер. В середине XIX века немецкий физик Герман фон Гельмгольц, вдохновленный последними достижениями в области связи, сравнил мозг с телеграфом.

Математик Джон фон Нейман заявил, что функция человеческой нервной системы является «цифровой при отсутствии доказательств в пользу противного», проводя параллели между компонентами компьютерных машин того времени и участками человеческого мозга.

Каждая концепция отражает самые передовые идеи породившей её эпохи. Как и следовало ожидать, всего через несколько лет после зарождения компьютерных технологий в 1940-х годах стали утверждать, что мозг работает, как компьютер: роль физического носителя играл сам мозг, а наши мысли выступали в качестве программного обеспечения.

Такая точка зрения достигла максимального развития в книге «Компьютер и мозг» 1958 года, в которой математик Джон фон Нейман решительно заявил, что функция нервной системы человека является «цифровой при отсутствии доказательств в пользу противного». Хоть он и признавал, что о роли мозга в работе интеллекта и памяти известно очень мало, ученый проводил параллели между компонентами компьютерных машин того времени и участками человеческого мозга.

Благодаря последующим достижениям в области компьютерных технологий и исследования мозга, постепенно развивалось амбициозное междисциплинарное учение о человеческом сознании, в основе которого лежит идея о том, что люди, как и компьютеры - это информационные процессоры. Эта работа в настоящее время включает в себя тысячи исследований, получает миллиарды долларов финансирования, и становится темой для множества трудов. Книга Рэя Курцвейла «Как создать разум: Раскрытие тайны человеческого мышления», выпущенная в 2013 году, иллюстрирует эту точку зрения, описывает «алгоритмы» мозга, методы «обработки информации» и даже то, как он внешне напоминает в своей структуре интегральные схемы.

Представление о человеческом мышлении как об устройстве обработки информации (ОИ) в настоящее время доминирует в человеческом сознании как среди обычных людей, так и среди ученых. Но это, в конце концов, просто еще одна метафора, вымысел, который мы выдаем за действительность, чтобы объяснить то, что на самом деле не понимаем.

Несовершенную логику концепции ОИ довольно легко сформулировать. Она основана на ошибочном силлогизме с двумя разумными предположениями и неверным выводом. Разумное предположение №1: все компьютеры способны на разумное поведение. Разумное предположение №2: все компьютеры являются информационными процессорами. Неверное заключение: все объекты, способные вести себя разумно - информационные процессоры.

Если забыть о формальностях, то идея о том, что люди должны быть информационными процессорами, только потому, что компьютеры являются таковыми – это полная глупость, и когда от концепции ОИ окончательно откажутся, наверняка историками она будет рассматриваться с этой же точки зрения, как сейчас для нас выглядят чушью гидравлическая и механическая концепции.

Проведите эксперимент: нарисуйте сторублевую купюру по памяти, а потом достаньте ее из кошелька и скопируйте. Видите разницу?

Рисунок, сделанный в отсутствие оригинала, наверняка окажется ужасен в сравнении с рисунком, сделанным с натуры. Хотя вообще-то вы видели эту купюру не одну тысячу раз.

В чем проблема? Разве «образ» банкноты не должен «храниться» в «запоминающем регистре» нашего мозга? Почему мы не можем просто «обратиться» к этому «образу» и изобразить его на бумаге?

Очевидно, нет, и тысячи лет исследований не позволят определить расположение образа этой купюры в мозге человека просто потому, что его там нет.

Продвигаемая некоторыми учеными идея о том, что отдельные воспоминания каким-то образом хранятся в специальных нейронах, абсурдна. Помимо прочего эта теория выводит вопрос об устройстве памяти на еще более неразрешимый уровень: как и где тогда память хранится в клетках?

Сама идея того, что воспоминания хранятся в отдельных нейронах, абсурдна: как и где в клетке может храниться информация?

Нам никогда не придется беспокоиться о том, что человеческий разум выйдет из-под контроля в киберпространстве, и нам никогда не удастся достичь бессмертия, скачав душу на другой носитель.

Одно из предсказаний, которое в том или ином виде высказывали футуролог Рэй Курцвейл, физик Стивен Хокинг и многие другие, заключается в том, что если сознание человека подобно программе, то скоро должны появиться технологии, которые позволят загрузить его на компьютер, тем самым многократно усилив интеллектуальные способности и сделав возможным бессмертие. Эта идея легла в основу сюжета фильма-антиутопии «Превосходство» (2014), в котором Джонни Депп сыграл ученого, похожего на Курцвейла. Он загрузил свой разум в интернет, чем вызвал разрушительные последствия для человечества.

К счастью, концепция ОИ даже близко не имеет ничего общего с действительностью, так что нам не стоит волноваться о том, что человеческий разум выйдет из-под контроля в киберпространстве, и, как это ни прискорбно, нам никогда не удастся достичь бессмертия, скачав душу на другой носитель. Дело не только в отсутствии какого-то ПО в мозге, проблема здесь еще глубже – назовем ее проблемой уникальности, и она одновременно восхищает и угнетает.

Поскольку в нашем мозге нет ни «запоминающих устройств», ни «образов» внешних раздражителей, а в ходе жизни мозг меняется под действием внешних условий, нет повода считать, что любые два человека в мире реагируют на одно и то же воздействие одинаково. Если вы и я посетим один и тот же концерт, изменения, которые произойдут в вашем мозге после прослушивания, будут отличаться от изменений, которые произойдут в моем мозге. Эти изменения зависят от уникальной структуры нервных клеток, которая формировалась в ходе всей предыдущей жизни.

Именно поэтому, как написал Фредерик Бартлетт в 1932 году в книге «Память», два человека, услышавшие одну и ту же историю, не смогут пересказать ее полностью одинаково, а со временем их версии истории будут все меньше походить друг на друга.

По-моему, это очень вдохновляет, ведь это значит, что каждый из нас по-настоящему уникален, не только по набору генов, но и по тому, как меняется наш мозг со временем. Однако это также и угнетает, ведь это делает и без того трудную работу нейробиологов практически неразрешимой. Каждое изменение может затронуть тысячи, миллионы нейронов или весь мозг целиком, причем природа этих изменений в каждом случае тоже уникальна.

Хуже того, даже если бы мы смогли записать состояние каждого из 86 миллиардов нейронов мозга и сымитировать все это на компьютере, эта громадная модель оказалась бы бесполезной вне тела, которому принадлежит данный мозг. Это, пожалуй, самое досадное заблуждение об устройстве человека, которым мы обязаны ошибочной концепции ОИ.

В компьютерах хранятся точные копии данных. Они могут оставаться без изменений долгое время даже при отключении питания, в то время как мозг поддерживает наш интеллект, только пока он остается живым. Нет никакого рубильника. Либо мозг будет работать без остановки, либо нас не станет. Более того, как отметил нейробиолог Стивен Роуз в 2005 году в работе «Будущее мозга», копия текущего состояния мозга может быть бесполезна и без знания полной биографии его владельца, даже включая социальный контекст, в котором рос человек.

Тем временем огромные средства расходуются на исследования мозга, основанные на ложных идеях и обещаниях, которые не будут исполнены. Так, в Евросоюзе был запущен проект исследования человеческого мозга стоимостью $1,3 млрд. Европейские власти поверили заманчивым обещаниям Генри Маркрэма создать к 2023 году действующий симулятор работы мозга на базе суперкомпьютера, который бы в корне изменил подход к лечению болезни Альцгеймера и других недугов, и обеспечили проекту практически безграничное финансирование. Меньше чем через два года после запуска проекта он обернулся провалом, и Маркрэма попросили уйти в отставку.

Люди – это живые организмы, а не компьютеры. Примите это. Нужно продолжать тяжелую работу по пониманию самих себя, но не тратить время на ненужный интеллектуальный багаж. За полвека существования концепция ОИ дала нам всего несколько полезных открытий. Настало время нажать на кнопку Delete.

  • Перевод

Все мы помним со школы мучительные упражнения в арифметике. На то, чтобы перемножить числа вроде 3 752 и 6 901 при помощи карандаша и бумаги, уйдёт не меньше минуты. Конечно же, сегодня, когда под рукой у нас телефоны, мы быстро можем проверить, что результат нашего упражнения должен равняться 25 892 552. Процессоры современных телефонов могут выполнять более 100 млрд таких операций в секунду. Более того, эти чипы потребляют всего несколько ватт, что делает их гораздо эффективнее наших медленных мозгов, потребляющих 20 Вт и требующих гораздо большего времени на достижение того же результата.

Конечно же, мозг эволюционировал не для того, чтобы заниматься арифметикой. Поэтому у него это получается плохо. Но он прекрасно справляется с обработкой постоянного потока информации, идущего от нашего окружения. И он реагирует на неё – иногда быстрее, чем мы можем это осознать. И неважно, сколько энергии будет потреблять обычный компьютер – он с трудом будет справляться с тем, что легко даётся мозгу – например, с пониманием языка или с бегом по лестнице.

Если бы могли создать машины, вычислительные способности и энергетическая эффективность которых были бы сравнимы с мозгом, то всё поменялось бы кардинально. Роботы бы ловко двигались в физическом мире и общались бы с нами на естественном языке. Крупномасштабные системы собирали бы огромные объёмы информации по бизнесу, науке, медицине или управлению государством, обнаруживая новые закономерности, находя причинно-следственные связи и делая предсказания. Умные мобильные приложения типа Siri и Cortana могли бы меньше полагаться на облака. Такая технология могла бы позволить нам создать устройства с небольшим энергопотреблением, дополняющие наши чувства, обеспечивающие нас лекарствами и эмулирующие нервные сигналы, компенсируя повреждение органов или паралич.

Но не рано ли ставить себе такие смелые цели? Не слишком ограничено ли наше понимание мозга для того, чтобы мы могли создавать технологии, работающие на основе его принципов? Я считаю, что эмуляция даже простейших особенностей нервных контуров может резко улучшить работу множества коммерческих приложений. Насколько точно компьютеры должны копировать биологические детали строения мозга, чтобы приблизиться к его уровню быстродействия – это пока открытый вопрос. Но сегодняшние системы, вдохновлённые строением мозга, или нейроморфные, станут важными инструментами для поисков ответа на него.

Ключевая особенность обычных компьютеров – физическое разделение памяти, хранящей данные и инструкции, и логики, обрабатывающей эту информацию. В мозгу такого разделения нет. Вычисления и хранение данных происходят одновременно и локально, в обширной сети, состоящей из примерно 100 млрд нервных клеток (нейронов) и более 100 трлн связей (синапсов). По большей части мозг определяется этими связями и тем, как каждый из нейронов реагирует на входящий сигнал других нейронов.

Говоря об исключительных возможностях человеческого мозга, обычно мы имеем в виду недавнее приобретение долгого эволюционного процесса – неокортекс (новую кору). Этот тонкий и крайне складчатый слой формирует внешнюю оболочку мозга и выполняет очень разные задачи, включающие обработку поступающей от чувств информации, управление моторикой, работу с памятью и обучение. Такой широкий спектр возможностей доступен довольно однородной структуре: шесть горизонтальных слоёв и миллион вертикальных столбиков по 500 мкм шириной, состоящих из нейронов, интегрирующих и распределяющих информацию, закодированную в электрических импульсах, вдоль растущих из них усиков – дендритов и аксонов.

Как у всех клеток человеческого тела, у нейрона существует электрический потенциал порядка 70 мВ между внешней поверхностью и внутренностями. Это мембранное напряжение изменяется, когда нейрон получает сигнал от других связанных с ним нейронов. Если мембранное напряжение поднимается до критической величины, он формирует импульс, или скачок напряжения, длящийся несколько миллисекунд, величиной порядка 40 мВ. Этот импульс распространяется по аксону нейрона, пока не доходит до синапса – сложной биохимической структуры, соединяющей аксон одного нейрона с дендритом другого. Если импульс удовлетворяет определённым ограничениям, синапс преобразует его в другой импульс, идущий вниз по ветвящимся дендритам нейрона, получающего сигнал, и меняет его мембранное напряжение в положительную или отрицательную сторону.

Связность – критическая особенность мозга. Пирамидальный нейрон – особенно важный тип клеток человеческого неокортекса – содержит порядка 30 000 синапсов, то есть 30 000 входных каналов от других нейронов. И мозг постоянно приспосабливается. Нейрон и свойства синапса – и даже сама структура сети – постоянно изменяются, в основном под воздействием входных данных с органов чувств и обратной связи окружающей среды.

Современные компьютеры общего назначения цифровые, а не аналоговые; мозг классифицировать не так-то просто. Нейроны накапливают электрический заряд, как конденсаторы в электронных схемах. Это явно аналоговый процесс. Но мозг использует всплески в качестве единиц информации, а это в основе своей двоичная схема: в любое время в любом месте всплеск либо есть, либо его нет. В терминах электроники, мозг – система со смешанными сигналами, с локальными аналоговыми вычислениями и передачей информацией при помощи двоичных всплесков. Поскольку у всплеска есть только значения 0 или 1, он может пройти большое расстояние, не теряя этой основной информации. Он также воспроизводится, достигая следующего нейрона в сети.

Ещё одно ключевое отличие мозга и компьютера – мозг справляется с обработкой информации без центрального тактового генератора, синхронизирующего его работу. Хотя мы и наблюдаем синхронизирующие события – мозговые волны – они организуются сами, возникая как результат работы нейросетей. Что интересно, современные компьютерные системы начинают перенимать асинхронность, свойственную мозгу, чтобы ускорить вычисления, выполняя их параллельно. Но степень и цель параллелизации двух этих систем крайне различны.

У идеи использования мозга в качестве модели для вычислений глубокие корни. Первые попытки были основаны на простом пороговом нейроне , выдающем одно значение, если сумма взвешенных входящих данных превышает порог, и другое – если не превышает. Биологический реализм такого подхода, задуманного Уорреном Маккалохом и Уолтером Питтсом в 1940-х, весьма ограничен. Тем не менее, это был первый шаг к применению концепции срабатывающего нейрона в качестве элемента вычислений.

В 1957 году Фрэнк Розенблатт предложил другой вариант порогового нейрона, перцептрон . Сеть из взаимосвязанных узлов (искусственных нейронов) составляется слоями. Видимые слои на поверхности сети взаимодействуют с внешним миром в качестве входов и выходов, а скрытые слои, находящиеся внутри, выполняют все вычисления.

Розенблатт также предложил использовать основную особенность мозга: сдерживание. Вместо того, чтобы складывать все входы, нейроны в перцептроне могут вносить и отрицательный вклад. Эта особенность позволяет нейросетям использовать единственный скрытый слой для решения задач на XOR в логике, в которых выход равен истине, если только один из двух двоичных входов истинный. Этот простой пример показывает, что добавление биологического реализма может добавлять и новые вычислительные возможности. Но какие функции мозга необходимы для его работы, а какие – бесполезные следы эволюции? Никто не знает.

Нам известно, что впечатляющих вычислительных результатов можно добиться и без попыток создать биологический реализм. Исследователи глубинного обучения продвинулись очень далеко в деле использования компьютеров для анализа крупных объёмов данных и выделения определённых признаков из сложных изображений. Хотя созданные ими нейросети обладают большим количеством входов и скрытых слоёв, чем когда бы то ни было, они всё-таки основаны на крайне простых моделях нейронов. Их широкие возможности отражают не биологический реализм, а масштаб содержащихся в них сетей и мощность используемых для их тренировки компьютеров. Но сетям с глубинным обучением всё ещё очень далеко до вычислительных скоростей, энергетической эффективности и возможностей обучения биологического мозга.

Огромный разрыв между мозгом и современными компьютерами лучше всего подчёркивают крупномасштабные симуляции мозга. За последние годы было сделано несколько таких попыток, но все они были жёстко ограничены двумя факторами: энергией и временем симуляции. К примеру, рассмотрим симуляцию , проведённую Маркусом Дайсманом с его коллегами несколько лет назад при использовании 83 000 процессоров на суперкомпьютере К в Японии. Симуляция 1,73 млрд нейронов потребляла в 10 млрд раз больше энергии, чем эквивалентный участок мозга, хотя они и использовали чрезвычайно упрощённые модели и не проводили никакого обучения. И такие симуляции обычно работали более чем в 1000 раз медленнее реального времени биологического мозга.

Почему же они такие медленные? Симуляция мозга на обычных компьютерах требует вычисления миллиардов дифференциальных уравнений, связанных между собой, и описывающих динамику клеток и сетей: аналоговые процессы вроде перемещения заряда по клеточной мембране. Компьютеры, использующие булевскую логику – меняющую энергию на точность – и разделяющие память и вычисления, крайне неэффективно справляются с моделированием мозга.

Эти симуляции могут стать инструментом познания мозга, передавая полученные в лаборатории данные в симуляции, с которыми мы можем экспериментировать, а затем сравнивать результаты с наблюдениями. Но если мы надеемся идти в другом направлении и использовать уроки нейробиологии для создания новых вычислительных систем, нам необходимо переосмыслить то, как мы разрабатываем и создаём компьютеры.


Нейроны в кремнии.

Копирование работы мозга при помощи электроники может быть более выполнимым, чем это кажется на первый взгляд. Оказывается, что на создание электрического потенциала в синапсе тратится примерно 10 фДж (10 -15 джоулей). Затвор металл-оксид-полупроводникового (МОП) транзистора, значительно более крупного и потребляющего больше энергии, чем те, что используются в ЦП, требует для заряда лишь 0,5 фДж. Получается, что синаптическая передача эквивалентна зарядке 20 транзисторов. Более того, на уровне устройств биологические и электронные схемы не так уж сильно различаются. В принципе можно создать структуры, подобные синапсам и нейронам, из транзисторов, и соединить их так, чтобы получить искусственный мозг, не поглощающий таких вопиющих объёмов энергии.

Идея о создании компьютеров при помощи транзисторов, работающих как нейроны, появилась в 1980-х у профессора Карвера Мида из Калтеха. Одним из ключевых аргументов Мида в пользу «нейроморфных» компьютеров было то, что полупроводниковые устройства могут, работая в определённом режиме, следовать тем же физическим законам, что и нейроны, и что аналоговое поведение можно использовать для расчётов с большой энергоэффективностью.

Группа Мида также изобрела платформу для нейрокоммуникаций, в которой всплески кодируются только их адресами в сети и временем возникновения. Эта работа стала новаторской, поскольку она первой сделала время необходимой особенностью искусственных нейросетей. Время – ключевой фактор для мозга. Сигналам нужно время на распространение, мембранам – время на реакцию, и именно время определяет форму постсинаптических потенциалов.

Несколько активных сегодня исследовательских групп, например, группа Джиакомо Индивери из Швейцарской высшей технической школы и Квабены Боахен из Стэнфорда, пошли по стопам Мида и успешно внедрили элементы биологических корковых сетей. Фокус в том, чтобы работать с транзисторами при помощи тока низкого напряжения, не достигающего их порогового значения, создавая аналоговые схемы, копирующие поведение нервной системы, и при этом потребляющие немного энергии.

Дальнейшие исследования в этом направлении могут найти применение в таких системах, как интерфейс мозг-компьютер. Но между этими системами и реальным размером сети, связности и способностью к обучению животного мозга существует огромный разрыв.

Так что в районе 2005 году три группы исследователей независимо начали разрабатывать нейроморфные системы, существенно отличающиеся от изначального подхода Мида. Они хотели создать крупномасштабные системы с миллионами нейронов.

Ближе всех к обычным компьютерам стоит проект SpiNNaker , руководимый Стивом Фёрбером из Манчестерского университета. Эта группа разработала собственный цифровой чип, состоящий из 18 процессоров ARM, работающих на 200 МГц – примерно одна десятая часть скорости современных CPU. Хотя ядра ARM пришли из мира классических компьютеров, они симулируют всплески, отправляемые через особые маршрутизаторы, разработанные так, чтобы передавать информацию асинхронно – прямо как мозг. В текущей реализации, являющейся частью проекта Евросоюза «Человеческий мозг» , и завершённой в 2016 году, содержится 500 000 ядер ARM. В зависимости от сложности модели нейрона, каждое ядро способно симулировать до 1000 нейронов.

Чип TrueNorth, разработанный Дармендра Мода и его коллегами из Исследовательской лаборатории IBM в Альмадене, отказывается от использования микропроцессоров как вычислительных единиц, и представляет собой на самом деле нейроморфную систему, в которой переплелись вычисления и память. TrueNorth всё равно остаётся цифровой системой, но основана она на специально разработанных нейроконтурах, реализующих определённую модель нейрона. В чипе содержится 5,4 млрд транзисторов, он построен по 28-нм технологии Samsung КМОП (комплементарная структура металл-оксид-полупроводник). Транзисторы эмулируют 1 млн нейроконтуров и 256 млн простых (однобитных) синапсов на одном чипе.

Я бы сказал, что следующий проект, BrainScaleS , отошёл довольно далеко от обычных компьютеров и приблизился к биологическому мозгу. Над этим проектом работали мы с моими коллегами из Гейдельбергского университета для европейской инициативы «Человеческий мозг». BrainScaleS реализует обработку смешанных сигналов. Он комбинирует нейроны и синапсы, в роли которых выступают кремниевые транзисторы, работающие как аналоговые устройства с цифровым обменом информацией. Полноразмерная система состоит из 8-дюймовых кремниевых подложек и позволяет эмулировать 4 млн нейронов и 1 млрд синапсов.

Система может воспроизводить девять различных режимов срабатывания биологических нейронов, и разработана в тесном сотрудничестве с нейробиологами. В отличие от аналогового подхода Мида, BrainScaleS работает в ускоренном режиме, его эмуляция в 10 000 раз быстрее реального времени. Это особенно удобно для изучения процесса обучения и развития.

Обучение, скорее всего, станет критическим компонентом нейроморфных систем. Сейчас чипы, сделанные по образу мозга, а также нейросети, работающие на обычных компьютерах, тренируются на стороне при помощи более мощных компьютеров. Но если мы хотим использовать нейроморфные системы в реальных приложениях – допустим, в роботах, которые должны будут работать бок о бок с нами, они должны будут уметь учиться и адаптироваться на лету.

Во втором поколении нашей системы BrainScaleS мы реализовали возможность обучения, создав на чипе «обработчики гибкости». Они используются для изменения широкого спектра параметров нейронов и синапсов. Эта возможность позволяет нам точно подстраивать параметры для компенсации различий в размере и электрических свойствах при переходе от одного устройства к другому – примерно как сам мозг подстраивается под изменения.

Три описанных мной крупномасштабных системы дополняют друг друга. SpiNNaker можно гибко настраивать и использовать для проверки разных нейромоделей, у TrueNorth высока плотность интеграции, BrainScaleS разработана для постоянного обучения и развития. Поиски правильного способа оценки эффективности таких систем пока продолжаются. Но и ранние результаты многообещающие. Группа TrueNorth от IBM недавно подсчитала, что синаптическая передача в их системе отнимает 26 пДж. И хотя это в 1000 раз больше энергии, требующейся в биологической системе, зато это почти в 100 000 раз меньше энергии, уходящей на передачу в симуляции на компьютерах общего назначения.

Мы всё ещё находимся на ранней стадии понимания того, что могут делать такие системы и как их применять к решению реальных задач. Одновременно мы должны найти способы комбинировать множество нейроморфных чипов в крупные сети с улучшенными возможностями к обучению, при этом понижая энергопотребление. Одна из проблем – связность: мозг трёхмерный, а наши схемы – двумерные. Вопрос трёхмерной интеграции схем сейчас активно изучают, и такие технологии могут нам помочь.

Ещё одним подспорьем могут стать устройства, не основанные на КМОП – мемристоры или PCRAM (память с изменением фазового состояния). Сегодня веса, определяющие реакцию искусственных синапсов на входящие сигналы, хранятся в обычной цифровой памяти, отнимающей большую часть кремниевых ресурсов, необходимых для построения сети. Но другие виды памяти могут помочь нам уменьшить размеры этих ячеек с микрометровых до нанометровых. И основной трудностью современных систем будет поддержка различий между разными устройствами. Для этого смогут помочь принципы калибровки, разработанные в BrainScaleS.

Мы только начали свой путь по дороге к практичным и полезным нейроморфным системам. Но усилия стоят того. В случае успеха мы не только создадим мощные вычислительные системы; мы даже можем получить новую информацию о работе нашего собственного мозга.

Печально осознавать, что в эпоху технического прогресса человеческий мозг по-прежнему остаётся загадкой. Кроме того, мы тратим миллионы долларов на развитие гигантских суперкомпьютеров и используем огромное количество энергии из невосполнимых ресурсов, чтобы обеспечить питанием эти приборы. А сравнительно маленький по размерам человеческий мозг по многим показателям по-прежнему превосходит самые мощные компьютеры.

Суперкомпьютеру требуется 82 944 процессоров и 40 минут работы, чтобы симулировать одну секунду мозговой активности человека.

В прошлом году суперкомпьютер K использовался учёными из Окинавского технологического университета в Японии и Исследовательского центра Юлих в Германии в попытке симулировать 1 секунду активности человеческого мозга.

Компьютер смог воссоздать модель из 1,73 миллиарда нейронов (нервных клеток). Однако в человеческом мозге около 100 миллиардов нейронов. То есть в человеческом мозге примерно столько нейронов, сколько звёзд в Млечном пути. Несмотря на то, что компьютеру удалось успешно симулировать 1 секунду мозговой активности, это заняло 40 минут.

Работник Корейского научного института проверяет суперкомпьютеры в Тэджоне, Южная Корея, 5 ноября 2004 г.


Суперкомпьютер К в 2011 г. был самым быстрым компьютером в мире. Его мощность около 10,51 петафлопс, т. е. примерно 10 510 триллионов операций в секунду. Технологии развиваются стремительно, поэтому сейчас К уже на четвёртом месте, на первом месте ― Tianhe-2 (33,86 петафлопс, 33 860 триллионов операций в секунду). Таким образом, за три года нам удалось утроить вычислительную мощность самого продвинутого компьютера.

Чтобы сделать эти цифры понятнее, iPhone 5п производит примерно 0,0000768 петафлопс. Итого, самый быстрый в мире компьютер примерно в 440 000 быстрее, чем графика iPhone 5, но медленнее, чем человеческий мозг.

В исследовании Мартина Хильберта из школы коммуникации Анненберга при Университете Южной Калифорнии, опубликованном в журнале Science в 2011 г., подсчитана способность мира обрабатывать информацию. Хильберт сформулировал её следующим образом: «Люди всего мира могут осуществить 6,4*1018 операций в секунду на обычных компьютерах образца 2007 г., что сравнимо с максимальным количеством нервных импульсов, возникающих в одном человеческом мозге за секунду».

Мозг дёшево обходится: он достаётся бесплатно

За исключением редких врождённых патологий мы все рождаемся с мозгом. Чтобы построить Tianhe-2, потребовалось $390 миллионов, сообщает «Форбс». При интенсивной работе он потребляет свыше 17,6 мегаватт энергии, площадь компьютерного комплекса занимает 720 кв. метров. Другие суперкомпьютеры более экономичны и потребляют около 8 мегаватт.

Для сравнения: 1 мегаватт равен 1 миллиону ватт. 100-ваттная лампочка при включении берёт 100 ватт. В итоге самый быстрый компьютер потребляет столько же энергии, сколько 176 000 лампочек.

Д-р Джефф Лайтон, технолог Dell корпорации по производству компьютеров, пишет в блоге: «Эти системы очень громоздкие, дорогие и энергозатратные».

Конечно, мозгу тоже требуется энергия. Он получает её из еды, для производства которой в современной сельскохозяйственной системе требуется топливо.

Компьютеры, которые мы используем в повседневной жизни, полезны. Но некоторые эксперты сомневаются в полезности суперкомпьютеров.

Газета South China Morning Post опубликовала статью о китайском суперкомпьютере Tianhe-2: «В отличие от персональных компьютеров, которые могут выполнять самые разные задачи -- от обработки текстов до игр и просмотра вэб-страниц, суперкомпьютеры построены для специфических задач. Для изучения их полной вычислительной возможности учёные потратили месяцы, если не годы, для написания и переписывания кодов, чтобы обучить машину эффективно выполнять свою работу».

Старший научный сотрудник из Пекинского компьютерного центра, пожелавший остаться анонимным, сказал South China Morning Post: «Пузырь суперкомпьютеров хуже, чем пузырь рынка недвижимости. Здание простоит десятилетия после того, как его построили, а компьютер, вне зависимости от того, настолько он быстрый по сегодняшним меркам, превратится в хлам уже через пять лет».

Что быстрее: компьютерный модем или человеческий мозг?

Многие учёные пытались измерить скорость обработки информации человеческим мозгом. Цифры, которые они называют, различаются и зависят от использованного подхода. Сравнение скорости модема и «скорости» работы мозга едва ли можно отнести к разряду точных наук.

Во-первых, нужно рассмотреть, сколько битов в секунду может обработать ваш мозг, затем посмотреть, сколько битов в секунду в среднем обрабатывает современный компьютер. Говоря иными словами, надо сравнить, сколько времени компьютеру требуется для загрузки изображения из Интернета, и сколько времени вам нужно, чтобы проанализировать то, что вы видите перед глазами.

Д-р Тор Норретрандерс, профессор философии из Бизнес-школы Копенгагена, написал книгу под названием «Иллюзия пользователя: сокращаем объём сознания», в которой он утверждает, что сознание обрабатывает примерно 40 бит/с, а подсознание — 11 миллионов бит/с.

Австрийский физик-теоретик Герберт В. Франке утверждал, что человеческий разум может осознанно усваивать 16 бит/с и осознанно удерживать в уме 160 бит/с. Он отмечает, что по этой причине ум может упростить любую ситуацию до 160 бит/с.

Фермин Москозо дель Прадо Мартин, когнитивный психолог из Университета Прованса во Франции, определил, что мозг обрабатывает примерно 60 бит/с. В своей статье в журнале Technology Review он сказал, что не уверен насчёт верхнего предела. То есть он не может утверждать, что мозг неспособен обработать больше 60 бит/с.

А теперь посмотрим, насколько быстро работает ваш компьютер дома.

Один мегабит в секунду равен 1 миллиону бит в секунду. Домашние модемы могут работать со скоростью от 50 мегабит в секунду до нескольких сотен мегабит в секунду. Это в миллион раз быстрее, чем ваше сознание, и, по крайней мере, в пять раз быстрее, чем ваше подсознание. То есть в этом отношении компьютеры однозначно превосходят мозг. Разумеется, эти цифры неточные, потому что с человеческим подсознанием многое до конца неясно.

Однако, хотя люди сравнительно медленно воспринимают информацию, то, как они умеют её обрабатывать, впечатляет.

Мы учимся и мы изобретаем

Учёные работают над созданием компьютеров, которые бы обладали творческими способностями. Но в настоящее время самый продвинутый искусственный интеллект в этом отношении уступает даже мозгу людей, живших тысячи лет назад.

Автор и инженер-электромеханик Райан Дьюб в статье для сайта MakeUseOf.com комментирует высказывание писателя Гэри Маркуса: «Фундаментальное различие между компьютерами и человеческим разумом ― это организация памяти».

Дьюб писал: «Чтобы найти информацию, компьютер использует расположения виртуальной памяти. В свою очередь человеческий мозг помнит, где находится информация благодаря намёкам. Они сами по себе являются единицей информации или памяти, связанной с информацией, которую надо найти.

«Это означает, что человеческий разум в состоянии связать между собой практически безграничное количество концепций самыми разными способами, а затем при получении новой информации убрать или восстановить эти связи. Эта особенность позволяет людям выйти за пределы уже изученной информации и создавать новые изобретения и искусство, что является отличительной особенностью человеческой расы».

Мозг мало изучен, и его преимущества до конца не раскрыты

National Geographic иллюстрирует, насколько сложно создать точную модель человеческого мозга. В февральском номере журнала в статье «Новая наука мозга» рассказывается, как учёные создали трёхмерную модель части мозга мыши размером с крупинку соли. Чтобы детально отобразить этот крошечный отдел, они использовали электронный микроскоп и разделили его на 200 секций, каждая толщиной в человеческий волос.

«Чтобы отобразить человеческий мозг схожим образом, потребовалось бы количество данных, превосходящее все тексты во всех библиотеках мира», ―пишет National Geographic.

В 2005 г. исследователи из Калифорнийского университета и Калифорнийского технологического института обнаружили, что лишь некоторые из 100 миллиардов нейронов в мозгу используются для хранения информации о конкретном человеке, месте или концепции. Например, они обнаружили, что когда людям показали фото актрисы Дженнифер Энистон, в мозгу реагировал один конкретный нейрон. А на фото актрисы Хэлли Берри реагировал уже другой нейрон.


Наш мозг не обрабатывает информацию, не извлекает знания и не хранит воспоминания. В этом убежден психолог Роберт Эпштейн, автор 15 книг и бывший главный редактор журнала «Psychology Today». Уже много лет он активно выступает против взгляда на мозг как на машину для обработки данных. «Футурист» публикует развернутую статью Эпштейна, которая может полностью перевернуть ваше представление о мозге.

Копировать-вставить

В нашем мозге невозможно найти копию Пятой симфонии Бетховена . А также копии слов, картинок, грамматических правил или любых других стимулов из окружающей среды. Человеческий мозг, конечно, нельзя назвать «пустым». Однако он не содержит большинство из того, что, по всеобщему мнению, должен содержать. В нем нет даже такой простой вещи, как «воспоминания».

Роберт Эпштейн

Наше неверное представление о мозге имеет глубокие исторические корни, но наибольший вред нанесло изобретение компьютеров в 1940-х годах. Уже больше полувека психологи, лингвисты и нейрофизиологи принимают за данность, что человеческий мозг работает по принципу компьютера.

Чтобы увидеть, насколько нелепа эта идея, подумайте о мозге детей . Благодаря эволюции, новорожденные у хомо сапиенс, как и у всех других видов млекопитающих, попадают в мир подготовленными . Они готовы эффективно взаимодействовать с миром. Зрение младенца размыто, однако оно легко выделяет лица. Довольно быстро малыш запоминает лицо матери. Слух ребенка отдает предпочтение голосам, отделяя их от других звуков, а также может отличить одну манеру речи от другой. Без сомнения, мы подготовлены к построению социальных связей.

Здоровый младенец также обладает как минимум дюжиной рефлексов — готовых реакций на определенные раздражители, которые важны для выживания. Новорожденный поворачивает голову в направлении предмета, который касается его щеки, и сосет все, что попадает ему в рот. Он хватает вещи, которые мы опускаем ему на раскрытую ладонь, так крепко, что может удержать собственный вес. Возможно, важнее всего, что у детей с рождения есть мощные механизмы обучения , которые позволяют им стремительно меняться , так что они могут всё более эффективно взаимодействовать с миром, даже если этот мир не похож на тот, что встречал их далеких предков.

Органы чувств, рефлексы и механизмы обучения — вот с чем мы начинаем, и это немало. Если бы в этом наборе чего-то не хватало, выжить было бы непросто.

А вот с чем мы не рождаемся : информация, данные, правила, лексикон, алгоритмы, программы, подпрограммы, модели, память, изображения, процессоры, шифраторы, декодеры, символы и буфер обмена. В нас нет всех тех элементов, которые позволяют цифровым компьютерам демонстрировать более-менее разумное поведение. Мы не только не рождаемся с таким набором функций, мы также не развиваем их — никогда.

Мы не храним слова или правила, которые диктуют, как манипулировать словами. Мы не создаем репрезентации или отображения визуальных стимулов, не сохраняем их в буфере кратковременной памяти и не передаем в долговременную память. Мы не загружаем информацию, картинки или слова из памяти. Компьютеры выполняют все эти действия, организмы — нет.

Компьютеры буквально обрабатывают информацию — числа, буквы, слова, формулы, изображения. Информацию необходимо закодировать в понятный компьютерам формат, то есть вереницы единиц и нулей (биты), собранные в небольшие группы (байты). Определенная последовательность этих логических элементов кодирует букву Д, другая — О, третья — М. Поставленные рядом, эти три бувы формируют слово ДОМ. Любая картинка, например, фотография кота, представлена очень сложной последовательностью из миллионов байт, окруженных специальными знаками, которые говорят компьютеру, что в этом месте хранится изображение, а не слово.

Разумеется, это очень тезисное введение в компьютерную теорию, но оно позволяет сделать простой вывод: компьютеры действительно работают с символическими отображениями мира. Они действительно хранят и извлекают. Они реально обрабатывают. У них есть физическая память. Всеми их действиями, без исключений, руководят алгоритмы .

Но люди ничего из этого не делают — никогда не делали и никогда не будут. Принимая во внимание этот факт, зададимся вопросом: почему так много ученых говорят о жизни нашего сознания так, как будто мы компьютеры?

Четыре жидкости, которые управляли организмом человека по представлению древних греков и средневековых астрологов (отсюда произошли четыре типа темперамента)

Метафоры сознания

В книге «По нашему образу и подобию» (In Our Own Image, 2015) исследователь искусственного интеллекта Джордж Заркадакис описывает шесть различных метафор , которые люди использовали последние 2000 лет, чтобы объяснить человеческое сознание.

В самой ранней метафоре, чьи следы мы находим в Библии, людей создают из глины , в которую разумное божество вдыхает дух. Этот дух «объясняет» то, что мы разумны.

Открытие законов гидравлики и появление первых гидротехнических сооружений в 3 веке до нашей эры привело к росту популярности гидравлической модели сознания. Философы решили, что и телом, и умственной жизнью руководят различные жидкости в нашем теле — «гуморы». Гидравлическая метафора продержалась 1600 лет, сильно замедляя прогресс в медицинских знаниях.

В 1500-х годах появились автоматы, приводимые в действие пружинами и шестеренками. В итоге лидирующие мыслители, такие как Рене Декарт, заявили, что люди — это сложные машины . В 1600-х британский философ Томас Гоббс предполагал, что наши мысли — результат механической работы небольших элементов в мозгу. К 1700-м открытия в области электричества и химии привели к рождению новых теорий человеческого сознания — опять же, по большей части метафорических. В 1800-х, под впечатлением от последних достижений в области передачи сообщений, немецкий физик Герман фон Гельмгольц сравнил мозг с телеграфом .

Каждая метафора отражала самые передовые идеи своей эпохи. Неудивительно, что всего через несколько лет после рождения компьютерной технологии в 1940-х многие заявили: мозг работает подобно компьютеру . При этом роль «железа» играют нейроны, а мысли — это программное обеспечение. Ключевым событием в развитии того, что сегодня называют «когнитивной наукой», стала публикация книги «Язык и коммуникация» в 1951 году. В ней психолог Джордж Миллер предложил исследовать мышление с помощью понятий из теории информации, кибернетики и лингвистики.

Такого рода теоретизирование получило свое наивысшее выражение в короткой книге «Компьютер и мозг» (1958), в которой математик Джон фон Нейман напрямую заявлял: функция человеческой нервной системы — цифровая. Признавая, что о механизмах мышления и памяти известно мало, ученый все же провел множество параллелей между компонентами вычислительных машин и элементами человеческого мозга.

Футуролог Рэй Курцвейл

Успехи в развитии компьютерных технологий и исследованиях мозга привели к зарождению мощного междисциплинарного направления. Его целью было понять человеческий разум. В основе подхода лежало убеждение, что люди, подобно компьютерам, обрабатывают информацию . И те и другие — процессоры, буквально «обработчики». В этой области сейчас трудятся тысячи исследователей, которые поглощают миллиарды долларов в грантах и пишут огромное количество технических пособий и популярных статей и книг. В качестве примера этого подхода можно привести последнюю книгу Рэя Курцвейла «Как создать разум: раскрытие секретов человеческого мышления». В ней футуролог пишет об «алгоритмах» в мозге, о том, как мозг «обрабатывает данные», даже о внешнем сходстве нейронных и электронных сетей.

Прилипчивая метафора

Метафора «информационной обработки» (ИО) сегодня доминирует в наших представлениях о функционировании сознания. Вряд ли можно найти хоть какую-либо форму изучения разумного человеческого поведения, которая обходится без использования этой метафоры — точно так же, как в предыдущие эпохи говорить о сознании было невозможно без упоминания духа или божества . Обоснованность ИО-метафоры в сегодняшнем мире принимается за данность.

Однако ИО-метафора — это, в конечном итоге, еще одна метафора, то есть история, которую мы рассказываем, чтобы придать смысл чему-то, что мы не понимаем. Как и все предыдущие метафоры, в какой-то момент ее придется оставить — заменить новой метафорой или, если повезет, реальным знанием.

Сама идея, что люди должны обрабатывать информацию, просто потому что компьютеры обрабатывают информацию, откровенно глупа . И когда в один прекрасный день ИО-метафору наконец забросят, историки наверняка посмотрят на наши взгляды с насмешкой, так же как мы сегодня находим глупыми гидравлическую и механическую метафоры.

Эксперимент с долларом

Чтобы продемонстрировать ложность ИО-метафоры во время лекции, Роберт Эпштейн обычно вызывает добровольца и просит его как можно реалистичнее нарисовать на доске купюру номиналом в 1 доллар. Когда студент справляется, психолог закрывает изображение листом бумаги, прикрепляет рядом реальную банкноту и просит добровольца повторить процедуру. Когда задание выполнено, аудитории предлагается сравнить результаты.

Как правило, студентов удивляет, сколь мало сходства у двух изображений. Рисунок по памяти не идет ни в какое сравнение со второй картинкой, срисованной с оригинала. При этом каждый из студентов тысячи раз видел долларовую купюру.

В чем же проблема? Разве у нас в мозгу нет «отображения» банкноты, которое «хранится» в «регистре данных» нашей памяти? Разве мы не можем просто «извлечь» картинку и использовать ее, чтобы нарисовать копию?

Очевидно, нет, и даже за тысячу лет нейронаука не обнаружит «отображение » долларовой купюры, хранящееся в человеческом мозге, по той простой причине, что его там нет .

Большое количество статей о мозге говорит нам, что даже простейшие воспоминания задействуют многие зоны мозга, иногда довольно обширные. Когда дело доходит до сильных эмоций, одновременно может повышаться активность миллионов нейронов. Нейропсихологи из Университета Торонто исследовали выживших после авиакатастрофы и обнаружили, что воспоминания о трагедии задействовали много разных зон, в том числе миндалевидное тело и зрительную кору.

Что же происходит, когда студент рисует доллар по памяти? Так как он неоднократно видел купюру, его мозг изменился . Говоря конкретнее, нейронная сеть изменилась таким образом, что студент может визуализировать банкноту — то есть, заново испытать видение доллара, во всяком случае, до определенной степени.

Разница между двумя рисунками напоминает, что визуализация чего-то (видение в отсутствие предмета) гораздо менее точна, чем непосредственное наблюдение. Именно поэтому мы гораздо лучше справляемся с распознаванием, чем с припоминанием. Когда мы вспоминаем, мы пытаемся заново пережить некий опыт. Когда же мы узнаём что-то, нам всего лишь достаточно осознавать, что раньше мы уже переживали то же самое.

Даже если бы студент приложил сознательное усилие, чтобы запомнить купюру во всех подробностях, нельзя было бы сказать, что картинка «сохранилась» в мозгу. Просто студент стал лучше подготовлен к тому, чтобы нарисовать доллар по памяти. Точно так же пианист, практикуясь, становится более опытным и лучше играет концерт, но при этом ему не нужно каким-либо образом вдыхать копию партитуры.

Дирижер Артуро Тосканини обладал фотографической памятью и мог воспроизвести без партитуры 2,5-часовую оперу, но ему не требовалось «загружать» ее себе в мозг - он каждый раз проживал ее заново

Мозг без информации

Начиная с этого простого упражнения, мы можем приняться за новую теорию разумного человеческого поведения без всяких метафор. В этой теории мозг не будет полностью пустым, но, по крайней мере, мы обойдемся без багажа ИО-метафоры.

В своей жизни человек переживает различный опыт , который его изменяет. Особого упоминания заслуживают три типа переживаний: 1. Мы наблюдаем за тем, что происходит вокруг нас (как ведут себя другие люди, как звучит музыка, какие нам дают указания, как выглядят слова на странице и картинки на экране). 2. Мы обнаруживаем, что неважные стимулы (например, звук сирены) идут в связке с важными (например, появлением полицейских машин). 3. Нас наказывают или поощряют за то, что мы ведем себя определенным образом.

Чтобы быть более успешным представителем своего вида, мы меняемся таким образом, чтобы лучше соответствовать этим типам опыта. Если мы можем прочитать стихотворение наизусть или спеть песню, если мы можем следовать инструкциям, если мы реагируем на второстепенные стимулы так же, как на первостепенные, если мы ведем себя так, что заслуживаем одобрение окружающих, — во всех этих случаях социальное приспособление увеличивается.

Несмотря на громкие заголовки, до сих пор никто не знает, как мозг меняется в ходе заучивания наизусть песни или стихотворения. Однако ни песня, ни стихи в сознании не «сохраняются». Просто мозг изменяется упорядоченным образом, так что мы теперь при определенных условиях можем спеть песню или прочитать стихи. Когда приходит время сделать это, песня и стихи не «извлекаются» из определенного места в мозгу, точно так же как движения пальца не «извлекаются» из памяти, когда мы стучим по столу. Мы просто поем или читаем стихи — без всякого извлечения.

В последнее время появляется все больше когнитивных психологов, которые полностью отказываются от «компьютерного» взгляда на мозг. К ним принадлежит, например, Энтони Чемеро из Университета Цинциннати. Вместе с коллегами он настаивает на том, что организмы находятся в прямом контакте со своим окружением. Это становится основой для нового описания разумного поведения.

Вот еще один пример того, насколько различны подходы к сознанию с точки зрения «обработки информации» и в рамках новой «антирепрезентативной» перспективы. В 2002 году ученые из Университета штата Аризона описали два возможных взгляда на простое действие в спорте: бейсболист пытается поймать летящий мяч . Согласно ИО-метафоре, мозгу игрока необходимо оценить начальные условия полета мяча — скорость, угол, траекторию, — затем создать и проанализировать внутреннюю модель движения, спрогнозировать, где мяч окажется в будущем, и на основе этой модели адаптировать движения тела в реальном времени и поймать мяч.

Это все имело бы место, если бы мы функционировали как компьютеры. Однако автор работы Майкл МакБит и его коллеги сумели объяснить происходящее гораздо проще: чтобы поймать мяч, бейсболисту просто нужно двигаться таким образом, чтобы мяч находился в постоянном визуальном контакте с «домом» (углом квадрата в бейсболе, где стоит игрок с битой) и окружающими предметами. Звучит сложновато, но на деле это невероятно просто и не требует никаких вычислений, отображений и алгоритмов.

Психологи Эндрю Уилсон и Сабрина Голонка из Городского университета Лидса в Великобритании уже много лет ведут блог , в котором собирают свидетельства, подобные примеру с бейсболом. Свою цель они описывают следующим образом:

«Мы стремимся к более связному, более естественному подходу к строгому изучению человеческого поведения, который не вписывается в господствующие взгляды в когнитивных науках» .

Однако Уилсон и Голонка в меньшинстве . Подавляющее большинство исследователей мозга по-прежнему активно использует ИО-метафору. Более того, огромное количество предсказаний делается на основе сравнения мозга с компьютером. Например, вам наверняка приходилось читать, что в будущем станет возможно загружать человеческое сознание в компьютер и что это сделает нас невероятно умными и, возможно, бессмертными. Подобные прогнозы, среди прочих, высказывали Рэй Курцвейл и Стивен Хокинг. Та же идея стала предпосылкой фильма «Превосходство» с Джонни Деппом, где герой загружает мозг в интернет и начинает терроризировать человечество.

К счастью, такие напасти нам не грозят, так как ИО-метафора не имеет под собой оснований. Нам никогда не придется волноваться о людях, сошедших с ума в киберпространстве. Впрочем, есть и плохая новость: достичь бессмертия с помощью переселения в компьютер тоже не удастся. Не только из-за того, что в мозгу нет «программы сознания», но также потому, что Эпштейн называет проблемой уникальности . И это — самое главное в его теории.

Проблема уникальности

Раз в мозгу нет ни «хранилища данных», ни «отображений» стимулов, а также по той причине, что для успешного функционирования мозгу необходимо меняться под влиянием опыта, нет оснований полагать, что два человека меняются одинаково под влиянием одного и того же события. Вы пришли на концерт, чтобы послушать Пятую симфонию Бетховена. Скорее всего, изменения, которые произойдут в вашем мозгу, будут разительно отличаться от изменений, которые произойдут в мозгу человека на соседнем кресле. Какими бы ни были эти изменения, они происходят в уникальной конфигурации нейронов, которая развивалась в результате десятилетий уникального опыта .

В своем классическом труде 1932 года британский психолог сэр Фредерик Бартлетт показал , что два человека повторяют услышанную историю по-разному. Более того, со временем версия каждого из слушателей отличается все больше. Никто из слушателей не создает «копию» рассказа; вместо этого каждый человек меняется под влиянием истории — достаточным образом, чтобы впоследствии суметь ее пересказать. Спустя дни, месяцы и даже годы испытуемые могут заново пережить историю, хотя и не во всех деталях.

С одной стороны, это очень вдохновляет . Каждый человекна земле поистине уникален , не только в смысле генетики, но и в плане строения своего серого вещества. Однако это также обескураживает, потому что задача нейропсихолога становится невообразимо сложной. Любой опыт вызывает упорядоченное изменение, которое задействует тысячи, миллионы нейронов или даже весь мозг, и конфигурация этих изменений будет своей для каждого человека.

Более того, даже если бы у нас была технология, чтобы сделать снимок 86 миллиардов нейронов и затем запустить их симуляцию внутри компьютера, эта огромная структура не будет значить ничего снаружи мозга, который дал ей жизнь. Возможно, в этом аспекте ИО-метафора больше всего исказила наше представление о функционировании разума. В компьютерах хранение точных копий возможно, и эти копии не изменяются со временем, даже если отключить источник питания. Однако мозг поддерживает наш разум только до тех пор, пока он остается живым . Либо мозг продолжает функционировать, либо мы исчезаем.

В книге «Будущее мозга» нейробиолог Стивен Роуз к тому же показал, что снимок мозга в определенный момент может быть бесполезным, если мы не знаем всю историю жизни его обладателя — возможно, даже такие детали, как социальные условия, в которых прошло детство человека.

Вот насколько сложна проблема. Чтобы понять даже основы того, как мозг поддерживает разум, нам нужно знать не только состояние 86 миллиардов нейронов и 100 триллионов связей между ними в данный момент, не только интенсивность, с которой нейроны обмениваются сигналами, не только состояния более чем 1000 белков, которые существуют в каждом синапсе, но и то, как активность мозга от одного момента к другому способствует целостности всей системы . Добавьте к этому уникальность каждого мозга (следствие уникальности биографии его обладателя) — и тогда вы поймете, почему нейробиолог Кеннет Миллер в недавней передовице «Нью-Йорк Таймс» предположил, что на понимание основных законов нейронных связей уйдут «века».

А тем временем огромные суммы денег тратятся на исследования мозга, основанные на ложных предпосылках. Самый вопиющий случай, о котором в прошлом году писал «Сайентифик Американ», касается масштабной инициативы Human Brain Project . Евросоюз потратил на проект больше миллиарда долларов. Глава коллаборации, харизматичный Генри Маркрам сумел убедить спонсоров, что в 2023 году он сможет создать симуляцию целого мозга при помощи суперкомпьютера и что это приведет к революции в поисках средства от болезни Альцгеймера. Научные ведомства ЕС дали ученым карт-бланш. Итог? Научное сообщество взбунтовалось против слишком узкого подхода к проблеме и неразумного расходования средств, Маркрама вынудили покинуть проект, и вся инициатива оказалась в подвешенном состоянии.

Генри Маркрам рассказывает о проекте Human Brain Project на конференции TED

Роберт Эпштейн завершает статью следующим призывом:

«Мы — организмы, а не компьютеры. Давайте продолжим попытки понять человеческий разум, при этом не сковывая себя по рукам и ногам ненужным интеллектуальным багажом. Метафора «информационной обработки» отметила полувековой юбилей, но принесла не слишком много откровений. Пришло время нажать клавишу Delete» .

Послесловие «Футуриста»

На сайте журнала « Aeon» статья Роберта Эпштейна вызвала оживленную дискуссию и подверглась жесткой критике. Читатели оставили более 400 комментариев. Многие обвинили автора в том, что он не приводит достаточно аргументов в поддержку своего тезиса и слишком грубо описывает позицию оппонентов. Метафора «обработки информации» не ставит мозг в один разряд с компьютерами. Разумеется, отдельные нейроны не могут быть носителями воспоминаний, а отображения (репрезентации) в мозге не похожи на копии картинок и слов. Тем не менее «информация» — достаточно широкое понятие, чтобы его можно было применять и в кибернетике, и в нейронауках. Даже те читатели, кто согласился с основным посылом статьи, обвинили Эпштейна в перегибании палки: психолог увлекся разоблачениями — и в итоге нарисовал слишком упрощенную картину.

При этом многие читатели сошлись во мнении, что «загрузка мозга в компьютер» — плохая идея, и поддержали автора в его призыве рассматривать мозг как уникальный живой организм, а не как бездушную машину для обработки данных.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: