Что происходит в контакте двух проводников. Электрический ток через контакт полупроводников с разным типом проводимости. Транзисторы. II. Изучение нового материала

Наиболее интересные явления происходят при контакте полупроводников n- и р-типов. Эти явления используются в большинстве полупроводниковых приборов. В них происходит рекомбинация электронов и дырок. При образовании контакта электроны частично переходят из полупроводника n-типа в полупроводник р-типа, а дырки - в обратном направлении. В результате полупроводник n-типа заряжается положительно, а р-типа - отрицательно. Диффузия прекращается после того, как электрическое поле, возникающее в зоне перехода, начинает препятствовать дальнейшему перемещению электронов и дырок.

Полупроводниковые диоды

Основой полупроводникового диода является р-n-переход, определяющий его свойства, характеристики и параметры. По своему назначению полупроводниковые диоды подразделяются на выпрямительные, импульсные, высокочастотные и сверхвысокочастотные, стабилитроны, трехслойные переключающие, туннельные, варикапы, фото- и светодиоды. В зависимости от исходного полупроводникового материала диоды подразделяются на германиевые и кремниевые. Германиевые диоды работают при температурах не выше +80 °С, а кремниевые до +140 °С.По конструктивно-технологическому признаку диоды делятся на плоскостные и точечные. Наиболее распространены плоскостные сплавные диоды, применение которых затруднительно лишь на повышенных частотах. Преимуществом точечных диодов является низкое значение емкости p-n-перехода, дающая возможность их работы на высоких сверхвысоких частотах. Высокочастотные диоды являются приборами универсального назначения. Они могут работать в выпрямителях переменного тока широкого диапазона частот, а также в модуляторах, детекторах и других нелинейных преобразователях электрических сигналов. Высокочастотные диоды содержат, как правило, точечный р-n-переход и поэтому называются точечными. Импульсные диоды являются разновидностью высокочастотных диодов и предназначены для использования в качестве ключевых элементов в быстродействующих импульсных схемах. Стабилитроны – это кремниевые плоскостные диоды, предназначенные для стабилизации уровня постоянного напряжения в схеме при изменении в некоторых пределах тока через диод. Варикапом называется специально сконструированный полупроводниковый диод, применяемый в качестве конденсатора переменной емкости. Фотодиод – полупроводниковый фотоэлектрический прибор с внутренним фотоэффектом, отображающим процесс преобразования световой энергии в электрическую. Светодиоды (электролюминесцентные диоды) преобразуют энергию электрического поля в нетепловое оптическое излучение, называемое электролюминесценцией. Туннельный диод – это полупроводниковый диод, в котором используется явление туннельного пробоя при включении в прямом направлении.



ЦЕПНАЯ ЯДЕРНАЯ РЕАКЦИЯ.

Это процесс, в котором одна проведенная реакция вызывает последующие реакции такого же типа. При делении одного ядра урана образовавшиеся нейтроны могут вызвать деления других ядер урана, при этом число нейтронов нарастает лавинообразно.
Цепная реакция сопровождается выделением большого количества энергии. Для осуществления цепной реакции не получается использовать любые ядра, делящиеся под влиянием нейтронов. Используемый в качестве топлива для атомных реакторов химический элемент уран состоит в природе из двух изотопов: урана-235 и урана - 238.
В природе изотопы урана-235 составляют всего лишь 0,7% от всего запаса урана, однако именно они пригодны для проведения цепной реакции, т.к. делятся под влиянием медленных нейтронов. Первая управляемая цепная реакция - США в 1942 г. (Э.Ферми)
В СССР - 1946 г. (И.В.Курчатов).

ЯДЕРНЫЙ РЕАКТОР - это устройство на атомной электростанции для получения атомной энергии.
Назначение ядерного реактора: преобразование внутренней энергии атомного ядра в электрическую энергию.
В ядерном реакторе осуществляется управляемая цепная реакция деления ядер. Ядерными реакторами оснащены все АЭС (атомные электростанции).
Работа реактора:

Реактор работает на медленных нейтронах. Активная зона реактора, содержит ядерное топливо - урановые стержни и замедлитель - воду. Вода вокруг урановых стержней является не только замедлителем нейтронов, но и служит для отвода тепла, т.к. внутренняя энергия разлетающихся осколков переходит во внутреннюю энергию окружающей среды - воды. Активная зона окружена отражателем для возвращения нейтронов и защитным слоем бетона.
Достижение критической массы топлива осуществляется введением регулирующих стержней (до достижения массы урана = критической массе).
Активная зона посредством труб соединена в кольцо (1-ый контур).
Вода прокачивается по трубам контура насосом и отдает свою энергию змеевику в теплообменнике, нагревая воду в змеевике (во 2-м контуре).
Вода в змеевике превращается в пар, температура которого может достигать 540 градусов.
Пар вращает турбину, энергия пара превращается в механическую энергию.
Ось турбины вращает ротор электрогенератора, превращая механическую энергию в электрическую.
Отработанный (охлажденный) пар поступает в конденсатор, где превращается в воду, возвращающуюся в 1-ый контур.Первая АЭС была построена в г. Обнинске (СССР).
Преимущества АЭС: ядерные реакторы не потребляют кислород и органическое топливо. Не загрязняют окружающую среду золой и вредными для человека продуктами органического топлива. Биосфера надежно защищена от радиоактивного воздействия при нормальном режиме эксплуатации АЭС.
Недостатки АЭС: необходимость захоронения радиоактивных отходов и демонтаж отслуживших свой срок реакторов. Опасность радиоактивного заражения местности при аварийных выбросах. Опасность экологических катастроф (1986 г. - Чернобыльская АЭС).



Билет 19

1.ТРАНЗИСТОР , полупроводниковый прибор, предназначенный для усиления электрического тока и управления им. Транзисторы выпускаются в виде дискретных компонентов в индивидуальных корпусах или в виде активных элементов т.н. интегральных схем, где их размеры не превышают 0,025 мм. В связи с тем что транзисторы очень легко приспосабливать к различным условиям применения, они почти полностью заменили электронные лампы. Одно из первых промышленных применений транзистор нашел на телефонных коммутационных станциях. Первым же товаром широкого потребления на транзисторах были слуховые аппараты, появившиеся в продаже в 1952. Сегодня транзисторы и многотранзисторные интегральные схемы используются во всём от радиоприемников до систем наземного и воздушного наблюдения в ракетных войсках. Перечень видов применения транзисторов почти бесконечен и продолжает увеличиваться. В 1954 было произведено немногим более 1 млн. транзисторов. Сейчас эту цифру невозможно даже указать. Первоначально транзисторы стоили очень дорого. Сегодня транзисторные устройства для обработки сигнала можно купить за несколько центов.

Термистор - полупроводниковый резистор, электрическое сопротивление которого существенно зависит от температуры. Для термистора характерны большой температурный коэффициент сопротивления (ТКС) (в десятки раз превышающий этот коэффициент у металлов), простота устройства, способность работать в различных климатических условиях при значительных механических нагрузках, стабильность характеристик во времени. Термистор был изобретён Самюэлем Рубеном (Samuel Ruben) в 1930 году и имеет патент

ФОТОРЕЗИСТОР

Полупроводниковый резистор, изменяющий своё электричества. сопротивление под действием внеш. эл.-магн. излучения. Относятся к фотоэлектричества приёмникам излучения, их принцип действия основан на внутр. фотоэффекте в полупроводниках. Для расширения функцией, возможностей Ф. дополняют фильтрами, линзами, растрами, предварит. усилителями, термостатами, подсветкой, системами охлаждения и др. Основные параметры фоторезистора: темновое сопротивление (10 1 -10 14 Ом); спектральный диапазон чувствительности (0,5-120 мкм); постоянная времени (10 -2 - 10 -9 с); вольтовая чувствительность (10 3 -10 6 В/Вт); обнаружительная способность (10 8 -10 16 см Гц 1/2 Вт -1); температурный коэф. чувствительности (0,1-5%/К); рабочее напряжение (0,1 -100 В).

Термоядерные реакции

В 1939 г. известный американский физик Бете дал количественную теорию ядерных источников звёздной энергии. Как известно, звёзды по большей части состоят из водорода, (правда есть и исключения) поэтому вероятность столкновения двух протонов очень велика. При столкновении протона с другим протоном он может притянуться к ядру за счёт ядерных сил. Ядерные силы действуют на расстояниях порядка размеров самого ядра (т. е. 10 м). Для того чтобы приблизится к ядру на столь малое расстояние, протону необходимо преодолеть весьма значительную силу электростатического отталкивания. Ведь ядро тоже заряжено положительно.

Билет 20

ЭЛЕКТРИЧЕСКИЙ ТОК В ВАКУУМЕ

создать эл. ток в вакууме можно, если использовать источник заряженных частиц.
Действие источника заряженных частиц может быть основано на явлении термоэлектронной эмиссии: это испускание электронов твердыми или жидкими телами при их нагревании до температур, соответствующих видимому свечению раскаленного металла.
Вакуумный диод

Вакуумный диод - это двухэлектродная (А- анод и К - катод) электронная лампа.
Внутри стеклянного баллона создается очень низкое давление.
Н - нить накала, помещенная внутрь катода для его нагревания. Поверхность нагретого катода испускает электроны. Если анод соединен с + источника тока, а катод с -, то в цепи протекает постоянный термоэлектронный ток. Вакуумный диод обладает односторонней проводимостью. Т.е. ток в аноде возможен, если потенциал анода выше потенциала катода. В этом случае электроны из электронного облака притягиваются к аноду, создавая эл.ток в вакууме.

Применение атомной энергии.

Применение ядерной энергии в современном мире оказывается настолько важным, что если бы мы завтра проснулись, а энергия ядерной реакции исчезла, мир, таким как мы его знаем, пожалуй, перестал бы существовать. Использование атомной энергии создает много проблем. В основном все эти проблемы связаны с тем, что используя себе на благо энергию связи атомного ядра, человек получает существенное зло в виде высокорадиоактивных отходов, которые нельзя просто выбросить. Отходы от атомных источников энергии требуется перерабатывать, перевозить, захоранивать, и хранить продолжительное время в безопасных условиях.

Плюсы и минусы, польза и вред от использования ядерной энергии

Рассмотрим плюсы и минусы применения атомной-ядерной энергии, их пользу, вред и значение в жизни Человечества. Очевидно, что атомная энергия сегодня нужна лишь промышленно развитым странам. То есть, основное применение мирная ядерная энергия находит в основном, на таких объектах, как заводы, перерабатывающие предприятия, и т.п. Именно энергоемкие производства, удаленные от источников дешевой электроэнергии (вроде гидроэлектростанций) задействуют ядерные станции для обеспечения и развития своих внутренних процессов.

Аграрные регионы и города не слишком нуждаются в атомной энергии. Ее вполне можно заместить тепловыми и другими станциями. Получается, что овладение, получение, развитие, производство и использование ядерной энергии по большей части направлено на удовлетворение наших потребностей в промышленной продукции. Посмотрим, что это за производства: автомобильная промышленность, военные производства, металлургия, химическая промышленность, нефтегазовый комплекс, и т.д.

Современный человек хочет ездить на новой машине? Хочет одеваться в модную синтетику, кушать синтетику и упаковывать все в синтетику? Хочет ярких товаров разных форм и размеров? Хочет все новых телефонов, телевизоров, компьютеров? Хочет много покупать, часто менять оборудование вокруг себя? Хочет вкусно питаться химической едой из цветных упаковок? Хочет жить спокойно? Хочет слышать сладкие речи с телеэкрана? Хочет, чтобы танков было много, а также ракет и крейсеров, а еще снарядов и пушек?
Хочет?
И он все это получает. Неважно, что в конце расхождение между словом и делом приводит к войне. Неважно, что для его утилизации также нужна энергия. Пока что человек спокоен. Он ест, пьет, ходит на работу, продает и покупает.

А для всего этого нужна энергия. А еще для этого нужно очень много нефти, газа, металла и т.п. И все эти промышленные процессы нуждаются в атомной энергии. Поэтому кто бы что ни говорил, до тех пор, пока не будет запущен в серию первый промышленный реактор термоядерного синтеза, атомная энергетика будет только развиваться.

В плюсы ядерной энергии мы можем смело записать все то, к чему мы привыкли. К минусам – печальную перспективу скорой смерти в коллапсе исчерпания ресурсов, проблемах ядерных отходов, росте численности населения и деградации пахотных площадей. Иначе говоря, атомная энергетика позволила человеку еще сильнее начать овладевать природой, насилуя ее сверх меры настолько, что он за несколько десятилетий преодолел порог воспроизводства основных ресурсов, запустив между 2000 и 2010 годами процесс схлопывания потребления. Этот процесс объективно уже не зависит от человека. Всем придется меньше есть, меньше жить и меньше радоваться окружающей природе. Здесь кроется еще один плюс-минус атомной энергии, который заключается в том, что страны, овладевшие атомом, смогут эффективнее перераспределять под себя скудеющие ресурсы тех, кто атомом не овладел. Более того, только развитие программы термоядерного синтеза позволит человечеству элементарно выжить. Теперь поясним на пальцах, что же это за «зверь» - атомная (ядерная) энергия и с чем ее едят.

Билет 21

1. Закон электролиза
1833г. - Фарадей

Закон электролиза определяет массу вещества, выделяемого на электроде при электролизе за время прохождения эл.тока.
k - электрохимический эквивалент вещества, численно равный массе вещества, выделившегося на электроде при прохождении через электролит заряда в 1 Кл.
Зная массу выделившегося вещества, можно определить заряд электрона.

2. Получение радиоактивных изотопов и их применение.
Из всех известных нам изотопов только изотопы водорода имеют собственные названия. Так, изотопы 2H и 3H носят названия дейтерия и трития и получили обозначения соответственно D и T (изотоп 1H называют иногда протием).
Применение изотопов одним из наиболее выдающихся исследований, проведенных с помощью «меченых атомов», явилось исследование обмена веществ в организмах. Было доказано, что за сравнительно небольшое время организм подвергается почти полному обновлению. Слагающие его атомы заменяются новыми. Лишь железо, как показали опыты по изотопному исследованию крови, является исключением из этого правила. Железо входит в состав гемоглобина красных кровяных шариков. При введении в пищу радиоактивных атомов железа было установлено, что свободный кислород, выделяемый при фотосинтезе, первоначально входил в состав воды, а не углекислого газа. Радиоактивные изотопы применяются в медицине, как для постановки диагноза, так и для терапевтических целей.

Билет 22

1.ПЛАЗМА – частично или полностью ионизованный газ, образованный из нейтральных атомов и заряженных частиц (ионов и электронов). Важнейшей особенностью плазмы является ее квазинейтральность, это означает, что объемные плотности положительных и отрицательных заряженных частиц, из которых она образована, оказываются почти одинаковыми. Газ переходит в состояние плазмы, если некоторые из составляющих его атомов по какой-либо причине лишились одного или нескольких электронов, т.е. превратились в положительные ионы. В некоторых случаях в плазме в результате «прилипания» электронов к нейтральным атомам могут возникать и отрицательные ионы. Плазма – четвертое состояние вещества, она подчиняется газовым законам и во многих отношениях ведет себя как газ. Сам термин «плазма» применительно к квазинейтральному ионизованному газу был введен американскими физиками Лэнгмюром и Тонксом в 1923 при описании явлений в газовом разряде. До той поры слово «плазма» использовалось лишь физиологами и обозначало бесцветный жидкий компонент крови, молока или живых тканей, однако вскоре понятие «плазма» прочно вошло в международный физический словарь, получив самое широкое распространение.

2. Биологическое действие радиоактивных излучений было установлено не сразу. Беккерель, открывший радиоактивность в 1896 году даже не подозревал о биологическом действии этого вида излучений. В 1898 году Мария Складовская – Кюри и Пьер Кюри открыли радий и Беккерель взял несколько миллиграмм в стеклянную пробирку для исследования, положив в нагрудный карман. Через некоторое время на теле напротив кармана образовалась болезненная незаживающая язва. Он был вынужден обратиться к врачу, язву залечили, но через некоторое время она открылась вновь.У всех ученых, работавших с радиоактивными элементами, руки были покрыты незаживающими язвами. Прежде чем было установлено биологическое действие проникающего излучения, наука понесла невосполнимые утраты. От лучевой болезни умирают Мария и Пьер Кюри, Ирен и Фредерик Кюри и В. Курчатов. На сегодняшний день наука установила достаточно фактов в этой области. Но до конца механизм воздействия проникающего излучения на клетку не установлен.Воздействие излучения на живые организмы характеризуется дозой излучения. Естественный фон радиации составляют за год 2*10 -3 Гр на человека (1 Гр=1Дж/кг). Доза излучения 3-10 Гр, полученная за короткое время смертельна.

Билет 23

1. Строение газообразных, жидких и твердых тел
Газы. В газах расстояние между атомами или молекулами в среднем во много раз больше размеров самих молекул. Например, при атмосферном давлении объем сосуда в десятки тысяч раз превышает объем находящихся в нем молекул. Газы легко сжимаются, при этом уменьшается среднее расстояние между молекулами, но форма молекулы не изменяется. Молекулы с огромными скоростями - сотни метров в секунду - движутся в пространстве. Сталкиваясь, они отскакивают друг от друга в разные стороны подобно бильярдным шарам. Слабые силы притяжения молекул газа не способны удержать их друг возле друга. Поэтому газы могут не ограниченно расширяться. Они не сохраняют ни формы, ни объема. Многочисленные удары молекул о стенки сосуда создают давление газа. Жидкости. Молекулы жидкости расположены почти вплотную друг к другу, поэтому молекула жидкости ведет себя иначе, чем молекула газа. В жидкостях существует так называемый ближний порядок, т. е. упорядоченное расположение молекул сохраняется на расстояниях, равных нескольким молекулярным диаметрам. Твердые тела. Атомы или молекулы твердых тел, в отличие от атомов и молекул жидкостей, колеблются около определенных положений равновесия. По этой причине твердые тела сохраняют не только объем, но и форму. Потенциальная энергия взаимодействия молекул твердого тела существенно больше их кинетической энергии.

2.Три этапа в развитии физики элементарных частиц
1 . От электрона до позитрона: 1897-1932гг. Когда греческий философ Демокрит назвал простейшие, нерасчленимые далее частицы атомами, то ему все представлялось в принципе не очень сложным. Но в конце XIX века было открыто сложное строение атомов и был выделен электрон как составная часть атома. Затем, уже в XX веке, были открыты протон и нейтрон - частицы, входящие в состав атомного ядра.
2 . От позитрона до кварков: 1932-1970гг (Все элементарные частицы превращаются друг в друга)
Всё оказалось намного сложнее: как выяснилось, неизменных частиц нет совсем. В самом слове элементарная частица заключается двоякий смысл. С одной стороны, элементарный простейший. С другой стороны, под элементарным понимается нечто фундаментальное, лежащее в основе вещей.
3 . От гипотезы о кварках (1964г) до наших дней. В 60-е годы возникли сомнения в том, что все частицы, называемые сейчас элементарными, полностью оправдывают это название. Открытие элементарной частицы всегда составляла и сейчас составляет выдающийся триумф науки. Триумфы стали следовать буквально друг за другом. Были открыта группа так называемых "странных" частиц: К-мезонов и гиперонов с массами, превышающими массу нуклонов. В 70-е годы к ним прибавилась большая группа "очарованных" частиц с еще большими массами. Кроме того, были открыты короткоживущие частицы с временем жизни порядка 10-22-10-23 с. Эти частицы были названы резонансами, и их число перевалило за двести. Вот тогда-то в 1964г М. Гелл-Манном и Дж. Цвейгом была предложена модель, согласно которой все частицы, участвующие в сильных взаимодействиях, построены из более фундаментальных частиц - кварков. В настоящее время в реальности кварков почти никто не сомневается, хотя в свободном состоянии они не обнаружены.

Билет 24

1.Газовые законы Изотермический процесс (закон Бойля Мариотто). Процесс изменения состояния системы макроскопических тел при постоянной температуре. Для поддержания температуры газа постоянной необходимо, чтобы он мог обмениваться теплотой с большой системой - термостатом. Иначе при сжатии или расширении температура газа будет меняться. Для газа данной массы при постоянной температуре произведение давления газа на его объем постоянно. Этот закон экспериментально был открыт (1627-1691). Закон Бойля - Мариотта справедлив обычно для любых газов, а также и для их смесей, например для воздуха.
Лишь при давлениях, в несколько сотен раз больших атмосферного, отклонения от этого закона становятся существенными. Зависимость давления газа от объема при постоянной температуре графически изображают кривой, которую называют изотермой.

Изобарный процесс. Процесс изменения состояния термодинамической системы при постоянном давлении называют изобарным.
Для газа данной массы при постоянном давлении отношение объема к температуре постоянно. Этот закон был установлен экспериментально в 1802 г. французским ученым Ж. Гей-Люссаком (1778-1850). Эта зависимость графически изображается прямой, которая называется изобарой, разным давлениям соответствуют разные изобары. С ростом давления объем газа при постоянной температуре согласно закону Бойля - Мариотта уменьшается. Поэтому изобара, соответствующая более высокому давлению p 2 , лежит ниже изобары, соответствующей более низкому давлению p 1 .
Изохорный процесс. Процесс изменения состояния термодинамической системы при постоянном объеме называют изохорным. Для газа данной массы отношение давления к температуре постоянно, если объем не меняется. Этот газовый закон был установлен в 1787 г. французским физиком Ж.Шарлем (1746-1823) и носит название закона Шарля. Эта зависимость изображается прямой, называемой изохорой. Разным объемам соответствуют разные изохоры. С ростом объема газа при постоянной температуре давление его согласно закону Бойля - Мариотта падает. Поэтому изохора, соответствующая большему объему V 2 , лежит ниже изохоры, соответствующей меньшему объему V 1 .

ОТКРЫТИЕ ПОЗИТРОНА. АНТИЧАСТИЦЫ

Существование двойника электрона - позитрона - было предсказано теоретически английским физиком П. Дираком в 1931 г. Одновременно он предсказал, что при встрече позитрона с электроном обе частицы должны исчезнуть, породив фотоны большой энергии. Может протекать и обратный процесс - рождение электронно-позитронной пары, например: при столкновении фотона достаточно большой энергии с ядром. Спустя два года позитрон был обнаружен с помощью камеры Вильсона, помещенной в магнитное поле. Направление искривления трека частицы указывало знак ее заряда. По радиусу кривизны и энергии частицы было определено отношение ее заряда к массе. Оно оказалось по модулю таким же, как и у электрона. В свое время открытие рождения и аннигиляции электронно-позитронных пар вызвало настоящую сенсацию в науке. До того никто не предполагал, что электрон, старейшая из частиц, важнейший строительный материал атомов, может оказаться не вечным. Впоследствии двойники - античастицы - были найдены у всех частиц. Античастицы противопоставляются частицам именно потому, что при встрече любой частицы с соответствующей античастицей происходит их аннигиляция. Обе частицы исчезают, превращаясь в кванты излучения или другие частицы. Сравнительно недавно обнаружены: антипротон и антинейтрон. Электрический заряд антипротона отрицателен. Атомы, ядра которых состоят из антинуклонов, а оболочка - из позитронов, образуют антивещество. В 1969 г. в нашей стране был впервые получен антигелий.

Билет 25

1.Математическая запись универсального газового закона проста:

pV = nRT. Она содержит основные характеристики поведения газов: p, V и T - соответственно давление, объем и абсолютная температура газа, R - универсальная газовая постоянная, общая для всех газов, а n - число, пропорциональное числу молекул или атомов газа. Этот закон представляет собой то, что в физике принято называть уравнением состояния вещества, поскольку он описывает характер изменения свойств вещества при изменении внешних условий. Строго говоря, этот закон в точности выполняется только для идеального газа. Эта формула была получена в 1874 году Д. И. Менделеевым путем объединения закона Авогадро и общего газового закона (pV/T = const), сформулированного в 1834 году Б. П. Э. Клапейроном. Поэтому этот закон принято называть законом Менделеева-Клапейрона. По существу, этот закон позволил ввести все ранее сделанные эмпирические заключения о характере поведения газов в рамки новой молекулярно-кинетической теории.

P-n переходом или электронно-дырочным переходом называется контакт двух полупроводников с электронной и дырочной проводимостью. Эти переходы играют важную роль в современной электронике. Обладая односторонней проводимостью p-n переходы используются для выпрямления переменного тока в качестве самостоятельных изделий(диоды), позволяют создавать приборы для управления электрическим током (транзисторы), а так же используются в интегральных микросхемах для изоляции ее элементов.

На рис.4.3. приведена схема p-n перехода.

Рис.4.3. Схема p-n перехода: распределение объемного заряда (а) и примесей (б), зонная диаграмма в полупроводниках n и p –типа (в) и в p-n переходе (г).

Объемные заряды, образующиеся в области p-n перехода, создают потенциальный барьер для прохождения подвижных носителей. Управляя величиной барьера можно изменять величину тока в электрической цепи.

Возникающая контактная разность потенциалов (величина потенциального барьера) определяется из выражения

где p p , n n – равновесная концентрация основных носителей;

n i – концентрация собственных носителей.

Электрическое поле в области объемного заряда (d=d p +d n) определяется законом распределения этих зарядов и находиться из решения уравнения Пуассона.

Для d p x 0 (4.9)

для 0 x d n (4.10)

Учитывая, что E=dφ/dx можно получить выражение для φ(x)

при 0≤x≤d n ; (4.11)

при d p ≤x≤0 (4.12)

Толщина области объемного заряда (d=d p +d n)

где U – приложенное внешнее напряжение.

Для несимметричного перехода, когда N D >>N A уравнение упрощается

При обратном включении перехода (- к p - области, + к n - области) слой объемного заряда можно рассматривать как некий конденсатор, обладающий емкостью (С б), называемой барьерной.

Вольт-амперная характеристика. Рассмотрим вольт-амперную характеристику р-n-перехода. Как и в случае контакта металл - полупроводник, вид вольт-ампер­ной характеристики существенно зависит от структуры р-n-перехода, точнее говоря, от его толщины. Так, если толщина р-n-перехода меньше длины свободного пробега носителей (тонкий переход), то электроны или дырки пролетают через переход, не испытывая столкновений с решеткой. В случае же толстого перехода, когда его ширина значи­тельно превышает длину свободного пробега, перенос носителей заряда имеет диффузионный характер. Однако поскольку в отличие от контак­та металл - полупроводник в p-n-переходе перенос тока осуществля­ется неосновными носителями заряда, то главным является не характер переноса, а интенсивность генерации и рекомбинации носителей в об­ласти р-n-перехода. В случае тонкого перехода рекомбинация в слое объемного заряда незначительна. Напротив, в толстом р-n-переходе значительная часть неосновных носителей рекомбинирует, что должно заметно сказаться на виде вольт-амперной характеристики.



Рассмотрим вначале вольт-амперную характеристику тонкого пере­хода. Тонкий переход носители заряда проходят, не успевая рекомбинировать, поэтому как дырочные токи, так и электронные токи по обе стороны р-я-перехода равны. Дырочный ток на границе слоя объемного заряда со стороны электрон­ного полупроводника при x = -L n полностью определяется диффу­зионной составляющей, поскольку в этой точке напряженность элект­рического поля равна нулю.

Плотность дырочного тока в этом случае

Аналогичное выражение можно получить для плотности электронного тока:

Полный ток, протекающий через р-n-переход, можно рассчитать в любом сечении (S) образца. Проще всего его вычислить на границе р-n-пере­хода,

I =S(J p + J p) (4.18)

Из полученной формулы видно, что в прямом направлении ток возрас­тает по экспоненциальному закону с ростом напряжения, а в запорном направлении стремится к току насыщения I S , обусловленному тепловой генерацией неосновных носителей на границе p-n перехода и не зависящему от внеш­него напряжения:

Если р-л-переход является резко несимметричным, то одно из сла­гаемых в формуле (4.20) будет исчезающе малым. Действительно, пусть, например, n-область легирована значительно сильнее, чем р-область. Тогда в соответствии с законом действующих масс имеем p no <. Поскольку диффузионные длины L p и L n не сильно отли­чаются, друг от друга, то получим

В общем случае степень асимметрии р-n перехода характеризуется параметром, получившим название коэффициента инжек­ции . Коэффициент инжекции равен отношению большей составляю­щей тока к полному току. В случае, когда n n >>p p коэффициент инжек­ции равен

Рассмотрим далее вольт-амперную характеристику толстого пере­хода на примере так называемого p-i-n-диода. Структура такого диода представляет собой два слоя n- и р-типа, разделенных высокоомным слоем собственной проводимости толщиной d. В таком диоде уже нельзя пренебрегать процессами гене­рации и рекомбинации внутри p-n перехода. В случае, когда внешняя разность потенциалов включена в запорном направлении, в промежу­точном i-слое идет генерация носителей заряда со скоростью n i /τ i . При напряжении, включенном в прямом направлении, в этом слое идет рекомбинация инжектируемых носителей и плотность тока, связанная с генерацией и рекомбинацией носителей в промежуточном слое толщиной d равна

где τ i – время жизни собственных носителей;

n i – собственная концентрация носителей.

Полный ток, протекающий через p-i-n переход, можно рассматривать как сумму тока, рассчитанного без учета генерации и реком­бинации внутри перехода и генерационно-рекомбинационной составляющей:

Полученная формула справедлива не только в случае явно выраженного i-слоя, но и при плавном изменении концентрации примесей в области обычного р-n перехода. В этом случае роль параметра d играет общая ширина р-п- перехода. Из формулы (4.24) следует условие для определения принад­лежности данного р – n перехода к категории тонкого или толстого: если третье слагаемое в круглых скобках значительно меньше суммы первых двух, то переход можно считать тонким. В противном случае р-n переход необходимо рассматривать как толстый.

Пробой p-n перехода. С увеличением обратного напряжения на р-n пере-ходе при достижении некоторого значения напряжения U проб начинается резкое увеличе­ние тока через диод, приводящее к пробою. Средняя напряженность элек­трического поля в области объ­емного заряда р-n перехода может быть записана как

E=V/d = (q/2εε 0) 1/2 (UN D) 1/2 (4.25)

Так как пробой начинается при достижении определенного (для каждых конкретных условий) значения напряженности электрического поля E проб, то чем больше d (меньше N D), тем при большем напряже­нии U проб начинается пробой. Очевидно, наибольшее U проб имеет р-i-n переход, так как N D в его базе наи­меньшая, а ширина области объемного заряда d наи­большая.

Гетеропереходы. В отличие от р-n перехода, образованного измене­нием концентрации примесей в одном полупроводнико­вом материале (гомопереход), гетеропереходом называ­ют переход, образованный полупроводниками различной физико-химической природы. Примерами гетероперехо­дов могут быть переходы германий - кремний, герма­ний -арсенид галлия, арсенид галлия - форсфид гал­лия и т. д. Для получения гетеропереходов с мини­мальным количеством дефектов на границе раздела кристаллическая решетка одного полупроводника дол­жна с минимальными нару­шениями переходить в кристаллическую решетку дру­гого. В связи с этим полу­проводники, используемые для создания гетероперехо­да, должны иметь близкие значения постоянной решет­ки и идентичные кристалли­ческие структуры. Наиболь­ший практический интерес представляют в настоящее время гетеропереходы, об­разованные полупроводни­ками с различной шириной запрещенной зоны, причем интересными свойствами для полупроводниковых приборов обладают не только гетеропереходы между полупроводниками р- и n-типа, но также и гетеропереходы между полупроводниками с одним типом проводимости: n-n или р-р.

Рассмотрим энергетическую диаграмму гетеропере­хода между полупроводником n-типа с широкой запрещенной зоной и полупроводником р-типа с уз­кой запрещенной зоной (рис. 4.4). За начало отсчета (0) принята энергия электрона, находящегося в ваку­уме. Величина χ в данном случае - истинная работа выхода электрона. из полупроводника в вакуум. Термодинамическая рабо­та выхода обозначена А.

При создании контакта между двумя полупроводни­ками уровни Ферми выравниваются. Отличия гетероперехода от энерге­тической диаграммы р-n перехода заключаются в наличии разрывов в зоне проводимости (ΔE C )и в валент­ной зоне (ΔE V). В зоне. проводимости величина разры­ва обусловлена разностью истинных работ выхода элек­тронов из р и n полупроводников:

ΔE C = χ 2 – χ 1 (4.26)

а в валентной зоне, кроме этого, еще и неравенством значений энергий E V .

Поэтому потенциальные барьеры для электронов и дырок будут различными: потенциаль­ный барьер для электронов в зоне проводимости мень­ше, чем для дырок в валентной зоне. При подаче напря­жения в прямом направлении потенциальный барьер для электронов уменьшится и электроны из n -полупро-водника инжектируются в р -полупроводник. Потенци­альный барьер для дырок в р -области также уменьшит­ся, но все же останется достаточно большим для того, чтобы инжекции дырок из р -области в n -область прак­тически не было. В этом случае коэффициент инжекции (γ) может быть равным единице.

Рис. 4.4. Энергетическая диа­грамма двух полупроводников р- и n-типа с различной шири­ной запрещенной зоны (а) и р –n гетероперехода (б)

Для достижения лучших параметров прибора эта вели­чина должна быть максимальной. В гомопереходе это достигается более сильным легиро­ванием примесями n-области относительно р-области. Однако по этому пути нельзя идти бесконеч­но, так как, с одной стороны, существует предел рас­творимости примеси в полупроводнике и, с другой, при сильном легировании полупроводника в него одновре­менно с примесью вносится множество различных де­фектов, которые ухудшают параметры р-n перехода. В этом направлении перспективным является использо­вание гетероперехода.

Если гетеро­переход образован полупроводниками с равным количе­ством примесей (п п =p p ) и для простоты считать, что эффективные массы и другие параметры носителей за­ряда равны, то можно написать

I p /I n =exp[-(E gn –E g p )/kT] (4.27)

При использовании, например, n-кремния и р-германия E gn –E gp =0,4 эВ. Так как kT/q=0,025 В, то 1 р /1 п = е - 16 , что практически равно нулю, т. е. ток через гетеропере­ход состоит только из электронов, инжектированных из n- области в р -область. В гомопереходе при этих же условиях I р /I n =:1, т. е. токи электронов и дырки равны.

Таким образом, гетеропереход позволяет осуществ­лять практически одностороннюю инжекцию носителей заряда. Существенно отметить, что односторонняя ин-жекция сохраняется и при увеличении тока через гете­ропереход, тогда как в гомопереходе она нарушается.

Что такое полупроводник и с чем его едят?

Полупроводник - материал, без которого не мыслим современный мир техники и электроники. Полупроводники проявляют свойства металов и неметаллов в тех или иных условиях. По значению удельного электрического сопротивления полупроводники занимают промежуточное положение между хорошими проводниками и диэлектриками. Полупроводник отличается от проводников сильной зависимостью удельной проводимости от наличия в кристаллической решетки элементов-примесей (примесные элементы) и концентрации этих элементов, а также от температуры и воздействия различных видов излучения.
Основное свойство полупроводника - увеличение электрической проводимости с увеличением температуры.
Полупроводниками являются вещества, ширина запрещённой зоны которых составляет порядка нескольких электрон-вольт (эВ). Например, алмаз можно отнести к широкозонным полупроводникам, а арсенид индия - к узкозонным. Ширина запрещённой зоны - это ширина энергетического зазора между дном зоны проводимости и потолком валентной зоны, в котором отсутствуют разрешённые состояния для электрона.
Величина ширины запрещённой зоны имеет важное значение при генерации света в светодиодах и полупроводниковых лазерах и определяет энергию испускаемых фотонов.

К числу полупроводников относятся многие химические элементы: Si кремний, Ge германий, As мышьяк, Se селен, Te теллур и другие, а также всевозможные сплавы и химические соединения, например: йодид кремния, арсенид галлия, теллурит ртути и др.). В общем почти все неорганические вещества окружающего нас мира являются полупроводниками. Самым распространённым в природе полупроводником является кремний, составляющий по приблизительным подсчетам почти 30 % земной коры.

В зависимости от того, отдаёт ли атом примесного элемента электрон или захватывает его, примесные атомы называют донорными или акцепторными. Донорские и акцепторные свойства атома примесного элемента зависят также того, какой атом кристаллической решётки она замещает, в какую кристаллографическую плоскость встраивается.
Как выше упоминалось, проводниковые свойства полупроводников сильно зависит от температуры, а при достижениитемпературы абсолютного нуля (-273°С) полупроводники имеют свойства диэлектриков.

По виду проводимости полупроводники подразделяют на n-тип и р-тип

Полупроводник n-типа

По виду проводимости полупроводники подразделяют на n-тип и р-тип.

Полупроводник n-типа имеет примесную природу и проводит электрический ток подобно металлам. Примесные элементы, которые добавляют в полупроводники для получения полупроводников n-типа, называются донорными. Термин «n-тип» происходит от слова «negative», обозначающего отрицательный заряд, переносимый свободным электроном.

Теория процесса переноса заряда описывается следующим образом:

В четырёхвалентный Si кремний добавляют примесный элемент, пятивалентный As мышьяка. В процессе взаимодействия каждый атом мышьяка вступает в ковалентную связь с атомами кремния. Но остается пятый свободный атом мышьяка, которому нет места в насыщенных валентных связях, и он переходит на дальнюю электронную орбиту, где для отрыва электрона от атома нужно меньшее количество энергии. Электрон отрывается и превращается в свободный, способный переносить заряд. Таким образом перенос заряда осуществляется электроном, а не дыркой, то есть данный вид полупроводников проводит электрический ток подобно металлам.
Также сурьмой Sb улучшают свойства одного из самых важных полупроводников – германия Ge.

Полупроводник p-типа

Полупроводник p-типа, кроме примесной основы, характеризуется дырочной природой проводимости. Примеси, которые добавляют в этом случае, называются акцепторными.
«p-тип» происходит от слова «positive», обозначающего положительный заряд основных носителей.
Например в полупроводник, четырёхвалентный Si кремний, добавляют небольшое количество атомов трехвалентного In индия. Индий в нашем случае будет примесным элементом, атомы которого устанавливает ковалентную связь с тремя соседними атомами кремния. Но у кремния остается одна свободная связь в то время, как у атома индия нет валентного электрона, поэтому он захватывает валентный электрон из ковалентной связи между соседними атомами кремния и становится отрицательно заряженным ионом, образуя так называемую дырку и соответственно дырочный переход.
По такой же схеме In ндий сообщает Ge германию дырочную проводимость.

Исследуя свойства полупроводниковых элементов и материалов, изучая свойства контакта проводника и полупроводника, экспериментируя в изготовлении полупроводниковых материалов, О.В. Лосев 1920-х годах создал прототип современного светодиода.

«Физика - 10 класс»

Какие носители тока в полупроводнике являются основными, а какие - неосновными?
Чем отличается примесная проводимость от собственной проводимости?

Наиболее интересные явления происходят при контакте полупроводников n- и p-типов. Эти явления используются в большинстве полупроводниковых приборов.


р-n-Переход.


Рассмотрим, что будет происходить, если привести в контакт два одинаковых полупроводника, но с разным типом проводимости: слева полупроводник n-типа, а справа полупроводник р-типа (рис. 16.10).

Контакт двух полупроводников с разным типом проводимости называют р-n- или n-р-переходом .

Электроны на рисунке изображены голубыми кружочками, дырки - серыми.

В левой части много свободных электронов, а в правой их концентрация очень мала. В правой части, наоборот, много дырок, т. е. вакантных мест для электронов. Как только полупроводники приводят в контакт, начинается диффузия электронов из области с проводимостью n-типа в область с проводимостью p-типа и соответственно переход дырок в обратном направлении. Перешедшие в полупроводник p-типа электроны занимают свободные места, происходит процесс рекомбинации электронов и дырок, а попавшие в полупроводник n-типа дырки также исчезают благодаря электронам, занимающим вакантное место. Таким образом, вблизи границы раздела полупроводников с разным типом проводимости возникает слой, обеднённый носителями тока (его называют контактным слоем). Этот слой фактически представляет собой диэлектрик, его сопротивление очень велико. При этом полупроводник n-типа заряжается положительно, а полупроводник р-типа - отрицательно. В зоне контакта возникает стационарное электрическое поле напряжённостью к, препятствующее дальнейшей диффузии электронов и дырок.

Суммарное сопротивление приведённых в контакт полупроводников складывается из сопротивления полупроводника л-типа, р-n-перехода и полупроводника p-типа: R = R n + R pn + R р. Так как сопротивления областей с n- и p-типами проводимости малы (там много носителей заряда - электронов и дырок), то суммарное сопротивление определяется в основном сопротивлением р-n-перехода: R ≈ R pn .

Включим полупроводник с р-n-переходом в электрическую цепь так, чтобы потенциал полупроводника p-типа был положительным, а n-типа - отрицательным (рис. 16.11). В этом случае напряжённость внешнего поля будет направлена в сторону, противоположную напряжённости контактного слоя.

Модуль суммарной напряжённости E = E к - E внеш. Так как поле, удерживающее носители тока, ослабевает, то у электронов уже достаточно энергии, чтобы его преодолеть.

Через переход пойдёт ток, при этом он будет создан основными носителями - из области с n-типом проводимости в область с p-типом проводимости идут электроны, а из области с p-типом в область с n-типом - дырки. В этом случае р-n-переход называется прямым .


Отметим, что электрический ток идёт во всей цепи: от положительного контакта через область p-типа к р-n-переходу, затем через область n-типа к отрицательному контакту (рис. 16.12). Проводимость всего образца велика, а сопротивление мало. Чем больше подаваемое на контакт напряжение, тем больше сила тока.

Зависимость силы тока от разности потенциалов - вольт-амперная характеристика прямого перехода - изображена на рисунке (16.13) сплошной линией.

Отметим, что изменение подаваемого напряжения приводит к резкому увеличению силы тока. Так, увеличение напряжения на 0,25 В может привести к увеличению силы тока в 20 000 раз.

При прямом переходе сопротивление запирающего слоя мало, и оно также зависит от подаваемого напряжения, с увеличением которого сопротивление уменьшается.

Изменим теперь полярность подключения батареи. В этом случае напряжённости внешнего и контактного полей направлены в одну сторону (рис. 16.14) и модуль суммарной напряжённости E = E к - E внеш. Внешнее поле оттягивает электроны и дырки от контактного слоя, в результате чего он расширяется. В связи с этим у электронов уже не хватает энергии для того, чтобы преодолеть этот слой. Теперь переход через контакт осуществляется неосновными носителями, число которых мало.

Сопротивление контактного слоя очень велико. Ток через р-n-переход не идёт. Образуется так называемый запирающий слой. Такой переход называется обратным .

Вольт-амперная характеристика обратного перехода изображена на рисунке 16.13 штриховой линией.

р-n-Переход по отношению к току оказывается несимметричным: в прямом направлении сопротивление перехода значительно меньше, чем в обратном. Таким образом, р-n-переход можно использовать для выпрямления электрического тока.

Устройство, содержащее р-n-переход и способное пропускать ток в одном направлении и не пропускать в противоположном, называется полупроводниковым диодом .

Если на контакты полупроводникового диода подать переменное напряжение, то ток по цепи пойдёт только в одну сторону.

Полупроводниковые диоды изготовляют из германия, кремния, селена и других веществ.

Рассмотрим, как создают р-n- переход, используя германий, обладающий проводимостью n-типа, с небольшой добавкой донорной примеси. Этот переход не удаётся получить путём механического соединения двух полупроводников с различными типами проводимости, так как при этом получается слишком большой зазор между полупроводниками. Толщина же р-n-перехода должна быть не больше межатомных расстояний, поэтому в одну из поверхностей образца вплавляют индий. Для создания полупроводникового диода полупроводник с примесью p-типа, содержащий атомы индия, нагревается до высокой температуры. Пары примеси n-типа (например, мышьяка) осаждаются на поверхность кристалла. Вследствие диффузии они внедряются в кристалл, и на поверхности кристалла с проводимостью р-типа образуется область с электронным типом проводимости (рис. 16.15).

Для предотвращения вредных воздействий воздуха и света кристалл германия помещают в герметичный металлический корпус.

Полупроводниковые диоды применяют в детекторах приёмников для выделения сигналов низкой частоты, для защиты от неправильного подключения источника к цепи.

В светофорах используются специальные полупроводниковые диоды. При прямом подключении такого диода происходит активная рекомбинация электронов и дырок. При этом выделяется энергия в виде светового излучения.

Схематическое изображение диода приведено на рисунке 16.16. Полупроводниковые выпрямители обладают высокой надёжностью и имеют большой срок службы. Однако они могут работать лишь в ограниченном интервале температур (от -70 до 125 °С)


Транзисторы.


Ещё одно применение полупроводников с примесным типом проводимости - транзисторы - приборы, используемые для усиления электрических сигналов.

Рассмотрим один из видов транзисторов из германия или кремния с введёнными в них донорными и акцепторными примесями. Распределение примесей таково, что создаётся очень тонкая (толщиной порядка нескольких микрометров) прослойка полупроводника n-типа между двумя слоями полупроводника p-типа (рис. 16.17). Эту тонкую прослойку называют основанием или базой .

В кристалле образуются два р-n-перехода, прямые направления которых противоположны. Три вывода от областей с различными типами проводимости позволяют включать транзистор в схему, изображённую на рисунке 16.17. В данной схеме при подключении батареи Б1 левый р-n-переход является прямым . Левый полупроводник с проводимостью p-типа называют эмиттером . Если бы не было правого р-n-перехода, в цепи эмиттер - база существовал бы ток, зависящий от напряжения источников (батареи Б1 и источника переменного напряжения) и сопротивления цепи, включая малое сопротивление прямого перехода эмиттер - база.

Батарея Б2 включена так, что правый n-р-переход в схеме (см. рис. 16.17) является обратным . Правая область с проводимостью p-типа называется коллектором . Если бы не было левого р-n-перехода, сила тока в цепи коллектора была бы близка к нулю, так как сопротивление обратного перехода очень велико. При существовании же тока в левом р-n-переходе появляется ток и в цепи коллектора, причём сила тока в коллекторе лишь немного меньше силы тока в эмиттере. (Если на эмиттер подано отрицательное напряжение, то левый р-n-переход будет обратным, и ток в цепи эмиттера и в цепи коллектора будет практически отсутствовать.)

Это объясняется следующим образом. При создании напряжения между эмиттером и базой основные носители полупроводника p-типа (дырки) проникают в базу, где они являются уже неосновными носителями . Поскольку толщина базы очень мала и число основных носителей (электронов) в ней невелико, попавшие в неё дырки почти не объединяются (не рекомбинируют) с электронами базы и проникают в коллектор за счёт диффузии. Правый р-n-переход закрыт для основных носителей заряда базы - электронов, но не для дырок. В коллекторе дырки увлекаются электрическим полем и замыкают цепь. Сила тока, ответвляющегося в цепь эмиттера из базы, очень мала, так как площадь сечения базы в горизонтальной (см. рис. 16.17) плоскости много меньше сечения в вертикальной плоскости.


Сила тока в коллекторе почти равная силе тока в эмиттере, изменяется вместе с током через эмиттер. Сопротивление резистора R мало влияет на ток в коллекторе, и это сопротивление можно сделать достаточно большим. Управляя током эмиттера с помощью источника переменного напряжения, включённого в его цепь, мы получим синхронное изменение напряжения на резисторе R.

При большом сопротивлении резистора изменение напряжения на нём может в десятки тысяч раз превышать изменение напряжения сигнала в цепи эмиттера. Это означает усиление напряжения. Поэтому на нагрузке R можно получить электрические сигналы, мощность которых во много раз превышает мощность, поступающую в цепь эмиттера.


Применение транзисторов.


Современная электроника базируется на микросхемах и микропроцессорах, включающих в себя колоссальное число транзисторов.

Первая интегральная схема поступила в продажу в 1964 г. Она содержала шесть элементов - четыре транзистора и два резистора. Современные микросхемы содержат миллионы транзисторов.

Компьютеры, составленные из микросхем и микропроцессоров, фактически изменили окружающий человека мир. В настоящее время не существует ни одной области человеческой деятельности, где компьютеры не служили бы активными помощниками человека. Например, в космических исследованиях или высокотехнологичных производствах работают микропроцессоры, уровень организации которых соответствует искусственному интеллекту.

Транзисторы (рис. 16.18, 16 19) получили чрезвычайно широкое распространение в современной технике. Они заменили электронные лампы в электрических цепях научной, промышленной и бытовой аппаратуры. Портативные радиоприёмники, в которых используются такие приборы, в обиходе называются транзисторами. Преимуществом транзисторов (так же как и полупроводниковых диодов) по сравнению с электронными лампами является прежде всего отсутствие накалённого катода, потребляющего значительную мощность и требующего времени для его разогрева. Кроме того, эти приборы в десягки и сотни раз меньше по размерам и массе, чем электронные лампы.


1. Получение p-n перехода . Во второй половине ХХ века интенсивно развивалась твердотельная электроника. Громоздкие электровакуумные лампы заменились малогабаритными полупроводниковыми устройствами. Основным элементом полупроводниковых приборов является p-n – переход , обладающий уникальными свойствами. Он представляет собой тонкий слой на границе между двумя примесными полупроводниками.

Получить p -n – переход прямым соприкосновением двух полупроводников практически невозможно. Как бы тщательно ни были очищены их поверхности, они всегда содержат много примесей и загрязнений, ухудшающих свойства полупроводников. Поэтому задача решается путем введения в один и тот же кристалл с определенным типом проводимости противоположной примеси.

Например в монокристалл четырехвалентного германия с донорной примесью, создающей в кристалле германия Ge проводимость n – типа, в вакууме при температуре около 1000°С вплавляют кусочек трехвалентного индия In. Атомы индия диффундируют в германий на некоторую глубину. В той области кристалла, куда проникают атомы индия, проводимость становится дырочной (p – типа). На границе этой области возникает p -n – переход. По мере перемещения вглубь кристалла концентрация индия постепенно уменьшается. Тот слой, где концентрация акцепторной примеси индия сравняется с концентрацией донорной примеси в монокристалле, и есть собственно p -n – переход. Такие переходы называют плавными . Резкие p-n – переходы получают путем осаждения на кристалл полупроводника, допустим n – типа, полупроводника p – типа из газовой фазы. Для этого над кристаллом пропускают при температуре 1200 о С такую газовую смесь, чтобы на кристалл осаждался полупроводник с нужным типом проводимости.

2. Равновесные состояния p-n – перехода . Предположим мысленно, что сразу же после образования p- и n- областей мы их разделили, не допустив перетекания зарядов из одной области в другую. Возникает ситуация, показанная на рис.117. Обе области электрически нейтральны, их нулевые уровни совпадают. Уровень Ферми в p –области выше примесных уровней, а в n –области – ниже. В общем случае уровни Ферми не совпадают, в n –области уровень Ферми выше.

Однако в реальности после образования p -n – слоя начинается диффузия основных носителей из одной области в другую. Для n –области основными носителями являются электроны, для p –области – дырки. Основные носители возникают почти целиком вследствие ионизации донорных и акцепторных примесей. При температурах Т ³ 250 К эти примеси ионизированы практически полностью. Поэтому концентрация электронов в n –области равна концентрации донорных атомов, а концентрация дырок в p –области – концентрации акцепторных атомов.


Концентрация неосновных носителей примерно в 10 6 раз меньше концентрации основных в обеих областях (). В результате в контактирующих областях полупроводника возникают диффузионные потоки электронов проводимости из п -области в р -область и дырок из p –области в n –область. Электроны перемещающиеся в p –область, рекомбинируют вблизи границы раздела с дырками, а дырки в n –области рекомбинируют с электронами проводимости. Поэтому в приконтактном слое n –области практически не остается свободных электронов и в нем формируется неподвижный положительный заряд ионизированных доноров .

В приконтактном слое p –области практически не остается дырок, и в нем формируется отрицательный заряд ионизированных акцепторов . Эти неподвижные электрические заряды создают в p-n – переходе контактное электрическое поле с разностью потенциалов j к и практически не выходящее за его пределы.


Эта ситуация иллюстрируется рис.118, где наверху показаны объемные заряды в контактных областях, а внизу - энергетические зоны. Поскольку p –область зарядилась отрицательным зарядом, энергия электронов в ней увеличилась. В результате энергетическая диаграмма в p –области поднимается, в n –области опускается. В p-n слое она наклонена так, что уровни Ферми в разных областях совпадают.

Если в слой объемных зарядов влетает неосновной носитель (электрон из p –области или дырка из n –области), то контактное поле подхватывает его и перебрасывает через этот слой. В результате каждый неосновной носитель, налетающий на p-n – переход, проходит через него.

Наоборот, основные носители тока (электрон из n –области или дырка из p –области) могут перелетать через слой объемных зарядов лишь в том случае, если кинетическая энергия их движения вдоль оси Х достаточна для преодоления контактной разности потенциалов, то есть если она больше |ej к |. Поэтому, как только образуются объемные заряды у границы областей, поток основных носителей, пересекающих эту границу, уменьшается. Когда поток основных носителей сравняется с потоком неосновных носителей, устанавливается динамическое равновесие.

3. Прямое включение p-n – перехода в электрическую цепь . Подключим к p-n – переходу источник тока, присоединив к p –области «плюс», а n –области – «минус» (рис.119 вверху). Полагаем, что источник тока способен создавать на омических шинах напряжение j 0 . Дополнительное электрическое поле, создаваемое источником тока, вызывает приток основных носителей в область объемного заряда p-n – перехода. В p –области в направлении от омической шины к p-n – переходу движутся дырки. Они рекомбинируют с электронами отрицательных ионов акцепторной примеси. В n –области в направлении к p-n – переходу движутся электроны проводимости, которые рекомбинируют с положительными ионами донорной примеси.

В результате объемный заряд на p-n – переходе уменьшается по сравнению с равновесным состоянием. Становится меньше и высота потенциального барьера. Этот процесс продолжается до тех пор, пока контактная разность потенциалов на p-n – переходе не уменьшится до значения j к – j 0 .

На рис.119 внизу данная ситуация показана на энергетической зонной диаграмме. Штриховые линии соответствуют равновесному состоянию p-n – перехода.

Электроны в зоне проводимости полупроводника ведут себя как тяжелые предметы, скользящие по дну зоны проводимости. Уменьшение высоты потенциального барьера резко увеличивает долю тех электронов в n –области, кинетическая энергия которых в направлении движения к потенциальному барьеру достаточна для преодоления этого барьера.

Дырки в валентной зоне ведут себя как пузырьки воздуха подо льдом. Чем меньше высота барьера, тем большая доля дырок способна «поднырнуть» под него (на рис.119 внизу слева направо). В результате с уменьшением высоты потенциального барьера резко увеличивается диффузионный поток через p-n – переход электронов проводимости из n –области и дырок из p –области. Ток основных носителей i осн подскакивает по сравнению с равновесным на несколько порядков.


4. Обратное включение p-n – перехода показано на рис.120 вверху. «Плюс» источника тока присоединяется к омической шине n –области, а «минус» присоединяется к омической шине p –области. Возникающий в электрическом поле источника тока дрейф основных носителей направлен от p-n – перехода к омическим шинам. При этом обнажаются новые слои ионизированных доноров и акцепторов, увеличивая тем самым область объемного связанного заряда.

Протекание электронов и дырок к омическим контактам происходит до тех пор, пока они практически полностью не скомпенсируют заряды, созданные внешним источником ЭДС. После этого все приложенное напряжение j 0 падает на p-n – переходе, сопротивление которого на много порядков больше сопротивления p- и n- областей. Потенциальный барьер p-n – перехода возрастает практически до величины e (j к + j 0). Это резко снижает ток основных носителей i осн, делая его меньше равновесного. Ток неосновных носителей i неосн зависит лишь от их концентрации и потому меняется незначительно (рис.120 внизу).

Итак, p-n – переход можно рассматривать как нелинейный проводник , сопротивление которого зависит лишь от знака приложенного напряжения. Односторонняя проводимость p-n – перехода используется не только в полупроводниковых диодах . Свойства p-n – переходов оказались настолько плодотворными, что позволили создать на их основе серию электронных полупроводниковых приборов , в число которых помимо диодов входят транзисторы , тиристоры и др. Во второй половине XX века происходит быстрый переход от ламповой к твердотельной электронике.

5. Полупроводниковые диоды – нелинейные проводники. Их два электрода называют анод (+) и катод (- ). Диоды имеют резко несимметричную вольтамперную характеристику (рис.121). Это позволяет использовать их для выпрямления переменных токов.

Если к первичной обмотке трансформатора приложено переменное синусоидальное напряжение, то во вторичной обмотке, замкнутой на омический резистор R , протекает синусоидальный переменный ток той же частоты, , где j 0 – сдвиг по фазе (рис.122-а). Если в разрыв вторичной цепи включить полупроводниковый диод, то через резистор R в течение одной половины периода будет протекать пульсирующий однонаправленный ток. Получается схема однополупериодного выпрямителя (рис.122-б).

Для двухполупериодного выпрямления нужно как минимум два диода и вывод средней точки вторичной обмотки трансформатора (рис.122-в). Соединив четыре диода по схеме выпрямительного моста , можно обойтись без средней точки (рис.122-г).

6. Транзисторы . С помощью p-n – переходов можно не только выпрямлять, но и усиливать электрические токи. Для этой цели служат транзисторы – полупроводниковые устройства, имеющие три электрода (эмиттер, коллектор, база ). Рассмотрим принцип действия транзистора на примере его включения по схеме с общей базой (рис.123).


Левый на рисунке p-n – переход 1 работает в прямом направлении. Правый p-n – переход 2 работает в запорном направлении. Расстояние в транзисторе между переходами 1 и 2 (ширина базы) не превышает нескольких десятков мкм. Ток в цепи база-коллектор определяется неосновными носителями и сильно зависит от концентрации этих носителей. В n –области неосновными носителями являются дырки.

Если в цепи эмиттер-база идет ток, то дырки из p –области, где они являются основными носителями, в большом количестве движутся через переход 1 в область базы. В результате концентрация дырок в n –области базы резко возрастает. Говорят, происходит инжекция дырок. Т.к. ширина базы очень мала, то диффундирующие через переход 1 дырки в большом количестве доходят до перехода 2. Концентрация неосновных носителей в n –области возле перехода 2 существенно увеличивается, поэтому и увеличивается ток в цепи коллектора.

Напряжение U 2 в цепи коллектора много больше напряжения U 1 в цепи эмиттера U 2 >>U 1 . Поэтому выделяющаяся на сопротивлении R мощность оказывается больше мощности, расходуемой в цепи эмиттера. Усиление по мощности в современных транзисторах колеблется от нескольких десятков до десятков тысяч раз.

7. Термоэлектрические эффекты Зеебека и Пельтье выражены в полупроводниках много сильнее чем в металлах (см. §14). Особенно, если контакты образуют полупроводники с разным типом проводимости. Дифференциальная термо-ЭДС в полупроводниках примерно в 1000 раз больше, чем в металлах. Это позволяет создавать полупроводниковые термоэлектрические генераторы и холодильники.

Теорию термоэлектрогенераторов разработал в начале 40-х годов XX века Абрам Иоффе. Первые термогенераторы в СССР были построены в начале Великой Отечественной войны и использовались для питания радиостанций в партизанских отрядах. В середине 70-х годов появились термогенераторы мощностью 150–200 Вт для питания аппаратуры метеорологических станций и космических аппаратов. Источником энергии в них был радиоактивный изотоп церия 144 Се.

Максимальный КПД термоэлектрогенераторов, достигнутый к настоящему времени, составляет 15% и вряд ли превысит 20%. Полупроводниковые термоэлектрогенераторы дороги, поэтому промышленное получение на их основе электрической энергии в ближайшем будущем маловероятно, если не будут созданы дешёвые материалы, сочетающие высокую электропроводность с низкой теплопроводностью.

Полупроводниковые холодильники, построенные на основе эффекта Пельтье, используются чаще всего для охлаждения элементов радиоэлектронных цепей.

8. Фотогальванический эффект . При освещении p-n – перехода и прилегающих к нему областей светом, способным вызвать генерацию электронно-дырочных пар, через p-n – переход возникает ток зарядов, изменяющий его состояние по сравнению с равновесным.

Допустим, на p –область падает свет, как показано на рис.124 вверху. Чтобы фотоны поглощались вблизи p-n – перехода , толщина р –области должна быть малой и не превышать 1–2 мкм. Если энергия фотонов hn больше ширины запрещенной зоны, hn ³ E g , то при поглощении фотона электроном в валентной зоне любой области электрон переходит в зону проводимости. (Полагаем, что акцепторные и донорные примесные уровни в p- и n- областях уже полностью ионизированы). Появляется пара носителей – электрон в зоне проводимости и дырка в валентной зоне.


Увеличение числа основных носителей (дырки в p –области и электроны в n –области) по существу ничего не меняет, поскольку их относительный прирост мал. А увеличение числа неосновных носителей (дырки в n –областии электроны в p –области) очень существенно. Поскольку ток через p-n – переход неосновных носителей зависит лишь от их концентрации, то при освещении p-n – перехода светом возникает фотогальванический эффект – появление тока неосновных носителей, приблизительно пропорционального световому потоку Ф.

Неосновные носители захватываются контактным полем и уходят из p- и n- областей. Основные носители остаются. В результате по разные стороны p-n – перехода постепенно накапливаются заряды свободных носителей – дырок в p – области и электронов в n – области, p – область заряжается положительно, n – область – отрицательно.

Поле этих свободных зарядов противоположно контактному полю и ослабляет его. Связанный в области p-n – перехода заряд ионизированной примеси уменьшается, высота потенциального барьера становится меньше (рис.124 внизу). В результате диффузия основных носителей растет. Постепенно устанавливается такое динамическое равновесие, когда при данном световом потоке Ф пропорциональный ему ток неосновных носителей i неосн станет равным противоположному току основных носителей, i неосн = i осн. Высота потенциального барьера принимает значение e (j к + j ф), где j Ф – фото-ЭДС p-n – перехода .

Фотогальванический эффект может использоваться в режиме фотоэлемента или в режиме фотодиода .

а. Фотоэлемент . Для использования p-n – перехода в режиме фотоэлемента (в вентильном режиме ) достаточно соединить p- и n –области омической перемычкой с нагрузочным сопротивлением R . При освещении фотоэлемента по сопротивлению R потечет фототок свободных электрических зарядов. Поэтому в режиме фотоэлемента p-n – переход позволяет напрямую превращать энергию света в электрическую. Схема устройства фотоэлемента показана на рис.125. На тонкую p –область (»1 мкм) напыляется еще более тонкий металлический слой из серебра или золота, играющий роль омической шины. Чтобы эта металлическая пленка достаточно хорошо пропускала свет, ее толщина должна быть много меньше длины волны света l . Обычно это несколько десятков атомных слоев.

Второй омической шиной является металлическая пластина, играющая одновременно роль механической несущей основы всей конструкции фотоэлемента. Из отдельных фотоэлементов собирают солнечные батареи , использующиеся для питания космической аппаратуры и в наземных энергетических установках.

В настоящее время солнечные батареи делают в основном из кремния Si и арсенида галлия GaAs. Достигнутый КПД h » 20% близок к теоретически возможному.

б. Фотодиод . Чтобы использовать p-n – переход в режиме фотодиода, на него подается напряжение j 0 от источника тока в запорном направлении (рис.126 слева). Если фотодиод не освещен, то по нему протекает очень малый темновой ток неосновных носителей. Напряжение U на резисторе R практически равно нулю. Когда на фотодиод направляется световой поток Ф, концентрация неосновных носителей и их ток возрастает пропорционально потоку Ф. На резисторе R возникает напряжение U (рис.126 справа), которое можно использовать как сигнал в цепях связи или управления.

9. Светодиод . При пропускании прямого тока концентрация неосновных носителей в области p-n – перехода повышается. К инжектированным неосновным носителям подтягиваются основные носители. В результате в области p-n – перехода развивается процесс рекомбинации избыточных над равновесным состоянием носителей.


Если часть актов рекомбинации происходит с излучением света и если этот свет может выйти наружу, то получается светоизлучающий диод – светодиод .

Эти два условия при конструировании светодиодов являются определяющими. Первая задача - увеличение роли светоизлучающих актов рекомбинации – решается путем уменьшения доли безизлучательных переходов. Для этого полупроводник должен быть до высокой степени очищен от безизлучательных примесных центров, что является довольно трудным делом. Второе условие - выход излучения наружу также представляет собой сложную задачу. Дело в том, что показатель преломления света у полупроводников велик, у арсенида галлия, например, n =3,45. Поэтому угол полного внутреннего отраженияу полупроводников очень мал, . Лишь »2% испускаемого излучения падает на плоскую поверхность полупроводника под углами, меньшими b пред, испытав лишь частичное отражение от границы раздела проводник-воздух.

Средняя мощность излучения светодиодов в непрерывном режиме составляет 3¸5 мВт. Увеличить ее за счет повышения прямого тока не удается из-за нагрева p-n – перехода, резко снижающего внутреннюю эффективность.

Светодиоды широко применяются в современной электронике. В сочетании с фотоприемниками они образуют оптронные пары , используемые для развязки и усиления сигналов в оптронных логических элементах. Быстродействие светодиодов достигает »10 -9 с. Используются светодиоды и в качестве малогабаритных световых индикаторов. Выбирая полупроводники с различной шириной запрещенной зоны, удается делать светодиоды с различными цветами свечения.

10. Полупроводниковые лазеры . Наиболее широко применяются сейчас полупроводниковые инжекторные лазеры на арсениде галлия GaAs. Инверсия населенности уровней в них достигается инжекцией основных носителей через p-n – переход.

На рис.127-а показан равновесный p-n – переход между двумя вырожденными областями полупроводника. Вырожденными называются области с совпадающими энергетическими уровнями. В результате одному значению энергии могут соответствовать два и более электронов. Уровень Ферми Е Ф в p –области находится ниже потолка валентной зоны Е в, а в n –области – выше дна зоны проводимости Е п. В результате потолок валентной зоны до отказа заполнен дырками в p –области, а дно зоны проводимости в n –области – электронами (рис.127-в).

Если к такому p-n – переходу приложить прямое напряжение j p – области «плюс», к n – области «минус»), резко снижающее потенциальный барьер, то в нем появляется область А с инверсным заполнением зон (рис.127-б). Над насыщенным дырками потолком валентной зоны располагается до отказа заполненное электронами дно зоны проводимости. Спонтанная излучательная рекомбинация электронно-дырочных пар вызывает в этих условиях индуцированное излучение .

Схема устройства полупроводникового лазера показана на рис.128 слева. Монокристалл с p-n – переходом имеет форму пирамиды. Две противоположные ее грани делают строго параллельными друг другу и перпендикулярными плоскости p-n – перехода. Эти грани выполняют роль оптического резонатора, заставляющего стимулированное излучение, возникающее в плоскости p-n – перехода, проходить через него многократно. Две другие грани остаются грубо обработанными и непрозрачными для света.

Коэффициент отражения света от граней кристалла при n = 3,45 составляет от 30 до 35% при углах падения, близких к нормальному. Кроме того, световая волна, распространяясь вдоль p-n – перехода, поглощается пассивными областями диода. Поэтому для возникновения генерации надо создать такую инверсию заселенности зон, которая бы перекрывала все потери света.

Ток I пор, при котором выполняется это условие и возникает генерация, называют пороговым . До порогового тока лазер работает как обычный светодиод. Он испускает спонтанное излучение с равномерной плотностью по всем направлениям. Поэтому из светодиода выходит около 2% света, возникающего в результате излучательной рекомбинации.

При переходе к режиму генерации почти все излучения концентрируются в плоскости p-n – перехода, распространяясь перпендикулярно оптическим окнам кристалла. Отношение вероятности излучательной рекомбинации к вероятности безизлучательной увеличивается. В результате при I > I пор происходит резкий рост светового потока Ф (рис.128 справа).

Важным недостатком полупроводниковых лазеров является сильная зависимость их параметров от температуры. Из-за значительного прямого тока светодиод разогревается, ширина запрещенной зоны, как правило, уменьшается, поэтому максимум излучения смещается в сторону длинных волн. Это ухудшает условия оптического резонанса.

Более того, с ростом температуры быстро растет пороговый ток I пор, так как при неизменном токе инжекции распределение носителей тока по энергиям с ростом температуры становится более размытым. Заполнение электронами и дырками энергетических состояний становится более рыхлыми. В результате мощность излучения с ростом температуры лазера падает. Поэтому проблема отвода тепла от p-n – перехода для полупроводниковых лазеров имеет первостепенное значение.

11. Микроэлектроника. Развитие технологии полупроводниковых приборов – диодов, транзисторов и др. – шло не только в направлении улучшения их функциональных характеристик, но и в направлении уменьшения их размеров. На одном кристалле удавалось разместить вначале десятки, а затем сотни и тысячи полупроводниковых устройств. Одновременно развивалась технология формирования в таких блоках и классических элементов – конденсаторов, резисторов, катушек индуктивности. В результате в конце 60-х годов ХХ в. появляется микроэлектроника.

Основная практическая продукция микроэлектроники – интегральные схемы (ИС), которые служат элементами ЭВМ, средств автоматизации управления и связи. Все приборы и линии связи между ними формируются в едином технологическом процессе на общей подложке. Для обобщенной характеристики интегральных схем используются три величины. Степень интеграции N равна числу элементов в микросхеме. При N < 10 схема называется малой интегральной схемой (МИС), при 10 ≤ N < 100 – средней (СИС), при 100 ≤ N < 1000 – большой (БИС) и при N > 1000 – сверхбольшой (СБИС). Степень интеграции N постоянно растет и в настоящее время приближается к 10 8 . Вторая величина - средние линейные размеры элементов микросхем - в настоящее время составляет величину порядка 0,1 мкм и имеет тенденцию к дальнейшему уменьшению. Третья величина - рабочие частоты импульсных схем. Они составляют несколько миллиардов герц.

Разрабатывают и изготовляют интегральные схемы ЭВТ с помощью ЭВМ. В целом, технология производства современных интегральных схем достаточно сложная и дорогая, требующая высокой культуры производства. При изготовлении ИС используют 3 технологии. В полупроводниковой делают активные элементы (p-n- переходы) в объёме монокристалла. В плёночной делают пассивные элементы – резисторы, конденсаторы, напыляя на подложку в вакууме слои металла (Cr) и диэлектрика (SiO 2). В гибридной сочетаются полупроводниковая и пленочная технологии.


глава 3. Физика атомного ядра



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: