Масштабирование приложение. Масштабируемые веб-архитектуры. Пример реализации проекта

Представим, что мы сделали сайт. Процесс был увлекательным и очень приятно наблюдать, как увеличивается число посетителей.

Но в какой-то момент, траффик начинает расти очень медленно, кто-то опубликовал ссылку на ваше приложение в Reddit или Hacker News , что-то случилось с исходниками проекта на GitHub и вообще, все стало как будто против вас.

Ко всему прочему, ваш сервер упал и не выдерживает постоянно растущей нагрузки. Вместо приобретения новых клиентов и/или постоянных посетителей, вы остались у разбитого корыта и, к тому же, с пустой страничкой.

Все ваши усилия по возобновлению работы безрезультатны – даже после перезагрузки, сервер не может справиться с потоком посетителей. Вы теряете трафик!

Никто не может предвидеть проблемы с трафиком. Очень немногие занимаются долгосрочным планированием, когда работают над потенциально высокодоходным проектом, чтобы уложиться в фиксированные сроки.

Как же тогда избежать всех этих проблем? Для этого нужно решить два вопроса: оптимизация и масштабирование .

Оптимизация

Первым делом, стоит провести обновление до последней версии PHP (текущая версия 5.5, использует OpCache ), проиндексировать базу данных и закэшировать статический контент (редко изменяющиеся страницы вроде About , FAQ и так далее).

Оптимизация затрагивает не только кэширование статических ресурсов. Также, есть возможность установить дополнительный не-Apache-сервер (например, Nginx ), специально предназначенный для обработки статического контента.

Идея заключается в следующем: вы помещаете Nginx перед вашим Apache-сервером (Ngiz будет frontend -сервером, а Apache — backend ), и поручаете ему, перехват запросов на статические ресурсы (т.е. *.jpg , *.png , *.mp4 , *.html …) и их обслуживание БЕЗ ОТПРАВЛЕНИЯ запроса на Apache.

Такая схема называется reverse proxy (её часто упоминают вместе с техникой балансировки нагрузки, о которой рассказано ниже).

Масштабирование

Существует два типа масштабирования – горизонтальное и вертикальное .

Мы говорим, что сайт масштабируем, когда он может выдерживать увеличение нагрузки без необходимости внесения изменений в программное обеспечение.

Вертикальное масштабирование

Представьте, что у вас имеется веб-сервер, обслуживающий веб-приложение. Этот сервер имеет следующие характеристики 4GB RAM , i5 CPU и 1TB HDD .

Он хорошо выполняет возложенные на него задачи, но чтобы лучше справляться с нарастающим трафиком, вы решаете заменить 4GB RAM на 16GB, устанавливаете новый i7 CPU и добавляете гибридный носитель PCIe SSD/HDD .

Сервер теперь стал более мощным и может выдерживать увеличенные нагрузки. Именно это и называется вертикальным масштабированием или «масштабированием вглубь » – вы улучшаете характеристики машины, чтобы сделать её более мощной.

Это хорошо проиллюстрировано на изображении ниже:

Горизонтальное масштабирование

С другой стороны, мы имеем возможность произвести горизонтальное масштабирование. В примере, приведенном выше, стоимость обновления железа едва ли будет меньше стоимости первоначальных затрат на приобретение серверного компьютера.

Это очень финансово затратно и часто не дает того эффекта, который мы ожидаем – большинство проблем масштабирования относятся к параллельному выполнению задач.

Если количества ядер процессора недостаточно для выполнения имеющихся потоков, то не имеет значения, насколько мощный установлен CPU – сервер все равно будет работать медленно, и заставит посетителей ждать.

Горизонтальное масштабирование подразумевает построение кластеров из машин (часто достаточно маломощных), связанных вместе для обслуживания веб-сайта.

В данном случае, используется балансировщик нагрузки (load balancer ) – машина или программа, которая занимается тем, что определяет, какому кластеру следует отправить очередной поступивший запрос.

А машины в кластере автоматически разделяют задачу между собой. В этом случае, пропускная способность вашего сайта возрастает на порядок по сравнению с вертикальным масштабированием. Это также известно как «масштабирование вширь ».

Есть два типа балансировщиков нагрузки – аппаратные и программные . Программный балансировщик устанавливается на обычную машину и принимает весь входящий трафик, перенаправляя его в соответствующий обработчик. В качестве программного балансировщика нагрузки, может выступить, например, Nginx .

Он принимает запросы на статические файлы и самостоятельно их обслуживает, не обременяя этим Apache. Другим популярным программным обеспечением для программной балансировки является Squid , который я использую в своей компании. Он предоставляет полный контроль над всеми возможными вопросами посредством очень дружественного интерфейса.

Аппаратные балансировщики представляет собой отдельную специальную машину, которая выполняет исключительно задачу балансировки и на которой, как правило, не установленного другого программного обеспечения. Наиболее популярные модели разработаны для обработки огромного количества трафика.

При горизонтальном масштабировании происходит следующее:


Заметьте, что два описанных способа масштабирования не являются взаимоисключающими – вы можете улучшать аппаратные характеристики машин (также называемых нодами — node ), используемых в масштабированной вширь кластерной системе.

В данной статье мы сфокусируемся на горизонтальном масштабировании, так как в большинстве случаев оно предпочтительнее (дешевле и эффективнее), хотя его и труднее реализовать с технической точки зрения.

Сложности с разделением данных

Имеется несколько скользких моментов, возникающих при масштабировании PHP-приложений. Узким местом здесь является база данных (мы еще поговорим об этом во второй части данного цикла).

Также, проблемы возникают с управлением данными сессий, так как залогинившись на одной машине, вы окажетесь неавторизованным, если балансировщик при следующем вашем запросе перебросит вас на другой компьютер. Есть несколько способов решения данной проблемы – можно передавать локальные данные между машинами, либо использовать постоянный балансировщик нагрузки.

Постоянный балансировщик нагрузки

Постоянный балансировщик нагрузки запоминает, где обрабатывался предыдущий запрос того или иного клиента и, при следующем запросе, отправляет запрос туда же.

Например, если я посещал наш сайт и залогинился там, то балансировщик нагрузки перенаправляет меня, скажем, на Server1 , запоминает меня там, и при следующем клике, я вновь буду перенаправлен на Server1 . Все это происходит для меня совершенно прозрачно.

Но что, если Server1 упал? Естественно, все данные сессии будут утеряны, а мне придется логиниться заново уже на новом сервере. Это очень неприятно для пользователя. Более того, это лишняя нагрузка на балансировщик нагрузки: ему нужно будет не только перенаправить тысячи людей на другие сервера, но и запомнить, куда он их перенаправил.

Это становится еще одним узким местом. А что, если единственный балансировщик нагрузки сам выйдет из строя и вся информации о расположении клиентов на серверах будет утеряна? Кто будет управлять балансировкой? Замысловатая ситуация, не правда ли?

Разделение локальных данных

Разделение данных о сессиях внутри кластера определенно кажется неплохим решением, но требует изменений в архитектуре приложения, хотя это того стоит, потому что узкое место становится широким. Падение одного сервера перестает фатально влиять на всю систему.

Известно, что данные сессии хранятся в суперглобальном PHP-массиве $_SESSION . Также, ни для кого не секрет, что этот массив $_SESSION хранится на жестком диске.

Соответственно, так как диск принадлежит той или иной машине, то другие к нему доступа не имеют. Тогда как же организовать к нему общий доступ для нескольких компьютеров?

Замечу, что обработчики сессий в PHP могут быть переопределены – вы можете определить свой собственный класс/функцию для управления сессиями.

Использование базы данных

Используя собственный обработчик сессий, мы можем быть уверены, что вся информация о сессиях хранится в базе данных. База данных должна находиться на отдельном сервере (или в собственном кластере). В таком случае, равномерно нагруженные сервера, будут заниматься только обработкой бизнес-логики.

Хотя данный подход работает достаточно хорошо, в случае большого трафика, база данных становится не просто уязвимым местом (потеряв её, вы потеряете все), к ней будет много обращений из-за необходимости записывать и считывать данные сессий.

Это становится очередным узким местом в нашей системе. В этом случае, можно применить масштабирование вширь, что проблематично при использовании традиционных баз данных типа MySQL , Postgre и тому подобных (эта проблема будет раскрыта во второй части цикла).

Использование общей файловой системы

Можно настроить сетевую файловую систему, к которой будут обращаться все серверы, и работать с данными сессий. Так делать не стоит. Это совершенно неэффективный подход, при котором велика вероятность потери данных, к тому же, все это работает очень медленно.

Это еще одна потенциальная опасность, даже более опасная, чем в случае с базой данных, описанном выше. Активация общей файловой системы очень проста: смените значение session.save_path в файле php.ini , но категорически рекомендуется использовать другой способ.

Если вы все-таки хотите реализовать вариант с общей файловой системой, то есть гораздо более лучшее решение — GlusterFS .

Memcached

Вы можете использовать memcached для хранения данных сессий в оперативной памяти. Это очень небезопасный способ, так как данные сессий будут перезаписаны, как только закончится свободное дисковое пространство.

Какое-либо постоянство отсутствует – данные о входе будут храниться до тех пор, пока memcached -сервер запущен и имеется свободное пространство для хранения этих данных.

Вы можете быть удивлены – разве оперативная память не отдельна для каждой машины? Как применить данный способ к кластеру? Memcached имеет возможность виртуально объединять всю доступную RAM нескольких машин в единое хранилище:

Чем больше машин у вас в наличии, тем больше будет размер созданного общего хранилища. Вам не нужно вручную распределять память внутри хранилища, однако вы можете управлять этим процессом, указывая, какое количество памяти можно выделить от каждой машины для создания общего пространства.

Таким образом, необходимое количество памяти остается в распоряжении компьютеров для собственных нужд. Остальная же часть используется для хранения данных сессий всего кластера.

В кэш, помимо сессий могут попадать и любые другие данные по вашему желанию, главное чтобы хватило свободного места. Memcached это прекрасное решение, которое получило широкое распространение.

Использовать этот способ в PHP-приложениях очень легко: нужно изменить значение в файле php.ini :

session.save_handler = memcache session.save_path = "tcp://path.to.memcached.server:port"

Redis Cluster

Redis это не SQL хранилище данных, расположенное в оперативной памяти, подобно Memcached , однако оно имеет постоянство и поддерживает более сложные типы данных, чем просто строки PHP-массива в форме пар «key => value ».

Это решение не имеет поддержки кластеров, поэтому реализация его в горизонтальной системе масштабирования не так проста, как может показаться на первый взгляд, но вполне выполняема. На самом деле, альфа-версия кластерной версии уже вышла и можно её использовать.

Если сравнивать Redis с решениями вроде Memcached , то он представляет собой нечто среднее между обычной базой данных и Memcached .

Вертикальное масштабирование — scaling up — увеличение количества доступных для ПО ресурсов за счет увеличения мощности применяемых с серверов.

— scaling out — увеличение количества нод, объединенных в кластер серверов при нехватке CPU, памяти или дискового пространства.

И то и другое является инфраструктурными решениями, которые в разных ситуациях требуются когда веб проект растет.

Вертикальное и горизонтальное масштабирование, scaling для web

Для примера можно рассмотреть сервера баз данных. Для больших приложений это всегда самый нагруженный компонент системы.

Возможности для масштабирования для серверов баз данных определяются применяемыми программными решениями: чаще всего это реляционные базы данных (MySQL, Postgresql) или NoSQL ( , Cassandra и др).

Горизонтальное масштабирование для серверов баз данных при больших нагрузках значительно дешевле

Веб-проект обычно начинают на одном сервере, ресурсы которого при росте заканчиваются. В такой ситуации возможны 2 варианта:

  • перенести сайт на более мощный сервер
  • добавить еще один сервер небольшой мощности с объединить машины в кластер

MySQL является самой популярной RDBMS и, как и любая из них, требует для работы под нагрузкой много серверных ресурсов. Масштабирование возможно, в основном, вверх. Есть шардинг (для его настройки требуется вносить изменения в код) и , которая может быть сложной в поддержке.

Вертикальное масштабирование

NoSQL масштабируется легко и второй вариант с, например, MongoDB будет значительно выгоднее материально, при этом не потребует трудозатратных настроек и поддержки получившегося решения. Шардинг осуществляется автоматически.

Таким образом с MySQL нужен будет сервер с большим количеством CPU и оперативной памяти, такие сервера имеют значительную стоимость.

Горизонтальное масштабирование
С MongoDB можно добавить еще один средний сервер и полученное решение будет стабильно работать давая дополнительно отказоустойчивость.


Scale-out или является закономерным этапом развития инфраструктуры. Любой сервер имеет ограничения и когда они достигнуты или когда стоимость более мощного сервера оказывается неоправданно высокой добавляются новые машины. Нагрузка распределяется между ними. Также это дает отказоустойчивость.

Добавлять средние сервера и настраивать кластеры нужно начинать когда возможности для увеличения ресурсов одной машины исчерпаны или когда приобретение сервера мощнее оказывается невыгодно

Приведенный пример с реляционными базами данных и NoSQL является ситуацией, которая имеет место чаще всего. Масштабируются также фронтэнд и бэкенд сервера.

Читайте про и балансер

Олег Спиряев

В последнее время нередки утверждения, что серверы среднего и старшего класса активно заменяются на группы серверов начального уровня, объединенные в стойки или кластеры. Однако некоторые эксперты с этим не согласны. Так, по данным Dataquest, доля моделей ценой от 500 тыс. долл. и выше (к ним относятся средние и старшие серверы SMP) в общем объеме продаж серверов с 2000 до 2002 г. выросла с 38 до 52%.

Другие данные, полученные компанией IDC, свидетельствуют о росте (по крайней мере, по числу машин) в секторе младших моделей серверов - с двумя процессорами. IDC также предсказывает, что в 2005 г. самой распространенной операционной системой для серверов стоимостью от 50 тыс. до 3 млн долл. будет Unix. Из сравнения этих данных видно, что Unix-серверы среднего и старшего класса останутся преобладающей платформой для центров обработки данных, но будут дополняться все растущим числом небольших (обычно двухпроцессорных) серверов.

Эта тенденция сложилась в результате выделения в центрах обработки данных разных уровней вычислений (рис. 1). Уровень 1, или фронтальный уровень, постепенно переходит на модель горизонтального масштабирования небольших серверов, а на уровне 3 (уровне баз данных) преобладают серверы с вертикальным масштабированием. Уровень 2 (уровень приложений) становится областью, где сосуществуют вертикальная и горизонтальная архитектуры.

Вертикальная и горизонтальная архитектуры

Рассмотрим основные различия между вертикальной и горизонтальной архитектурами. Серверы с вертикальным масштабированием - это большие SMP-системы (с симметричной многопроцессорной обработкой или совместно используемой памятью), насчитывающие свыше четырех центральных процессоров. В них используется только одна копия ОС, управляющая работой всех процессоров, памяти и компонентов ввода-вывода. Обычно все эти ресурсы размещены в одной стойке или шкафу. Межсоединения у таких серверов осуществляются по высокоскоростной центральной или объединительной панели с небольшим временем запаздывания и согласованным доступом к кэш-памяти. Добавить ресурсы можно путем установки внутрь шкафа дополнительных системных плат. В системах с вертикальной архитектурой (или SMP-системах) память используется совместно, т. е. все процессоры и компоненты ввода-вывода получают доступ ко всей памяти. Пользователь "видит" память как единый большой объект.

При альтернативном, горизонтальном масштабировании системы соединяются через сеть или объединяются в кластер. Для межсоединений обычно используются стандартные сетевые технологии, такие, как Fast Ethernet, Gigabit Ethernet (GBE) и Scalable Coherent Interconnect (SCI), дающие меньшую пропускную способность и большее запаздывание по сравнению с вертикальными системами. Ресурсы в этом случае распределяются между узлами, обычно содержащими от одного до четырех процессоров; каждый узел имеет собственный процессор и память и может иметь собственную подсистему ввода-вывода или использовать ее совместно с другими узлами. На каждом узле работает отдельная копия ОС. Ресурсы расширяются за счет добавления узлов, но не добавления ресурсов в узел. Память в горизонтальных системах распределена, т. е. у каждого узла есть собственная память, к которой напрямую обращаются его процессоры и подсистема ввода-вывода. Доступ к этим ресурсам с другого узла происходит намного медленнее, чем с узла, где они расположены. Кроме того, при горизонтальной архитектуре отсутствует согласованный доступ узлов к памяти, а используемые приложения потребляют относительно немного ресурсов, поэтому они "умещаются" на одном узле и им не нужен согласованный доступ. Если же приложению потребуется несколько узлов, то оно само должно обеспечить согласованный доступ к памяти.

Если горизонтальная система удовлетворяет требованиям приложений, то такая архитектура предпочтительна, поскольку расходы на ее приобретение меньше. Обычно стоимость приобретения в расчете на один процессор у горизонтальных систем ниже, чем у вертикальных. Разница в цене объясняется тем, что в вертикальных системах применяются более мощные функции надежности, доступности и обслуживаемости - RAS (reliability, availability, serviceability), а также высокопроизводительные межсоединения. Однако есть ряд ограничений на применение систем с горизонтальной архитектурой. Ниже мы обсудим, в каких условиях возможно применение горизонтальных систем и когда обязательно вертикальное масштабирование.

Помимо одного большого SMP-сервера, к вертикальной архитектуре относятся также кластеры больших SMP-серверов, используемые для одного крупномасштабного приложения.

Недавно появившиеся на рынке модульные, или blade-серверы, обычно оборудуемые одним-двумя процессорами, - пример горизонтальных серверов. Здесь кластер состоит из небольших узлов, в каждом из которых установлен SMP-сервер начального уровня с числом центральных процессоров от 1 до 4.

Другой способ горизонтального масштабирования - это большие вычислительные системы с массовым параллелизмом (MPP), состоящие из множества установленных в одном шкафу небольших процессоров, каждый из которых имеет собственную копию ОС или копию микроядра ОС. В настоящее время выпускаются всего несколько систем MPP, которые чаще всего представляют специализированные решения. Это, например, системы Terradata производства компании NCR, IBM RS/6000SP (SP-2) и HP Tandem non-stop.

Таблица 1. Особенности вертикальной и горизонтальной архитектур

Параметр Вертикальные системы Горизонтальные системы
Память Большая совместно используемая Небольшая выделенная
Потоки Много взаимозависимых потоков Много независимых потоков
Межсоединения Сильносвязанные внутренние Слабосвязанные внешние
RAS Мощные RAS одиночной системы Мощные RAS с использованием репликации
Центральные процессоры Много стандартных Много стандартных
ОС Одна копия ОС на множество центральных процессоров Несколько копий ОС (по одной копии на 1-4 процессора)
Компоновка В одном шкафу Размещение большого числа серверов в стойке
Плотность размещения Высокая плотность размещения процессоров на единицу площади пола
Оборудование Стандартное и специально разработанное Стандартное
Масштабирование В пределах корпуса одного сервера В масштабе нескольких серверов
Расширение Путем установки в сервер дополнительных компонентов Путем добавления новых узлов
Архитектура 64-разрядная 32- и 64-разрядная

Табл. 1 позволяет провести сравнительный анализ вертикальной и горизонтальной архитектур.

  • В вертикальных системах память используется совместно и обеспечивается согласованный доступ к кэш-памяти.
  • Вертикальные системы идеальны для потоков выполнения задач, которые должны обмениваться данными между собой.
  • Вертикальные системы характеризуются мощными функциями RAS, а в горизонтальных системах доступность реализуется с помощью массивной репликации (в кластер соединяются несколько узлов, поэтому отказ одного из них мало влияет на работу всей системы).
  • В вертикальных системах одна копия ОС охватывает все ресурсы. Некоторые вертикальные системы, например, мидфреймы и серверы класса high-end Sun Microsystems (от Sun Fire 4800 до Sun Fire 15K), можно разделить на меньшие вертикальные серверы.
  • В вертикальных системах используется максимально возможное число стандартных компонентов, но некоторые основные составляющие (например, межсоединения) специально разрабатываются.
  • Вертикальные системы можно расширять, устанавливая в существующий каркас дополнительные компоненты (более мощные процессоры, добавочную память, дополнительные и более производительные соединения ввода-вывода и т. п.). Горизонтальные системы расширяются за счет добавления узла или замены старых узлов на новые.
  • Практически все вертикальные системы 64-разрядные, а горизонтальные могут быть как 32-разрядными, так и 64-разрядными.

Для одних типов приложений лучше подходят вертикальные системы, для других - горизонтальные, однако во многих случаях оптимальный выбор архитектуры зависит от размера задачи. В табл. 2 приведены примеры приложений, для которых оптимальна вертикальная либо горизонтальная архитектура.

Таблица 2. Типы приложений для вертикальной и горизонтальной архитектур

Для небольших и модульных серверов хорошо подходят приложения, которые не используют информацию о состоянии, невелики по масштабу и легко реплицируются. А для приложений, использующих информацию о состоянии и большие объемы данных, требующих интенсивной передачи данных внутри системы, идеальным решением будут вертикальные серверы. На рынке высокопроизводительных технических вычислений (HPTC) имеется множество приложений, в которых потоки зависят друг от друга и обмениваются данными между собой. Существуют также приложения, которым нужны большие объемы совместно используемой памяти. Для этих двух типов приложений лучше всего подходят большие SMP-серверы. Однако имеются и такие приложения HPTC, в которых потоки исполнения независимы и им не требуется совместно используемая память большого объема. Такие приложения можно разбивать на разделы, и потому для их выполнения идеальны кластеры небольших серверов. Аналогичным образом некоторые коммерческие приложения поддерживают разделы, и для них оптимальны горизонтальные серверы, а другие нельзя разбить на разделы, поэтому для них лучшая платформа - это вертикальные серверы.

Факторы, влияющие на производительность

Все крупные центры обработки данных представляют собой параллельные компьютеры. Здесь даже кластеры можно рассматривать как особый тип параллельных систем. Для получения высокой производительности требуется сбалансированная система с мощными процессорами, работающими на высокой скорости межсоединениями и подсистемой ввода-вывода, масштабируемой ОС, оптимизированными приложениями и совершенными функциями RAS.

Процессоры и системные межсоединения

Процессоры, безусловно, существенный компонент, но они только отчасти определяют общую производительность системы. Более важно обеспечить работу процессоров с максимальной загрузкой. У мощного процессора, загруженного лишь на 50%, производительность будет хуже, чем у более медленного процессора, который загружен на 80%.

Кроме того, по мере роста числа процессоров в параллельной системе на первый план выходит не их мощность, а системные межсоединения. Именно они отвечают за перемещение данных с диска, из памяти и из сети к процессору. В кластере в качестве межсоединения выступает сетевое соединение, например, Fast Ethernet или Gigabit Ethernet. Кластерные межсоединения перемещают данные между узлами, а системные - внутри отдельной системы. Если межсоединение работает слишком медленно, то процессор в ожидании данных будет простаивать.

Системные межсоединения также используются для перемещения адресов данных, что необходимо для поддержки согласованного обращения к кэш-памяти. Если системное межсоединение слишком медленно передает адреса данных, то процессор опять-таки будет простаивать в ожидании данных, поскольку для доступа к ним ему нужно знать их адрес. Быстрые межсоединения обеспечивают высокую пропускную способность и низкое запаздывание (малое время, проходящее от момента запроса на данные до начала передачи данных).

Основное техническое различие между горизонтальными и вертикальными системами - это пропускная способность и запаздывание их межсоединений. У межсоединений кластеров пропускная способность может составлять от 125 Мбайт/с для Fast Ethernet до 200 Мбайт/с для SCI, а запаздывание - от 100 тыс. нс для GBE и до 10 тыс. нс для SCI. С помощью интерфейса InfiniBand возможно реализовать более быстрые межсоединения с пиковой скоростью от примерно 250 Мбайт/с для первой версии и до 3 Гбайт/с для последующих.

Ввод и вывод

Быстрый ввод-вывод необходим для того, чтобы межсоединение могло быстро получить данные с диска и из сети и передать их процессорам. Узкое место в подсистеме ввода-вывода может отрицательно сказаться на работе даже самых быстрых межсоединений и процессоров.

Операционная система

Даже лучшее оборудование оказывается неэффективным, если ОС недостаточно масштабируема. Для горизонтальных систем масштабируемость ОС не столь важна, потому что в отдельном узле или с отдельной копией ОС работает не более четырех процессоров.

Доступность системы

Вообще говоря, доступность системы во многом зависит от типа архитектуры. В больших SMP-системах функции RAS встроены в систему и дополнены переключением при отказах для двух-четырех узлов. В горизонтальных системах RAS отдельных узлов хуже, но улучшение этих функций достигается многократной репликацией узлов.

Оптимизированные приложения

Приложения необходимо оптимизировать для архитектуры вычислительной системы. Легче всего писать и оптимизировать приложения для SMP-систем. Основные коммерческие приложения оптимизированы именно для SMP-систем и даже разрабатывались на них, поэтому SMP доминируют на рынке систем среднего класса и high-end последние десять лет.

Размер приложений

Как уже отмечалось, в больших SMP-системах используются высокоскоростные межсоединения, обеспечивающие достаточную производительность системы. В горизонтальных системах могут возникать проблемы с производительностью из-за низкой пропускной способности и значительной задержки межсоединений в тех случаях, когда требуется часто передавать данные между узлами. Однако некоторым приложениям для достижения высокой производительности не нужна высокая скорость межсоединений - обычно это небольшие приложения и приложения, которые можно легко реплицировать (например, Web-серверы, прокси-серверы, брандмауэры и небольшие серверы приложений). В таких горизонтальных системах каждый узел выполняет небольшую задачу независимо от работы всех остальных.

Например, в случае горизонтальной архитектуры (или архитектуры с распределенной памятью) четыре процессорных узла (каждый с отдельным ОЗУ и выделенной либо используемой совместно подсистемой ввода-вывода) могут использовать сетевое межсоединение, например, Gigabit Ethernet. В этой вычислительной среде выполняются рабочие нагрузки трех типов. Самая маленькая нагрузка помещается на одном узле, но по мере ее увеличения для выполнения требуется уже несколько узлов. Как утверждают специалисты, при выполнении одной задачи на нескольких узлах производительность значительно ухудшается из-за медленных межузловых межсоединений. Небольшие нагрузки, которым не нужно обмениваться данными между собой, прекрасно сочетаются с горизонтальной архитектурой, но при выполнении в ней крупномасштабных нагрузок возникают проблемы.

Конфигурация большой системы SMP может включать, например, до 100 процессоров, 576 Гбайт совместно используемой памяти и высокоскоростные межсоединения. Такая система может обрабатывать все типы нагрузок, поскольку в ней отсутствует обмен данными между узлами и эффективно осуществляется обмен данными между процессами. Все центральные процессоры могут одновременно получить доступ ко всем дискам, всей памяти и сетевым соединениям - это ключевая особенность SMP-систем (или вертикальных систем).

Часто возникает вопрос о целесообразности размещения на больших SMP малых нагрузок. Хотя в техническом плане это возможно, с экономической точки зрения такой подход себя не оправдывает. Для больших SMP стоимость приобретения в расчете на один процессор выше, чем для маленьких систем. Поэтому если приложение может работать на небольшом узле (или нескольких небольших узлах) и это не создает серьезных проблем с управлением, для его развертывания лучше подходит горизонтальное масштабирование. Но если приложение слишком велико и не может выполняться на небольшом узле (или нескольких таких узлах), то крупный SMP-сервер будет оптимальным вариантом с точки зрения как производительности, так и системного администрирования.

Производительность на уровне базы данных

Основной вопрос здесь - сравнение производительности одиночных средних и больших SMP-серверов с кластером небольших серверов (не более четырех процессоров).

При обсуждении масштабируемости фирмы-производители используют ряд специальных терминов. Так, рост производительности (Speedup) для SMP определяется как отношение скоростей выполнения приложения на нескольких процессорах и на одном. Линейный рост производительности (Linear speedup) означает, например, что на 40 процессорах приложение работает в 40 раз (40x) быстрее, чем на одном. Рост производительности не зависит от числа процессоров, т. е. для конфигурации из 24 процессоров он будет таким же, как для 48 процессоров. Рост производительности кластера (Cluster speedup) отличается только тем, что при его расчете берется число узлов, а не процессоров. Как и рост производительности SMP, рост производительности кластера остается постоянным для разного числа узлов.

Эффективность масштабирования (Scaling efficiency) характеризует способность приложений, особенно кластерных, масштабироваться на большое число узлов. Обычно считается, что эффективность масштабирования зависит от числа узлов, участвующих в измерении. Эффективность масштабирования SMP (SMP scaling efficiency) - это рост производительности, деленный на число процессоров, а эффективность кластера (Cluster efficiency) - это рост производительности кластера, деленный на число узлов в нем. Нужно понимать, в чем смысл этих параметров, чтобы не складывалась неправильная картина, поскольку эффективность масштабирования 90% на двух узлах - это не то же самое, что эффективность масштабирования 90% на четырех узлах.

На рис. 2 приведены три графика: идеальная линейная масштабируемость, масштабируемость 24-процессорного SMP-сервера в 95% и масштабируемость кластера из двух 4-процессорных серверов в 90%. Видно, что существуют определенные ограничения на масштабируемость баз данных в кластерах (при горизонтальном масштабировании). Соединяя вместе много маленьких серверов, не удается получить масштабируемость, необходимую для средних и крупных приложений. Причина этого - ограничения пропускной способности внутрикластерных межсоединений, дополнительная нагрузка на ПО баз данных, связанная с управлением кластером, и трудности написания приложений для кластерных сред с распределенной памятью.

Опубликованные результаты эталонных тестов показывают, например, что у Oracle9i RAC (Real Application Cluster) рост производительности составляет 1,8 и эффективность масштабирования равна 90%. Такая эффективность масштабируемости может показаться достаточно высокой, но на самом деле масштабируемость 90% для четырех узлов оказывается неэффективной, если сравнить ее с результатами больших SMP-серверов.

Производительность на уровне приложений

Уровень приложений в трехуровневом центре обработки данных сильно отличается от уровня базы данных. Обычно приложения этого уровня работают без запоминания состояния - иными словами, на самом сервере данные не хранятся или хранится только их небольшая часть. Этот уровень содержит бизнес-правила для сервисов приложений. Транзакции приходят на уровень приложений и им же обрабатываются. Когда данные нужно записать или считать, транзакции передаются на уровень базы данных. Серверы приложений стремятся консолидировать соединения с базой данных, поскольку большое число соединений отрицательно влияет на производительность.

В большинстве случаев уровню сервера приложений требуется намного больше процессоров, чем уровню базы данных в расчете на отдельный прикладной сервис. Например, в случае SAP R/3 это соотношение составляет примерно 10 процессоров на каждый процессор базы данных, т. е. если SAP R/3 требуется 20 процессоров для уровня базы данных, то на уровне приложений должно быть примерно 200 процессоров. Вопрос заключается в том, что выгоднее развернуть - 100 двухпроцессорных серверов или десять 20-процессорных. Аналогичным образом в Oracle соотношение процессоров приложений к процессорам баз данных равно примерно 5 к 1.

Считается, что серверы приложений не требуется распределять по нескольким узлам. Несколько копий прикладного ПО можно распределить по разным физическим серверам разной мощности или по динамическим доменам больших серверов.

Число процессоров, требуемых для уровня приложений, будет примерно одинаково независимо от архитектуры компьютеров. Затраты на приобретение оборудования и ПО для горизонтальной архитектуры будут меньше, поскольку стоимость в расчете на один процессор в этом случае меньше. В большинстве случаев горизонтальные системы способны обеспечить производительность, необходимую для выполнения соглашения об уровне сервиса. Затраты, связанные с приобретением лицензий на ПО, для обеих архитектур примерно одинаковы.

В то же время расходы на управление и обслуживание инфраструктуры у горизонтальной архитектуры могут оказаться более высокими. При развертывании на горизонтальных системах используются многочисленные копии ОС и ПО серверов приложений. Затраты же на поддержание инфраструктуры обычно растут пропорционально числу копий ОС и приложений. Кроме того, для горизонтальной архитектуры резервное копирование и восстановление после аварий становится децентрализованным, и управлять сетевой инфраструктурой сложнее.

Стоимость системного администрирования с трудом поддается измерениям. Обычно модели для сравнения горизонтального и вертикального развертывания прикладных серверов показывают, что управление меньшим числом более мощных серверов (вертикальных серверов) обходится дешевле, чем управление множеством небольших серверов. В целом при выборе типа архитектуры для развертывания уровня приложений ИТ-менеджеры должны детально проанализировать стоимость приобретения оборудования.

Влияние архитектуры на доступность

Доступность крайне важна для современных центров обработки данных - сервисы приложений должны быть доступны в режиме 24x7x365 (24 часа в сутки, 7 дней в неделю, 365 дней в году). В зависимости от потребностей конкретного центра обработки данных используются разные схемы обеспечения высокой доступности. Для выбора конкретного решения необходимо определить допустимое время простоев (запланированных и незапланированных). На рис. 3 показано, как процент доступности отражается на продолжительности простоев.

По мере роста требований к доступности растет и стоимость решения. Менеджеры центров обработки данных должны определить, какое сочетание стоимости, сложности и доступности наилучшим образом соответствует требованиям к уровню сервиса. Центры обработки данных, которым нужна доступность примерно 99,95%, могут развернуть одиночный SMP-сервер с такими функциями RAS, как полное резервирование аппаратуры и обслуживание в онлайновом режиме.

Однако для достижения доступности выше 99,95% потребуется кластер. ПО Sun Cluster с переключением при отказе HA (High Availability - высокой доступности) обеспечивает доступность 99,975%. Переключение при отказе HA использует основной сервер и находящийся в горячем резерве; при отказе основного сервера резервный берет на себя его нагрузку. Время перезапуска сервиса зависит от приложений и может занять несколько минут, особенно в случае приложений баз данных, которым для восстановления транзакций требуется откат с обработкой большого объема данных.

Если простои в несколько минут недопустимы для центра обработки данных, то решением может стать система типа "активный-активный", где приложение развертывается на двух или нескольких узлах: если один из них выйдет из строя, то остальные продолжат выполнение приложения. В результате перебой будет очень коротким (некоторые клиенты сообщают, что он продолжается менее 1 мин), иногда пользователь может даже не заметить отказа узла.

Вертикальные серверы обеспечивают высокую доступность за счет встраивания многих функций RAS в отдельный сервер для сокращения до минимума запланированных и незапланированных простоев. В горизонтальных серверах функции, обеспечивающие высокий уровень RAS, реализуются не на уровне отдельного сервера, а за счет дублирования и размещения нескольких серверов. Из-за разной реализации функций RAS и межсоединений горизонтальные серверы обычно дешевле в расчете на один процессор.

Для трехуровневой архитектуры хорошим примером горизонтальной высокой доступности служит развертывание Web-серверов. Можно развернуть много небольших серверов, на каждом из которых будет установлена отдельная копия ПО Web-сервера. Если один Web-сервер выйдет из строя, его транзакции перераспределяются между остальными работоспособными серверами. В случае серверов приложений они могут размещаться как на горизонтальных, так и на вертикальных серверах, и высокая доступность реализуется с помощью дублирования. Независимо от того, развертывается ли несколько крупных SMP-серверов или много небольших, дублирование остается основным способом обеспечения высокого RAS на уровне приложений.

Однако для уровня баз данных ситуация меняется. Базы данных сохраняют состояние и по своей природе требуют в большинстве случаев разделения данных и возможности доступа к ним со всех процессоров/узлов. Это означает, что для высокой доступности с помощью дублирования нужно использовать такое ПО кластеризации, как Sun Cluster или Oracle9i RAC (для очень высокой доступности).

Выводы

Как у вертикальной, так и у горизонтальной архитектуры есть своя ниша в сегодняшнем центре обработки данных. Хотя сегодня основное внимание сосредоточено на таких новых технологиях, как модульные серверы и параллельные базы данных, на рынке сохраняется высокий спрос на серверы среднего класса и класса high-end.

Вертикальные и горизонтальные системы могут использовать одно и то же ПО, ОС и даже одинаковые процессоры. Основное различие, которое сказывается на цене и производительности, это межсоединения, используемые в той и в другой архитектуре. Горизонтальные серверы используют слабосвязанные внешние межсоединения, а вертикальные серверы - сильносвязанные межсоединения, обеспечивающие более высокую скорость передачи данных.

Для фронтального уровня горизонтальные серверы обычно предоставляют оптимальное решение с точки зрения производительности, совокупной стоимости приобретения и доступности. Для уровня приложений можно эффективно использовать как вертикальную, так и горизонтальную архитектуру. Для уровня баз данных оптимальным решением будет использование вертикальных серверов, независимо от требуемого уровня доступности.

Возможность масштабирования информационной системы – как горизонтальное, так и вертикальное – является одним из самых важных факторов, на которые стоит обращать при выборе средства автоматизации деятельности любой организации. Если выбранное решение невозможно будет масштабировать, или каждая стадия роста бизнеса будет приводить к сложностям с сопровождением и развитием такого программного продукта, то не следует даже начинать его использовать. Мы разрабатывали СЭД ЛЕТОГРАФ с учетом высоких требований к масштабированию.

Необходимость в горизонтальном или вертикальном масштабировании возникает в связи с созданием корпоративных высоконагруженных ИТ-систем, в которых работают тысячи или даже десятки тысяч пользователей. Однако поддерживать одновременную работу большого числа пользователей могут далеко не все СЭД. Только если в СЭД на уровне архитектуры заложены возможности по наращиванию количества пользователей без потери производительности – только в этом случае масштабирование будет успешным. Созданная нами система ЛЕТОГРАФ была разработана таким образом, чтобы идеально масштабироваться как горизонтально, так и вертикально. Это достигается как за счет архитектуры самой системы и того прикладного кода, который мы разработали, так и за счет функционала СУБД InterSystems Caché, на которой наша СЭД построена.

СУБД Caché – это современная система управления базами данных и среда для быстрой разработки приложений. В основе этой СУБД лежит технология, которая обеспечивает быстродействие и высокую производительность, масштабируемость и надежность. При этом аппаратные требования системы остаются довольно скромными.

СУБД Caché сохраняет высокую производительность даже при работе с огромными массивами данных и большим числом серверов в распределенных системах. При этом доступ к данным осуществляется через объекты, высокопроизводительные SQL-запросы и путем прямой обработки многомерных структур данных.

Вертикальное масштабирование

Вертикальное масштабирование предполагает наращивание мощности сервера и его возможностей, связанных с дисковой подсистемой. ЛЕТОГРАФ поддерживает современную процессорную архитектуру, что позволяет обрабатывать большие объемы данных в несколько потоков. При этом сами данные в СЭД организованы таким образом, чтобы их можно было легко разносить по СХД на разные диски. Такой подход позволяет равномерно распределить нагрузку на хранилища данных и минимизировать ее при чтении данных непосредственно из базы, а значит и падения производительности системы удастся избежать даже при одновременной работе большого количества пользователей.

Еще на этапе разработки платформы мы понимали, что вертикальное масштабирование – одна из ключевых возможностей системы, потребность в которой со временем будет только увеличиваться. Мы разработали систему таким образом, чтобы процессы работы каждого пользователя были выделены в отдельные системные процессы, которые между собой не пересекаются благодаря тому, что базы данных эффективно делят доступ к информации. При этом количество блокировок данных в СЭД ЛЕТОГРАФ минимизировано и нет «узкого горла» ни при чтении данных, ни при их записи.

Архитектура СЭД ЛЕТОГРАФ позволяет распределять данные на несколько физических или виртуальных серверов. Благодаря такому распределению каждый из пользователей работает в изолированном процессе, а требуемые данные эффективно кэшируются с использованием технологий СУБД Caché. Время блокировки данных минимизировано: все транзакции выстроены таким образом, чтобы переводить данные в эксклюзивный режим доступа лишь на очень короткое время. При этом даже такие высоконагруженные с точки зрения количества обращений к диску данные, как журналы, индексы, данные объектов, потоки, логи действий пользователей, распределены таким образом, что средняя нагрузка на подсистему остается равномерной и не приводит к задержкам. Такой подход позволяет эффективно вертикально масштабировать систему, распределяя нагрузку между серверами или виртуальными дисками.

Горизонтальное масштабирование

Горизонтальное масштабирование – это распределение сессий пользователей по разным серверам (равномерная загрузка серверов приложений и возможность подключать дополнительные сервера приложений), а также распределение данных по разным серверам БД, что обеспечивает высокую производительность системы, при этом не приводя к снижению отказоустойчивости. Для горизонтального масштабирования в системе ЛЕТОГРАФ предусмотрен целый ряд возможностей.

Прежде всего, это масштабирование нагрузки благодаря Enterprise Cache Protocol (ECP, протокол распределенного кэша), протоколу, используемому в СУБД InterSystems Caché. Преимущество ECP заключается в инновационном подходе к кэшированию данных. В рамках данного протокола пользовательские процессы, которые работают на серверах приложений (или ECP-клиентах) СУБД и обслуживают запросы, получают доступ к локальному кэшу недавно использованных данных. И только если этих данных недостаточно, ECP-клиент обращается к базе данных. С помощью протокола ECP выполняется автоматическое управление кэшем: наиболее часто используемые данные сохраняются в кэше, часто обновляемые данные периодически реплицируются, обеспечивая постоянное целостность и корректность данных на всех ECP-клиентах. При этом внутренний алгоритм InterSystems Caché предполагает, что базы данных синхронизируются между ECP-клиентом и ECP-сервером.

Фактически использование технологий СУБД Caché позволяет легко и быстро масштабировать нагрузку по серверам приложений, обеспечив таким образом подключение большого числа пользователей к одному серверу базы данных благодаря использованию ECP-протокола.

Так как информация, которую затребовал тот или иной пользователь, может быть задействована на нескольких ECP-клиентах, необходимо блокировать данные на короткий период времени, быстро выполнять транзакции, не выполняя внутренних вычислений. И мы успешно это реализовали. Данная технология позволяет нам эффективно масштабировать систему в ситуации, когда используются один сервер базы данных и несколько серверов, на которых работают пользовательские процессы. Технологическая особенность СУБД Caché заключается в том, что она поддерживает корректность транзакций в рамках одного ECP-сервера вне зависимости от количества ECP-клиентов, которые к ней подключены. В случае, когда у нас один ECP-сервер и множество ECP-клиентов, эта задача великолепно решается, потому что все транзакции идут на одном сервере базы данных.

Опыт показывает, что даже в высоконагруженных системах всегда удается четко разделить данные между серверами БД на основании определенных признаков. Например, если несколько организаций объединены в холдинг, то пользователями из одной структурной единицы вряд ли когда-нибудь будут востребованы данные, которые касаются другого подразделения. Это позволяет на уровне алгоритмов разделять и хранить такие данные на разных серверах БД, повышая таким образом возможности горизонтального масштабирования.

В СЭД ЛЕТОГРАФ реализован механизм шардинга, благодаря которому мы на уровне настроек системы (без применения программирования), даем возможность описать правила и принципы разнесения самих данных по разным серверам БД. Несмотря на то, что с точки зрения структуры баз данных информация, хранящаяся на каждом сервере одинакова, сама информация отличается принципиально в зависимости от организации или каких-либо других признаков, которые являются значимыми для конкретной задачи. Используя технологию шардинга можно добиться, что в 95-99 % случаев пользователи будут работать только со своей «порцией данных», и не потребуется в рамках сессии обращаться к разным серверам БД.

На возможности масштабирования СЭД ЛЕТОГРАФ влияет и то, данные могут по разному обрабатываться. Например, в документы (даже созданные несколько лет назад) могут вноситься изменения, а в журнал действий пользователей записи только добавляются (ни одна запись не может быть ни удалена, ни изменена). Механизмы, которые используются в СЭД ЛЕТОГРАФ, позволяют дополнительно повысить производительность системы и улучшить масштабирование за счет ведения таких журналов на отдельных серверах БД – причем, как в случае односерверной, так и многосерверной конфигурации. Такой подход ориентирован на снижение нагрузки на основные сервера БД.

Аналогичная ситуация возникает и контентом (“информационным содержанием” СЭД). Так как система ЛЕТОГРАФ работает с большим объемом контента – это терабайты данных, миллионы файлов и документов – разумно предположить, что контент, который попадает в систему, ни при каких условиях не должен пострадать. Поэтому мы также выносим хранение файлов на отдельные сервера баз данных и обеспечиваем таким образом дополнительно горизонтальное масштабирование.

Программное обеспечение фронт-энда

В качестве фронт-энда в СЭД ЛЕТОГРАФ используются Apache и HAProxy. HAProxy отвечает за балансировку нагрузки между веб-серверами Apache. HAProxy, как показал опыт работы системы, зарекомендовал себя как наиболее эффективное решение, способное обеспечить поддержку работы большого числа пользователей и необходимый контроль за отказоустойчивостью.

Когда пользователь открывает браузер и подключается к системе, HAProxy «распределяет» его на один из серверов приложений. Дальше все запросы, которые поступают от этого пользователя, будут отправляться на тот же сервер приложений в тот же процесс.

Мы пробовали разные системы, и тестирование показало, что HAProxy – наиболее эффективный балансировщик нагрузки, обеспечивающий равномерное распределение пользователей по свободным слотам серверов приложений. В HAProxy есть все необходимые механизмы, чтобы отслеживать состояние каждого сервера приложений и не распределять новый трафик на вышедший из строя по каким-либо причинам сервер приложений. Кроме того, HAProxy дополнительно предоставляет целый ряд возможностей с точки зрения кэширования статических (неизменяемых в процессе работы пользователя) данных – например, стилей, иконок и так далее – того, что позволяет организовать интерфейс.

Пример реализации проекта

Архитектура ЛЕТОГРАФ позволяет добиться существенных результатов в сокращении времени отклика и повышении производительности системы. В рамках одного из наших проектов в СЭД хранится 23,5 Тбайт данных. Из них 14,7 Тбайт (63%) приходится на потоки (“прикрепленные к карточкам файлы”), 3,5 Тбайт (15%) – на отчетные формы, такие как таблицы отчетов, которые формируются в асинхронном режиме, могут запускаться как по расписанию, так и по требованию пользователя и представляют собой сводную таблицу, любые данные в которой можно детализировать до объекта. Еще 1,6 Тбайт (7%) – это протокол пользовательских операций, а все остальное (16%) – данные карточек и индексы.

В данной системе работает более 11 тыс. пользователей, 2 тыс. из них работают одновременно, а в дни пиковой нагрузки число одновременно работающих в СЭД сотрудников превышает 3 тыс. Количество записей в журнале уже превысило 5,5 млрд, а учетных карточек – почти достигло полумиллиарда.

В качестве сервера базы данных в данном проекте установлен отказоустойчивый кластер из двух физических серверов с тремя инсталляциями СУБД, а также резервный сервер. Десять серверов приложений (и один резервный) обрабатывают пользовательские сессии и обеспечивают формирование асинхронных отчетов. 2 сервера HAProxy выполняют функции балансировщиков. В случае проблем с одним из серверов, выполняется автоматическая передача его IP-адреса на другой сервер. Также предусмотрены сервер индексации файлов и сервер распознавания (обеспечивающий распознавание текста отсканированных бумажных документов при размещении электронных образов в систему).

Резюме

В СЭД ЛЕТОГРАФ предусмотрено большое количество разнообразных механизмов масштабирования. Мы предлагаем своеобразный пирог, в основе которого лежит сервер (физический или виртуальный), на который устанавливается операционная система. Поверх нее стоит СУБД InterSystems Caché, внутри которой располагается код платформы. А уже над ним – настройки системы ЛЕТОГРАФ, благодаря которым СЭД полностью конфигурируется. И такой пирог размещен на каждом сервере. Сервера между собой связаны определенным образом за счет выбранных конфигураций. И последний слой – это HAProxy, распределяющий между серверами запросы пользователей. Такая архитектура позволяет нам поддерживать масштабирование и обеспечивать все необходимые механизмы мониторинга. В результате конечные пользователи получают быстро работающую СЭД, а ИТ-специалисты – простую в управлении и обслуживании, унифицированную систему, без огромного числа составляющих, которые в случае высоконагруженных приложений приходится постоянно контролировать и администрировать. Кроме того, в зависимости от изменения потребностей организации СЭД ЛЕТОГРАФ легко переконфигурировать, добавив новые серверы или дисковые возможности.


Данный материал является частной записью члена сообщества Club.CNews.
Редакция CNews не несет ответственности за его содержание.

К концу 2012 года более 50% приложений работающих на х86 платформе виртуализированы. Вместе с тем виртуализировано только 20% бизнес критических приложений.

Это из-за того что ИТ отделы не доверяют платформам виртуализации? Считают ли они платформы виртуализации не достаточно стабильными для поддержки работы критически важных приложений?

За последние 10 лет VMware доказала что виртуализация это уже реальность, и, фактически, виртуализированные приложения часто более стабильны, когда работают на инфраструктуре под управлением VMware.

Тогда если доверие или стабильность не являются проблемой в чём же причина того что ИТ отделы еще не виртуализировали оставшиеся приложения?

Scale out
Scale out или горизонтальное масштабирование - добавление новых ресурсов в инфраструктуру, например, серверов в кластер.

Так как цены продолжают падать, а производительность расти то дешёвые, commodity (широкого потребления) сервера являются идеальным решением для горизонтального масштабирования, и могут быть собраны в большие кластера для объединения вычислительных ресурсов.

Последние семь лет архитекторы инфраструктур на VMware молились на горизонтальное масштабирование. Кто-то может аргументировать за использование именного этого подхода, но он тоже имеет свои нюансы, и всё зависит от требований бизнеса. Плюс горизонтального масштабирования в том, что commodity сервера дёшевы, и в случае выхода сервера из строя это влияет на небольшое количество ВМ. Минус в бОльших затратах на лицензии на vSphere, большие требования к площади ЦОД, и обычно такие commodity сервера не обладают большими вычислительными ресурсами.

Scale up
Вертикальное масштабирование - добавление вычислительных ресурсов в какой-то уже используемый сервер. Обычно это процессоры или оперативная память.

Обычно такие сервера довольно мощные - с поддержкой 4 процессоров и 512ГБ памяти. Кроме того встречаются системы с 8 процессорами и 1ТБ памяти, а некоторым повезло увидеть даже 16-ти процессорные сервера с 4ТБ памяти. И нет, это не мейнфреймы или что-то типа того, это сервера на основе классической х86 архитектуры.

Переход ко второй волне виртуализации, которая обеспечивает гибкость предоставляемую данной технологией для бизнес критических приложений, оказывает сегодня огромное давление на используемые сегодня инфраструктуры VMware из-за следующих проблем:

  • Недостаточные возможности по масштабированию. Нагрузки с высокими требованиями к объёму вычислительных ресурсов являются проблемой из-за ограниченного объёма ресурсов доступных с дешёвыми commodity серверами.
  • Недостаточная надёжность. Commodity оборудование или аппаратное обеспечение использующее такие компоненты может быть менее надёжным. Проблему надёжности можно решить с помощью функций о которых я расскажу в следующих статьях.
  • Увеличение сложности управления и рост операционных расходов. Легче управлять 100 серверами, а не 1000, ну и, как следствие, 10 серверами управлять проще чем 100. Тоже самое касается и операционных расходов - 10 серверов гораздо дешевле поддерживать чем 100.
Вертикальное масштабирование отлично подходит для бизнес критических приложений с их огромными требованиями к ресурсам. Привет, Monster VM! Все эти прожорливые критичные базы данных, огромные ERP системы, системы аналитики больших данных, JAVA приложения и так далее и тому подобное получат прямую выгоду от вертикального масштабирования.

С выходом vSphere 5 количество ресурсов, доступных одной ВМ выросло в 4 раза.

А с выходом vSphere 5.1 монструозные ВМ могут быть еще монструознее.

Для того чтобы vSphere 5.1 могла запустить ВМ-монстра планировщику необходимо иметь и спланировать запуск потоков на 64 физических процессорах. Не так много серверов, которые могут поддерживать столько ядер, а серверов с поддержкой 16 сокетов и 160 ядер и того меньше.

Всего существует два типа вертикального масштабирования серверов: glueless и glued. На русский язык эти слова переводятся так: без интегрирующих технологий и с интегрирующими технологиями, соответственно.

Glueless архитектура
Данная архитектура была разработана в Intel, и представлена в Intel Xeon E7.

Для связи между устройствами ввода-вывода, сетевыми интерфейсами и процессорам используется специально разработанная шина QPI.

В серверах с 4-мя процессоров все они соединяются между собой напрямую через эту шину. Glueless процессор использует один из каналов для подключения процессора к интерфейсам ввода-вывода, а остальные три для подключения к соседним процессорам.

В 8-ми процессорном сервере каждый процессор напрямую подключается к трём соседним, и через другой процессор к другим четырём.

Преимущества такой архитектуры:

  • Нет необходимости в специальной разработке или специализации у производителя серверов
  • Любой производитель серверов может выпускать 8-ми процессорные сервера
  • Снижается стоимость как 4-ёх так и 8-ми процессорного сервера
Недостатки:
  • Общая стоимость владения растёт при горизонтальном масштабировании
  • Архитектура ограничена 8-ми процессорными серверами
  • Тяжело поддерживать целостность кэша при увеличении сокетов
  • Нелинейный рост производительности
  • Соотношение цены к производительности падает
  • Неоптимальная эффективность при использовании больших ВМ
  • Вплоть до 65% пропускной способности шины уходит на широковещательные сообщения болтливого протокола QPI
В чём же причина болтливости протокола QPI? Для того чтобы достичь целостности процессорного кэша каждая операция на чтение должна быть реплицирована на все процессоры. Это можно сравнить с широковещательным пакетом в IP сети. Каждый процессор должен проверить у себя затребованную строку памяти, и в случае использования последней версии данных предоставить её. В случае если актуальные данные находятся в другом кэше протокол QPI с минимальными задержками копирует данную строку памяти из удалённого кэша. Таким образом на репликацию каждой операции чтения тратиться пропускная способность шины и такты кэша, которые могли бы использоваться для передачи полезных данных.

Основные приложения, производительность которых страдает от недостатков протокола QPI это Java приложения, большие БД, чувствительные к задержкам приложения.

Результатом вертикального масштабирования должно быть отсутствие бутылочного горлышка, иначе данная архитектура становится бессмысленной. Таким образом, линейность увеличения производительности должна соответствовать линейности добавления ресурсов.

Glued архитектура
Для решения описанных выше проблем разработчики аппаратного обеспечения разработали glued архитектуру. Данная архитектура использует внешний контроллер нод для организации взаимосвязи островков QPI - кластеров процессоров.


Intel QPI предлагает специальное масштабируемое решение - eXternal Node-Controllers (или XNC), практическая реализация которого разрабатывается сторонними OEM компаниями. Внешний контроллер нод, используемый начиная с Intel Xeon E7-4800, со встроенным контроллером памяти, включает в себя также систему Cache Coherent Non-Uniform Memory Access (ccNUMA) задача которой отслеживать актуальность данных в каждой строке памяти процессорного кэша были актуальные данные.

Задержки между процессором и памятью в ccNUMA зависят от местоположения этих двух компонентов в отношении друг друга, в результате XNC контроллеры становятся критически важным компонентом сервера, и очень небольшое количество производителей серверов могут разработать сервера с возможностью вертикального масштабирования.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: