Ранг матрицы равен числу ненулевых строк. Понятие о ранге матрицы. Как исследовать систему линейных уравнений на совместность


Пусть A - матрица размеров m\times n , а k - натуральное число, не превосходящее m и n : k\leqslant\min\{m;n\} . Минором k-го порядка матрицы A называется определитель матрицы k-го порядка, образованной элементами, стоящими на пересечении произвольно выбранных k строк и k столбцов матрицы A . Обозначая миноры, номера выбранных строк будем указывать верхними индексами, а выбранных столбцов - нижними, располагая их по возрастанию.


Пример 3.4. Записать миноры разных порядков матрицы


A=\begin{pmatrix}1&2&1&0\\ 0&2&2&3\\ 1&4&3&3\end{pmatrix}\!.


Решение. Матрица A имеет размеры 3\times4 . Она имеет: 12 миноров 1-го порядка, например, минор M_{{}_2}^{{}_3}=\det(a_{32})=4 ; 18 миноров 2-го порядка, например, M_{{}_{23}}^{{}^{12}}=\begin{vmatrix}2&1\\2&2\end{vmatrix}=2 ; 4 минора 3-го порядка, например,


M_{{}_{134}}^{{}^{123}}= \begin{vmatrix}1&1&0\\0&2&3\\ 1&3&3 \end{vmatrix}=0.

В матрице A размеров m\times n минор r-го порядка называется базисным , если он отличен от нуля, а все миноры (r+1)-ro порядка равны нулю или их вообще не существует.


Рангом матрицы называется порядок базисного минора. В нулевой матрице базисного минора нет. Поэтому ранг нулевой матрицы, по определению полагают равным нулю. Ранг матрицы A обозначается \operatorname{rg}A .


Пример 3.5. Найти все базисные миноры и ранг матрицы


A=\begin{pmatrix}1&2&2&0\\0&2&2&3\\0&0&0&0\end{pmatrix}\!.


Решение. Все миноры третьего порядка данной матрицы равны нулю, так как у этих определителей третья строка нулевая. Поэтому базисным может быть только минор второго порядка, расположенный в первых двух строках матрицы. Перебирая 6 возможных миноров, отбираем отличные от нуля


M_{{}_{12}}^{{}^{12}}= M_{{}_{13}}^{{}^{12}}= \begin{vmatrix}1&2\\0&2 \end{vmatrix}\!,\quad M_{{}_{24}}^{{}^{12}}= M_{{}_{34}}^{{}^{12}}= \begin{vmatrix}2&0\\2&3\end{vmatrix}\!,\quad M_{{}_{14}}^{{}^{12}}= \begin{vmatrix}1&0\\0&3\end{vmatrix}\!.


Каждый из этих пяти миноров является базисным. Следовательно, ранг матрицы равен 2.

Замечания 3.2


1. Если в матрице все миноры k-го порядка равны нулю, то равны нулю и миноры более высокого порядка. Действительно, раскладывая минор (k+1)-ro порядка по любой строке, получаем сумму произведений элементов этой строки на миноры k-го порядка, а они равны нулю.


2. Ранг матрицы равен наибольшему порядку отличного от нуля минора этой матрицы.


3. Если квадратная матрица невырожденная, то ее ранг равен ее порядку. Если квадратная матрица вырожденная, то ее ранг меньше ее порядка.


4. Для ранга применяются также обозначения \operatorname{Rg}A,~ \operatorname{rang}A,~ \operatorname{rank}A .


5. Ранг блочной матрицы определяется как ранг обычной (числовой) матрицы, т.е. не обращая внимания на ее блочную структуру. При этом ранг блочной матрицы не меньше рангов ее блоков: \operatorname{rg}(A\mid B)\geqslant\operatorname{rg}A и \operatorname{rg}(A\mid B)\geqslant\operatorname{rg}B , поскольку все миноры матрицы A (или B ) являются также минорами блочной матрицы (A\mid B) .

Теоремы о базисном миноре и о ранге матрицы

Рассмотрим основные теоремы, выражающие свойства линейной зависимости и линейной независимости столбцов (строк) матрицы.


Теорема 3.1 о базисном миноре. В произвольной матрице A каждый столбец {строка) является линейной комбинацией столбцов (строк), в которых расположен базисный минор.


Действительно, без ограничения общности предполагаем, что в матрице A размеров m\times n базисный минор расположен в первых r строках и первых r столбцах. Рассмотрим определитель


D=\begin{vmatrix}~ a_{11}&\cdots&a_{1r}\!\!&\vline\!\!&a_{1k}~\\ ~\vdots&\ddots &\vdots\!\!&\vline\!\!&\vdots~\\ ~a_{r1}&\cdots&a_{rr}\!\!&\vline\!\!&a_{rk}~\\\hline ~a_{s1}&\cdots&a_{sr}\!\!&\vline\!\!&a_{sk}~\end{vmatrix},


который получен приписыванием к базисному минору матрицы A соответствующих элементов s-й строки и k-го столбца. Отметим, что при любых 1\leqslant s\leqslant m и этот определитель равен нулю. Если s\leqslant r или k\leqslant r , то определитель D содержит две одинаковых строки или два одинаковых столбца. Если же s>r и k>r , то определитель D равен нулю, так как является минором (r+l)-ro порядка. Раскладывая определитель по последней строке, получаем


a_{s1}\cdot D_{r+11}+\ldots+ a_{sr}\cdot D_{r+1r}+a_{sk}\cdot D_{r+1\,r+1}=0,


где D_{r+1\,j} - алгебраические дополнения элементов последней строки. Заметим, что D_{r+1\,r+1}\ne0 , так как это базисный минор. Поэтому


a_{sk}=\lambda_1\cdot a_{s1}+\ldots+\lambda_r\cdot a_{sr} , где \lambda_j=-\frac{D_{r+1\,j}}{D_{r+1\,r+1}},~j=1,2,\ldots,r.


Записывая последнее равенство для s=1,2,\ldots,m , получаем

\begin{pmatrix}a_{1k}\\\vdots\\a_{mk}\end{pmatrix}= \lambda_1\cdot\! \begin{pmatrix}a_{11}\\\vdots\\a_{m1}\end{pmatrix}+\ldots \lambda_r\cdot\! \begin{pmatrix}a_{1r}\\\vdots\\a_{mr}\end{pmatrix}\!.


т.е. k -й столбец (при любом 1\leqslant k\leqslant n ) есть линейная комбинация столбцов базисного минора, что и требовалось доказать.


Теорема о базисном миноре служит для доказательства следующих важных теорем.

Условие равенства нулю определителя

Теорема 3.2 (необходимое и достаточное условие равенства нулю определителя). Для того чтобы определитель был равен нулю необходимо и достаточно, чтобы один из его столбцов {одна из его строк) был линейной комбинацией остальных столбцов (строк).


В самом деле, необходимость следует из теоремы о базисном миноре. Если определитель квадратной матрицы n-го порядка равен нулю, то ее ранг меньше n , т.е. хотя бы один столбец не входит в базисный минор. Тогда этот выбранный столбец по теореме 3.1 является линейной комбинацией столбцов, в которых расположен базисный минор. Добавляя, при необходимости, к этой комбинации другие столбцы с нулевыми коэффициентами, получаем, что выбранный столбец есть линейная комбинация остальных столбцов матрицы. Достаточность следует из свойств определителя. Если, например, последний столбец A_n определителя \det(A_1~A_2~\cdots~A_n) линейно выражается через остальные


A_n=\lambda_1\cdot A_1+\lambda_2\cdot A_2+\ldots+\lambda_{n-1}\cdot A_{n-1},


то прибавляя к A_n столбец A_1 , умноженный на (-\lambda_1) , затем столбец A_2 , умноженный на (-\lambda_2) , и т.д. столбец A_{n-1} , умноженный на (-\lambda_{n-1}) , получим определитель \det(A_1~\cdots~A_{n-1}~o) с нулевым столбцом, который равен нулю (свойство 2 определителя).

Инвариантность ранга матрицы при элементарных преобразованиях

Теорема 3.3 (об инвариантности ранга при элементарных преобразованиях). При элементарных преобразованиях столбцов (строк) матрицы ее ранг не меняется.


Действительно, пусть . Предположим, что в результате одного элементарного преобразования столбцов матрицы A получили матрицу A" . Если было выполнено преобразование I типа (перестановка двух столбцов), то любой минор (r+l)-ro порядка матрицы A" либо равен соответствующему минору (r+l)-ro порядка матрицы A , либо отличается от него знаком (свойство 3 определителя). Если было выполнено преобразование II типа (умножение столбца на число \lambda\ne0 ), то любой минор (г+l)-ro порядка матрицы A" либо равен соответствующему минору (r+l)-ro порядка матрицы A , либо отличается от него множителем \lambda\ne0 (свойство 6 определителя). Если было выполнено преобразование III типа (прибавление к одному столбцу другого столбца, умноженного на число \Lambda ), то любой минор (г+1)-го порядка матрицы A" либо равен соответствующему минору (г+1) -го порядка матрицы A (свойство 9 определителя), либо равен сумме двух миноров (r+l)-ro порядка матрицы A (свойство 8 определителя). Поэтому при элементарном преобразовании любого типа все миноры (r+l)-ro порядка матрицы A" равны нулю, так как равны нулю все миноры (г+l)-ro порядка матрицы A . Таким образом, доказано, что при элементарных преобразованиях столбцов ранг матрицы не может увеличиться. Так как преобразования, обратные к элементарным, являются элементарными, то ранг матрицы при элементарных преобразованиях столбцов не может и уменьшиться, т.е. не изменяется. Аналогично доказывается, что ранг матрицы не изменяется при элементарных преобразованиях строк.


Следствие 1. Если одна строка (столбец) матрицы является линейной комбинацией других ее строк (столбцов), то эту строку (столбец) можно вычеркнуть из матрицы, не изменив при этом ее ранга.


Действительно, такую строку при помощи элементарных преобразований можно сделать нулевой, а нулевая строка не может входить в базисный минор.


Следствие 2. Если матрица приведена к простейшему виду (1.7), то


\operatorname{rg}A=\operatorname{rg}\Lambda=r\,.


Действительно, матрица простейшего вида (1.7) имеет базисный минор r-го порядка.


Следствие 3. Любая невырожденная квадратная матрица является элементарной, другими словами, любая невырожденная квадратная матрица эквивалентна единичной матрице того же порядка.


Действительно, если A - невырожденная квадратная матрица n-го порядка, то \operatorname{rg}A=n (см. п.З замечаний 3.2). Поэтому, приводя элементарными преобразованиями матрицу A к простейшему виду (1.7), получим единичную матрицу \Lambda=E_n , так как \operatorname{rg}A=\operatorname{rg}\Lambda=n (см. следствие 2). Следовательно, матрица A эквивалентна единичной матрице E_n и может быть получена из нее в результате конечного числа элементарных преобразований. Это означает, что матрица A элементарная.

Теорема 3.4 (о ранге матрицы). Ранг матрицы равен максимальному числу линейно независимых строк этой матрицы.


В самом деле, пусть \operatorname{rg}A=r . Тогда в матрице A имеется r линейно независимых строк. Это строки, в которых расположен базисный минор. Если бы они были линейно зависимы, то этот минор был бы равен нулю по теореме 3.2, а ранг матрицы A не равнялся бы r . Покажем, что r - максимальное число линейно независимых строк, т.е. любые p строк линейно зависимы при p>r . Действительно, образуем из этих p строк матрицу B . Поскольку матрица B - это часть матрицы A , то \operatorname{rg}B\leqslant \operatorname{rg}A=r

Значит, хотя бы одна строка матрицы B не входит в базисный минор этой матрицы. Тогда по теореме о базисном миноре она равна линейной комбинации строк, в которых расположен базисный минор. Следовательно, строки матрицы B линейно зависимы. Таким образом, в матрице A не более, чем r линейно независимых строк.


Следствие 1. Максимальное число линейно независимых строк в матрице равно максимальному числу линейно независимых столбцов:


\operatorname{rg}A=\operatorname{rg}A^T.


Это утверждение вытекает из теоремы 3.4, если ее применить к строкам транспонированной матрицы и учесть, что при транспонировании миноры не изменяются (свойство 1 определителя).


Следствие 2. При элементарных преобразованиях строк матрицы линейная зависимость (или линейная независимость) любой системы столбцов этой матрицы сохраняется.


В самом деле, выберем любые k столбцов данной матрицы A и составим из них матрицу B . Пусть в результате элементарных преобразований строк матрицы A была получена матрица A" , а в результате тех же преобразований строк матрицы B была получена матрица B" . По теореме 3.3 \operatorname{rg}B"=\operatorname{rg}B . Следовательно, если столбцы матрицы B были линейно независимы, т.е. k=\operatorname{rg}B (см. следствие 1), то и столбцы матрицы B" также линейно независимы, так как k=\operatorname{rg}B" . Если столбцы матрицы B были линейно зависимы (k>\operatorname{rg}B) , то и столбцы матрицы B" также линейно зависимы (k>\operatorname{rg}B") . Следовательно, для любых столбцов матрицы A линейная зависимость или линейная независимость сохраняется при элементарных преобразованиях строк.


Замечания 3.3


1. В силу следствия 1 теоремы 3.4 свойство столбцов, указанное в следствии 2, справедливо и для любой системы строк матрицы, если элементарные преобразования выполняются только над ее столбцами.


2. Следствие 3 теоремы 3.3 можно уточнить следующим образом: любую невырожденную квадратную матрицу, используя элементарные преобразования только ее строк (либо только ее столбцов), можно привести к единичной матрице того же порядка.


В самом деле, используя только элементарные преобразования строк, любую матрицу A можно привести к упрощенному виду \Lambda (рис. 1.5) (см. теорему 1.1). Поскольку матрица A невырожденная (\det{A}\ne0) , то ее столбцы линейно независимы. Значит, столбцы матрицы \Lambda также линейно независимы (следствие 2 теоремы 3.4). Поэтому упрощенный вид \Lambda невырожденной матрицы A совпадает с ее простейшим видом (рис. 1.6) и представляет собой единичную матрицу \Lambda=E (см. следствие 3 теоремы 3.3). Таким образом, преобразовывая только строки невырожденной матрицы, ее можно привести к единичной. Аналогичные рассуждения справедливы и для элементарных преобразований столбцов невырожденной матрицы.

Ранге произведения и суммы матриц

Теорема 3.5 (о ранге произведения матриц). Ранг произведения матриц не превышает ранга множителей:


\operatorname{rg}(A\cdot B)\leqslant \min\{\operatorname{rg}A,\operatorname{rg}B\}.


В самом деле, пусть матрицы A и B имеют размеры m\times p и p\times n . Припишем к матрице A матрицу C=AB\colon\,(A\mid C) . Разумеется, что \operatorname{rg}C\leqslant\operatorname{rg}(A\mid C) , так как C - это часть матрицы (A\mid C) (см. п.5 замечаний 3.2). Заметим, что каждый столбец C_j , согласно операции умножения матриц, является линейной комбинацией столбцов A_1,A_2,\ldots,A_p матрицы A=(A_1~\cdots~A_p):


C_{j}=A_1\cdot b_{1j}+A_2\cdot b_{2j}+\ldots+A_{p}\cdot b_pj},\quad j=1,2,\ldots,n.


Такой столбец можно вычеркнуть из матрицы (A\mid C) , при этом ее ранг не изменится (следствие 1 теоремы 3.3). Вычеркивая все столбцы матрицы C , получаем: \operatorname{rg}(A\mid C)=\operatorname{rg}A . Отсюда, \operatorname{rg}C\leqslant\operatorname{rg}(A\mid C)=\operatorname{rg}A . Аналогично можно доказать, что одновременно выполняется условие \operatorname{rg}C\leqslant\operatorname{rg}B , и сделать вывод о справедливости теоремы.


Следствие. Если A невырожденная квадратная матрица, то \operatorname{rg}(AB)= \operatorname{rg}B и \operatorname{rg}(CA)=\operatorname{rg}C , т.е. ранг матрицы не изменяется приумножении ее слева или справа на невырожденную квадратную матрицу.


Теорема 3.6 о ранге суммы матриц. Ранг суммы матриц не превышает суммы рангов слагаемых:


\operatorname{rg}(A+B)\leqslant \operatorname{rg}A+\operatorname{rg}B.


Действительно, составим матрицу (A+B\mid A\mid B) . Заметим, что каждый столбец матрицы A+B есть линейная комбинация столбцов матриц A и B . Поэтому \operatorname{rg}(A+B\mid A\mid B)= \operatorname{rg}(A\mid B) . Учитывая, что количество линейно независимых столбцов в матрице (A\mid B) не превосходит \operatorname{rg}A+\operatorname{rg}B , a \operatorname{rg}(A+B)\leqslant \operatorname{rg}(A+B\mid A\mid B) (см. п.5 замечаний 3.2), получаем доказываемое неравенство.

Определение ранга матрицы

Рассмотрим матрицу \(A\) типа \((m,n)\). Пусть, для определенности, \(m \leq n\). Возьмем \(m\) строк и выберем \(m\) столбцов матрицы \(A\), на пересечении этих строк и столбцов получится квадратная матрица порядка \(m\), определитель которой называют минором порядка \(m\) матрицы \(A\). Если этот минор отличен от 0, его называют базисным минором и говорят, что ранг матрицы \(A\) равен \(m\). Если же этот определитель равен 0, то выбирают другие \(m\) столбцов, на их пересечении стоят элементы, образующие другой минор порядка \(m\). Если минор равен 0, продолжаем процедуру. Если среди всех возможных миноров порядка \(m\) нет отличных от нуля, мы выбираем \(m-1\) cтрок и столбцов из матрицы \(A\), на их пересечении возникает квадратная матрица порядка \(m-1\), ее определитель называется минором порядка \(m-1\) исходной матрицы. Продолжая процедуру, ищем ненулевой минор, перебирая все возможные миноры, понижая их порядок.

Определение.

Ненулевой минор данной матрицы наивысшего порядка называется базисным минором исходной матрицы, его порядок называется рангом матрицы \(A\), строки и столбцы, на пересечении которых находится базисный минор, называются базисныи строками и столбцами. Ранг матрицы обозначается \(rang(A)\).

Из этого определения следуют простые свойства ранга матрицы: это целое число, причем ранг ненулевой матрицы удовлетворяет неравенствам: \(1 \leq rang(A) \leq \min(m,n)\).

Как изменится ранг матрицы, если вычеркнуть какую-нибудь строку? Добавить какую-нибудь строку?

Проверить ответ

1) Ранг может уменьшиться на 1.

2) Ранг может увеличиться на 1.

Линейная зависимость и линейная независимость столбцов матрицы

Пусть \(A\) - матрица типа \((m,n)\). Рассмотрим столбцы матрицы \(A\) - это столбцы из \(m\) чисел каждый. Обозначим их \(A_1,A_2,...,A_n\). Пусть \(c_1,c_2,...,c_n\) - какие-то числа.

Определение.

Столбец \[ D=c_1A_1+c_2A_2+...+c_nA_n = \sum _{m=1}^nc_mA_m \] называется линейной комбинацией столбцов \(A_1,A_2,...,A_n\), числа \(c_1,c_2,...,c_n\) называются коэффициентами этой линейной комбинации.

Определение.

Пусть дано \(p\) столбцов \(A_1, A_2, ..., A_p\). Если существуют такие числа \(c_1,c_2,...,c_p\), что

1. не все эти числа равны нулю,

2. линейная комбинация \(c_1A_1+c_2A_2+...+c_pA_p =\sum _{m=1}^pc_mA_m\) равна нулевому столбцу (т.е. столбцу, все элементы которого нули), то говорят, что столбцы \(A_1, A_2, ..., A_p\) линейно зависимы. Если для данного набора столбцов таких чисел \(c_1,c_2,...,c_n\) не существует, столбцы называются линейно независимыми.

Пример. Рассмотрим 2-столбцы

\[ A_1=\left(\begin{array}{c} 1 \\ 0 \end{array} \right), A_2=\left(\begin{array}{c} 0 \\ 1 \end{array} \right), \] тогда для любых чисел \(c_1,c_2\) имеем: \[ c_1A_1+c_2A_2=c_1\left(\begin{array}{c} 1 \\ 0 \end{array} \right)+c_2\left(\begin{array}{c} 0 \\ 1 \end{array} \right)=\left(\begin{array}{c} c_1 \\ c_2 \end{array} \right). \]

Эта линейная комбинация равна нулевому столбцу тогда и только тогда, когда оба числа \(c_1,c_2\) равны нулю. Таким образом, эти столбцы линейно независимы.

Утверждение. Для того, чтобы столбцы были линейно зависимы, необходимо и достаточно, чтобы один из них был линейной комбинацией остальных.

Пусть столбцы \(A_1,A_2,...,A_m\) линейно зависимы, т.е. для некоторых констант \(\lambda _1, \lambda _2,...,\lambda _m\), не все из которых равны 0, выполняется: \[ \sum _{k=1}^m\lambda _kA_k=0 \] (в правой части - нулевой столбец). Пусть, например, \(\lambda _1 \neq 0\). Тогда \[ A_1=\sum _{k=2}^mc_kA_k, \quad c_k=-\lambda _k/\lambda _1, \quad \quad (15) \] т.е. первый столбец - линейная комбинация остальных.

Теорема о базисном миноре

Теорема.

Для любой ненулевой матрицы \(A\) справедливо следующее:

1. Базисные столбцы линейно независимы.

2. Любой столбец матрицы является линейной комбинацией его базисных столбцов.

(Аналогичное верно и для строк).

Пусть, для определенности, \((m,n)\) - тип матрицы \(A\), \(rang(A)=r \leq n\) и базисный минор расположен в первых \(r\) строках и столбцах матрицы \(A\). Пусть \(s\) - любое число между 1 и \(m\), \(k\) - любое число между 1 и \(n\). Рассмотрим минор следующего вида: \[ D=\left| \begin{array}{ccccc} a_{11} & a_{12} & \ldots & a_{1r} & a_{1s} \\ a_{21} & a_{22} & \ldots & a_{2r} & a_{2s} \\ \dots &\ldots & \ldots & \ldots & \ldots \\ a_{r1} & a_{r2} & \ldots & a_{rr} & a_{rs} \\ a_{k1} & a_{k2} & \ldots & a_{kr} & a_{ks} \\ \end{array} \right| , \] т.е. мы к базисному минору приписали \(s-\)ый столбец и \(k-\)ую строку. По определению ранга матрицы этот определитель равен нулю (если мы выбрали \(s\leq r\) или \(k \leq r\) , значит в этом миноре 2 одинаковых столбца или 2 одинаковых строки, если \(s>r\) и \(k>r\) - по определению ранга минор размера больше \(r\) обращается в ноль). Разложим этот определитель по последней строке, получим: \[ a_{k1}A_{k1}+a_{k2}A_{k2}+....+a_{kr}A_{kr}+a_{ks}A_{ks}=0. \quad \quad(16) \]

Здесь числа \(A_{kp}\) - алгебраические дополнения элементов из нижней строки \(D\). Их величины не зависят от \(k\), т.к. образуются с помощью элементов из первых \(r\) строк. При этом величина \(A_{ks}\) - это базисный минор, отличный от 0. Обозначим \(A_{k1}=c_1,A_{k2}=c_2,...,A_{ks}=c_s \neq 0\). Перепишем в новых обозначениях (16): \[ c_1a_{k1}+c_2a_{k2}+...+c_ra_{kr}+c_sa_{ks}=0, \] или, разделив на \(c_s\), \[ a_{ks}=\lambda_1a_{k1}+\lambda_2a_{k2}+...+\lambda_ra_{kr}, \quad \lambda _p=-c_p/c_s. \] Это равенство справедливо для любого значения \(k\), так что \[ a_{1s}=\lambda_1a_{11}+\lambda_2a_{12}+...+\lambda_ra_{1r}, \] \[ a_{2s}=\lambda_1a_{21}+\lambda_2a_{22}+...+\lambda_ra_{2r}, \] \[ ........................................................ \] \[ a_{ms}=\lambda_1a_{m1}+\lambda_2a_{m2}+...+\lambda_ra_{mr}. \] Итак, \(s-\)ый столбец является линейной комбинацией первых \(r\) столбцов. Теорема доказана.

Замечание.

Из теоремы о базисном миноре следует, что ранг матрицы равен числу ее линейно независимых столбцов (которое равно числу линейно независимых строк).

Следствие 1.

Если определитель равен нулю, то у него есть столбец, который является линейной комбинацией остальных столбцов.

Следствие 2.

Если ранг матрицы меньше числа столбцов, то столбцы матрицы линейно зависимы.

Вычисление ранга матрицы и нахождение базисного минора

Некоторые преобразования матрицы не меняют ее ранг. Такие преобразования можно назвать элементарными. Соответствующие факты нетрудно проверить с помощью свойств определителей и определения ранга матрицы.

1. Перестановка столбцов.

2. Умножение элементов какого-нибудь столбца на ненулевой множитель.

3. Прибавление к столбцу любого другого столбца, умноженного на произвольное число.

4. Вычеркивание нулевого столбца.

Аналогичное верно и для строк.

С помощью этих преобразований матрицу можно преобразовать к так называемой "трапециевидной" форме - матрице, под главной диагональю которой располагаются только нули. Для "трапециевидной" матрицы ранг - это число ненулевых элементов на главной диагонали, и базисный минор - минор, диагональ которого совпадает с набором ненулевых элементов на главной диагонали преобразованной матрицы.

Пример. Рассмотрим матрицу

\[ A=\left(\begin{array}{cccc} 2 &1 & 11 & 2 \\ 1 & 0 & 4 & -1 \\ 11 & 4 & 56 & 5 \\ 2 & -1 & 5 & -6 \end{array} \right). \] Будем преобразовывать ее с помощью указанных выше преобразований. \[ A=\left(\begin{array}{cccc} 2 &1 & 11 & 2 \\ 1 & 0 & 4 & -1 \\ 11 & 4 & 56 & 5 \\ 2 & -1 & 5 & -6 \end{array} \right) \mapsto \left(\begin{array}{cccc} 1 & 0 & 4 & -1 \\ 2 & 1 & 11 & 2 \\ 11 & 4 & 56 & 5 \\ 2 & -1 & 5 & -6 \end{array} \right) \mapsto \left(\begin{array}{cccc} 1 & 0 & 4 & -1 \\ 0 & 1 & 3 & 4 \\ 0 & 4 & 12 & 16 \\ 0 & -1 & -3 & -4 \end{array} \right) \mapsto \] \[ \left(\begin{array}{cccc} 1 & 0 & 4 & -1 \\ 0 & 1 & 3 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right)\mapsto \left(\begin{array}{cccc} 1 & 0 & 4 & -1 \\ 0 & 1 & 3 & 4 \end{array}\right). \]

Здесь мы последовательно делаем следующие шаги: 1) переставляем вторую строку наверх, 2) вычитаем первую строку из остальных с подходящим множителем, 3) вычитаем вторую строку из третьей 4 раза, прибавляем вторую строку к четвертой, 4) вычеркиваем нулевые строки - третью и четвертую. Наша итоговая матрица прибрела желаемую форму: на главной диагонали стоят ненулевые числа, под главной диагональю - нули. После этого процедура останавливается и число ненулевых элементов на главной диагонали равно рангу матрицы. Базисный минор при этом - две первые строки и два первых столбца. На их пересечении стоит матрица порядка 2 с ненулевым определителем. При этом, возвращаясь по цепочке преобразований в обратную сторону, можно проследить, откуда возникла та или иная строка (тот или иной столбец) в конечной матрице, т.е. определить базисные строки и столбцы в исходной матрице. В данном случае первые две строки и первые два столбца образуют базисный минор.

«Если Вы хотите научиться плавать, то смело входите в воду, а если хотите научиться решать задачи , то решайте их
Д. Пойа (1887-1985 г.)

(Математик. Внёс большой вклад в популяризацию математики. Написал несколько книг о том, как решают задачи и как надо учить решать задачи.)

Рассмотрим матрицу

Выделим в ней k-строк и k-столбцов (k≤(min(m,n)) ). Из элементов, стоящих на пересечении выделенных строк и столбцов, составим определитель k-го порядка. Все такие определители называются минорами этой матрицы.

Рассмотрим всевозможные миноры матрицы А , отличные от нуля.

Рангом матрицы А называется наибольший порядок минора этой матрицы, отличного от нуля.

Если все элементы матрицы равны нулю, то ранг этой матрицы принимают равным нулю.

Минор, порядок которого определяет ранг матрицы, называется базисным.

У матрицы может быть несколько базисных миноров.

Ранг матрицы А обозначается r(A) . Если r(A)=r(B) , то матрицы А и В называются эквивалентными. Пишут A̴∼В .

Свойства ранга матрицы:

  1. При транспонировании матрицы ее ранг не меняется.
  2. Если вычеркнуть из матрицы нулевую строку (столбец), то ранг матрицы не изменится.
  3. Ранг матрицы не изменяется при элементарных преобразованиях матрицы.

Под элементарными преобразованиями понимают:

  • Перестановку строк матрицы;
  • Умножение какой-либо строки на число, отличное от нуля;
  • Прибавление к элементам одной строки соответствующих элементов другой строки, умноженной на произвольное число.

При вычислении ранга матрицы могут быть использованы элементарные преобразования, метод приведения матрицы к ступенчатому виду, метод окаймляющих миноров.

Метод приведения матрицы к ступенчатому виду заключается в том, что при помощи элементарных преобразований данная матрица приводится к ступенчатой.

Матрица называется ступенчатой , если в каждой ее строке первый ненулевой элемент стоит правее, чем в предыдущей (т. е. получаются ступеньки, высота каждой ступеньки должна быть равна единице).

Примеры ступенчатых матриц:

Примеры не ступенчатых матриц:

ПРИМЕР: Найти ранг матрицы:

РЕШЕНИЕ:

Приведем данную матрицу к ступенчатой с помощью элементарных преобразований.

1.Поменяем местами первую и третью строки.

2. Получим в первом столбце нули под единицей.

Прибавив ко второй строке первую, умноженную на (-3), к третьей – первую, умноженную на (-5), к четвертой – первую, умноженную на (-3), получим

Для того чтобы было понятней где еще нужно получить нули, нарисуем ступеньки в матрице. (Матрица будет ступенчатой, если везде под ступеньками будут нули)

3. Прибавив к третьей строке вторую, умноженную на (-1), к четвертой – вторую, умноженную на (-1), получим нули под ступеньками во втором столбце.

Если нарисовать опять ступеньки, увидим, что матрица ступенчатая.

Ее ранг равен r=3 (число строк ступенчатой матрицы, в каждой из которых хотя бы один элемент отличен от нуля). Следовательно, ранг данной матрицы r=3.

Решение можно записать так:

(римскими цифрами обозначены номера строк)

Ответ: r=3.

Минор порядка k+1 , содержащий в себе минор порядка k называется окаймляющим минор.

Метод окаймляющих миноров основан на том, что ранг данной матрицы равен порядку такого минора этой матрицы, который отличен от нуля, а все окаймляющие его миноры равны нулю.

Элементарными называются следующие преобразования матрицы:

1) перестановка двух любых строк (или столбцов),

2) умножение строки (или столбца) на отличное от нуля число,

3) прибавление к одной строке (или столбцу) другой строки (или столбца), умноженной на некоторое число.

Две матрицы называются эквивалентными , если одна из них получается из другой с помощью конечного множества элементарных преобразований.

Эквивалентные матрицы не являются, вообще говоря, равными, но их ранги равны. Если матрицы А и В эквивалентны, то это записывается так: A ~ B.

Канонической матрицей называется матрица, у которой в начале главной диагонали стоят подряд несколько единиц (число которых может равняться нулю), а все остальные элементы равны нулю, например,

При помощи элементарных преобразований строк и столбцов любую матрицу можно привести к канонической. Ранг канонической матрицы равен числу единиц на ее главной диагонали.

Пример 2 Найти ранг матрицы

А=

и привести ее к каноническому виду.

Решение. Из второй строки вычтем первую и переставим эти строки:

.

Теперь из второй и третьей строк вычтем первую, умноженную соответственно на 2 и 5:

;

из третьей строки вычтем первую; получим матрицу

В = ,

которая эквивалентна матрице А, так как получена из нее с помощью конечного множества элементарных преобразований. Очевидно, что ранг матрицы В равен 2, а следовательно, и r(A)=2. Матрицу В легко привести к канонической. Вычитая первый столбец, умноженный на подходящие числа, из всех последующих, обратим в нуль все элементы первой строки, кроме первого, причем элементы остальных строк не изменяются. Затем, вычитая второй столбец, умноженный на подходящие числа, из всех последующих, обратим в нуль все элементы второй строки, кроме второго, и получим каноническую матрицу:

.

Теоре́ма Кро́некера - Капе́лли - критерий совместности системы линейных алгебраических уравнений:

Для того чтобы линейная система являлась совместной, необходимо и достаточно, что бы ранг расширенной матрицы этой системы был равен рангу ее основной матрицы.

Доказательство (условия совместности системы)

Необходимость

Пусть система совместна. Тогда существуют числа такие, что . Следовательно, столбец является линейной комбинацией столбцов матрицы . Из того, что ранг матрицы не изменится, если из системы его строк (столбцов) вычеркнуть или приписать строку (столбец), которая является линейной комбинацией других строк (столбцов) следует, что .

Достаточность

Пусть . Возьмем в матрице какой-нибудь базисный минор. Так как , то он же и будет базисным минором и матрицы . Тогда, согласно теореме о базисном миноре , последний столбец матрицы будет линейной комбинацией базисных столбцов, то есть столбцов матрицы . Следовательно, столбец свободных членов системы является линейной комбинацией столбцов матрицы .

Следствия

    Количество главных переменных системы равно рангу системы.

    Совместная система будет определена (её решение единственно), если ранг системы равен числу всех её переменных.

Однородная система уравнений

Предложение 15 . 2 Однородная система уравнений

всегда является совместной.

Доказательство . Для этой системы набор чисел , , , является решением.

В этом разделе мы будем использовать матричную запись системы: .

Предложение 15 . 3 Сумма решений однородной системы линейных уравнений является решением этой системы. Решение, умноженное на число, тоже является решением.

Доказательство . Пусть и служат решениями системы . Тогда и . Пусть . Тогда

Так как , то -- решение.

Пусть -- произвольное число, . Тогда

Так как , то -- решение.

Следствие 15 . 1 Если однородная система линейных уравнений имеет ненулевое решение, то она имеет бесконечно много различных решений.

Действительно, умножая ненулевое решение на различные числа, будем получать различные решения.

Определение 15 . 5 Будем говорить, что решения системы образуют фундаментальную систему решений , если столбцы образуют линейно независимую систему и любое решение системы является линейной комбинацией этих столбцов.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: