Логический пробник с большим входным сопротивлением. Простой светодиодный логический пробник TTL уровней. Схема и описание. Различные конструкции логических пробников

Логический пробник , пожалуй, является неотъемлемой частью основного оборудования каждого радиолюбителя занимающегося сборкой или ремонтом цифровой техники.

В отличие от обычных статических измерений, где в большинстве случаев достаточно обычного мультиметра, измерения в цепях цифровых устройств все же немного отличаются, так как, за исключением особых случаев, здесь необходимо контролировать только два уровня логических сигналов – низкий (лог. 0) и высокий (лог. 1).

Значения лог. 1 и лог. 0 при помощи светодиодной индикации намного легче, чем считывание показаний напряжения цифровым или стрелочным вольтметром. Еще большая проблема возникает, если сигнал постоянно меняется с достаточно высокой частотой. Здесь, вольтметр не имеет никаких шансов, так как импульсы рабочего цикла могут быть настолько малыми, что вольтметр из-за его инерции просто не покажет истинного значения.

Поэтому самым лучшим вариантом будет использования логического пробника способного не только показать наличие логических уровней в цифровых схемах, но и регистрировать импульсы, возникающие при переключении логических состояний.

Описание работы светодиодного логического пробника

Схема подобного логического пробника приведена ниже. Логический пробник работает с цифровыми схемами, имеющими TTL логические уровни. Напряжение питания пробника составляет 5В, которое берется непосредственно от исследуемой схемы.

Если на вход пробника поступает сигнал высокого уровня, то он через резистор R1 идет на транзистор Т1, который находится в закрытом состоянии. Напряжение на его эмиттере близко к напряжению питания, в результате чего на выходе IC1A появляется лог. 0 и это в сою очередь приводит к тому, что загорается светодиод LD1.

Если же на вход пробника поступает сигнал низкого уровня, то через диод D1 этот сигнал инвертируется, из-за чего на выходе элемента IC1C появляется высокий уровень, а на выходе IC1D низкий уровень. В этом случае загорается светодиод LD2.

При изменении уровней на входе элемента IC1B, на его выходе появляется короткий импульс, которым запускает таймер (IC2). Таким образом, можно фиксировать даже очень короткие импульсы, которые невозможно обнаружить на глаз. Длинный импульс зажигает светодиод LD3.

История создания

В практике каждого радиолюбителя, периодически возникают ситуации, когда под рукой нет необходимых измерительных приборов. Вот и я, однажды, в конце 90-х годов, находясь далеко от дома (да еще и в полевых условиях), столкнулся с такой ситуацией. Для поиска неисправности в промышленном оборудовании мне срочно понадобился логический пробник. Но где его возьмешь в 50 км. от ближайшего населенного пункта.

Так как ситуация возникла спонтанно и никаких ремонтов не планировалось, то кроме мультиметра, паяльника и небольшого набора деталей у меня с собой ничего не было. Оценив имеющийся у меня с собой перечень деталей в голове родилась простая до безобразия схема.

Потратив вечер на изготовление и наладку пробника, к утру я обладал достаточно неплохим прибором, который в последствии доказал свою эффективность и практичность.

Работа схемы

Логический элемент (параллельно 4 элемента 2И-НЕ), включенный в режиме инвертора, находится в пограничном состоянии благодаря обратной связи через высокоомный резистор. На его входе и выходе — приблизительно Uпит/2 . Светодиоды погашены — им не хватает напряжения для зажигания. Дальше все просто — при подаче лог «1» или «0», элемент входит в обычный режим и зажигает соответствующие светодиоды.

Диод D1 — любой (лучше Шоттки), защитит устройство от случайной переполюсовки питания. В качестве микросхемы D1, без корректировки схемы, можно использовать распространенные КМОП микросхемы CD4011 (К561ЛА7), CD4001 (К561ЛЕ5), а также другие логические элементы.

С тех пор, этот пробник является моим надежным помощником. Я сделал несколько экземпляров этого прибора. Из-за своей миниатюрности (если использовать микросхему в корпусе SOIC), вся начинка пробника легко помещается в корпус маркера. Вот как выглядит пробник в сборе.

Как это работает

Небольшое видео с демонстрацией работы логического пробника. Питание схемы осуществляется от источника 9 вольт.

Небольшое дополнение

Так как пробник имеет высокоомный вход, в некоторых случаях возможно слабое свечение светодиода Лог «0», особенное при напряжении 12 вольт и при непосредственном контакте рук с платой. Эти эффекты проходят при помещении устройства в корпус, экранировании и т.п. В любом случае, работе это не мешает.

Информация для заказа

Радиолюбители, желающие самостоятельно собрать миниатюрный логический пробник Микрош, могут приобрести печатные платы или набор для самостоятельной сборки миниатюрного логического пробника.

НАИМЕНОВАНИЕ ОПИСАНИЕ И СОСТАВ НАБОРА/МОДУЛЯ СТОИМОСТЬ
PL-01 board
Печатная плата (легко отправляется в обычном конверте)
Состав набора: печатная плата, инструкция по сборке и эксплуатации;
Размер платы: 40х9мм;

50 руб.
PL-01 kit МИНИАТЮРНЫЙ ЛОГИЧЕСКИЙ ПРОБНИК
Набор для самостоятельной сборки
Состав набора: печатная плата, комплект радиоэлементов, инструкция по сборке и эксплуатации;
Размер платы: 40х9мм;
Напряжение питания: 5-12 вольт;
Ориент. время получения удовольствия (сборки): 30 мин.
100 руб.

Заказать платы или наборы для самостоятельной сборки Вы можете отправив заявку на электронную почту [email protected]
В ближайшее время, все электронные модули, наборы для самостоятельной сборки на smd-компонентах и конструкторы будут доступны на сайте

Развитие цифровой техники привело к созданию логических пробников. Предлагаемый логический пробник прост и удобен в эксплуатации. Пробник имеет большое входное сопротивление, этого удалось добиться применением КМОП структур.
Принцип работы пробника весьма прост (см. рисунок). Когда пробник подключен к контролируемой точке, где присутствует «0», или последняя «оборвана», на выводах 8, 10, 12 микросхемы DD1 устройства присутствует лог.»1″, поэтому на восьмисегиентном индикаторе изображается «0». Когда пробник подключен к контролируемой точке, где присутствует «1», то на выводах микросхемы DD1 (8,10,12) устанавливается лог.»0″, поэтому сегменты a, f, e, d гаснут и изображается лог.»1″. Диод VD1 защищает устройство от неправильной полярности напряжения питания.
Конденсатор С1 предотвращает самовозбуждение пробника. Пробник потребляет ток 17,5…20 мА и работает при напряжении от 3 до 15 В. Питается пробник от цепей испытуемого устройства.
Конструкция. Пробник смонтирован на двух печатных платах из одностороннего фольгированного текстолита.
На первой плате размещены все элементы, кроме HG1, а на второй плате размещен HG1. Первую плату лучше разместить в корпусе 20-миллиметрового шприца, а вторую. на рукоятке шприца. Роль щупа играет игла шприца.
Монтаж. Выводы 1.6 нужно удалить, а микросхему расположить «боком», выводами 8-14 к плате.

Детали. Конденсатор С1 типа КМ-5, КМ-6, резисторы R1…R3 типа МЛТ-0,125, диод VD1 любой малогабаритный, микросхема К561ЛН2 (можно заменить на КР156ЛН2 или К564ЛН2), восьмисегментный знакогенератор — любой подобный.
В налаживании устройство не нуждается.
Литература РАДІОАМАТОР 3.2000 Автор — К.Герасименко, пгт Краснополье, Сумская обл.

  • Похожие статьи
  • - Схема часов показана на рисунке, часы собраны на 3-х микросхемах D1-D3. Микросхема К174ИЕ18 - содержит генератор частоты 32768Гц(с внешним кварцем), 2-а делителя на 32768 (сек) и на 60 (мин), счетчик вырабатывающий коммутирующие импульсы для динамической индикации и формирователь звукового сигнала....
  • - Это уст-во позволяет получить АЧХ динамических головок, узнать предельную частоту динамической головки, проверить ее исправность и может быть использовано как генератор ЗЧ с высокостабильным выходным напряжением во все полосе рабочих частот. Пробник вырабатывает синусоидальные колебания от 20 до...
  • - Принципиальная схема передатчика показана на рис.1. Передатчик (27МГц) выдает мощность около 0,5Вт. В качестве антенны используется провод 1 м длиной. Передатчик состоит из 3-х каскадов - задающего генератора (VT1), усилителя мощности (VT2) и манипулятора (VT3). Частота задающего генератора...
  • - Описываемое устройство служит для автоматического управления любых электронасосов, в том числе центробежных скважинных насосов водоподъема с погруженными электродвигателями мощностью 1.11 кВт и контроля уровня воды в наполняемом резервуаре и скважине. Устройство представляет собой дополненный...
  • - Пробник позволяет разделить наличие фазы в сети 220-380В переменного и постоянного напряжения (при постоянном указание полярности), прозванивать электро цепи. Схема пробника очень проста, прибор собран на печатной плате из одностороннего стеклотекстолита. К плате припаян штырь диаметром 3 мм и...

Многие радиолюбители сталкиваются с цифровыми схемами и устройствами работающими по законам Булевой алгебры-логики. Имеющие только два состояния «ноль» или «единица» цифровые схемы относительно просты в настройке и надёжны в работе. При настройке цифровых устройств очень удобно пользоваться различного рода логическими пробниками, именно об одном из простейших логических пробников и пойдёт речь в этой статье.

Простой логический пробник схема:

Одним из вариантов самых простых пробников представлен на рисунке №1.


Рисунок №1 – схема простого логического пробника

R1, R2 – 4,7 КОм

VT1, VT2 – 2N2222

VD1 – зелёный светодиод (любого номинала)

VD2 – красный светодиод (любого номинала)

Работа и настройка схемы цифрового пробника:

Питается схема от батарейки типа «крона» 9 вольт. Принцип работы схемы довольно простой, транзисторы VT1, VT2 имеют n-p-n проводимость, таким образом, когда вы касаетесь логического нуля горит светодиод VD1 (зелёный, или того цвета который вы впаяете).

Когда вы касаетесь щупом, уровня логической единицы, то транзистор VT1 отпирается и загорается светодиод VD2. Если вы попадёте на ножку микросхемы, генерирующей динамические сигналы то оба светодиода будут тускло гореть. Вместо VD1, и VD2 можно впаять сдвоенный светодиод типа MV5491, который имеет два цвета свечения (при динамических сигналах на входе такой светодиод загорится янтарным светом). Подстройка работы пробника осуществляется путём подбора резисторов R1, R2 (вместо них удобнее использовать подстроечные резисторы).

Схема логического пробника для отыскания неисправностей цифровых схем, описание его возможностей и приемов работы с пробником.

Общеизвестно, что для ремонта и налаживания электронных цифровых схем необходим . Конечно, сейчас прошли те времена, когда приходилось на заводах ремонтировать большие ЭВМ. Зато появились устройства различного назначения на , специализированных микросхемах, большое количество устройств с использованием цифровых микросхем малой степени интеграции (еще не все предприятия и организации успели приобрести современное импортное оборудование).

Обычным авометром невозможно увидеть процессы, происходящие в импульсных схемах и сделать выводы о работе схемы в целом. Но осциллограф под рукой может оказаться не всегда. Вот в этом случае может оказать неоценимую помощь описываемый логический пробник.

Подобных устройств в литературе было описано немало и все они при одинаковом назначении все-таки имеют совершенно разные параметры: есть такие, что просто неудобны и непонятны в работе. Такие пробники выпускались отечественной промышленностью до конца прошлого века.

Много лет мне довелось пользоваться логическим пробником, конструкция которого описана ниже. Схема показала себя надежной и удобной в работе.

Основное отличие данной схемы от подобных - минимальное количество деталей при достаточно широких возможностях. Одной из особенностей схемы является наличие второго входа, что иногда позволяет обходиться без двулучевого осциллографа.

Описание принципиальной схемы.

Питание пробника (+5В) осуществляется от проверяемой схемы.

Исследуемый сигнал поступает на базы входных транзисторов VT1, VT2, предназначенных для увеличения входного сопротивления прибора. Далее, через диоды VD1, VD2 сигнал проходит на D1.2, D1.3, D1.4, которые зажигают красный и зеленый светодиоды.

Приемы работы с пробником.

Свечение красного светодиода говорит о наличии на входе 1 логической единицы, а зеленого - логического нуля.

Для описываемого пробника напряжение логического нуля 0…0,4В, а логической единицы 2,4…5,0В. Если вход 1 пробника никуда не подключен, оба светодиода погашены.

В том случае, когда вход 1 подключен к проверяемой схеме, и оба светодиода погашены, можно предположить, что есть неисправность. Такой уровень называется «серым».

Кроме показа логических уровней нуля и единицы пробник также может показывать наличие импульсов. Для этих целей служит двоичный счетчик D2, к выходам которого подсоединены светодиоды HL1…HL4 желтого цвета.

С приходом каждого импульса состояние счетчика увеличивается на единицу. Если частота следования импульсов невелика, то можно увидеть мигание светодиодов счетчика, даже если импульс длительностью несколько микросекунд появляется раз в секунду или еще реже. Такой процесс можно зафиксировать только с помощью запоминающего осциллографа - прибора достаточно дорогого и редкого.

Когда импульсы следуют с высокой частотой, кажется, что светодиоды HL1…HL4 светятся непрерывно, хотя на самом деле зажигаются импульсами.

По характеру свечения красного и зеленого светодиодов можно приблизительно оценить форму импульсов. Если яркость свечения обоих светодиодов одинакова, то длительность импульса (лог.1) равна длительности паузы (лог.0). Более интенсивное свечение красного светодиода говорит о том, что длительность импульса (лог.1) больше, чем длительность паузы (лог.0) и наоборот.

Соотношение импульса и паузы может быть таким, что заметно свечение только лишь одного светодиода. Но если при этом счетчик продолжает считать, то значит идут импульсы. Для сброса счетчика используется кнопка S1: если после ее нажатия и отпускания светодиоды HL1…HL4 погасли и своего состояния не изменяют, то импульсов нет, а пробник показывает просто логический уровень нуля или единицы.

Несколько слов о деталях.

Диоды VD1, VD2 могут быть заменены любыми импульсными маломощными диодами. Только при этом следует помнить, что VD1 должен быть кремниевым, а VD2 обязательно германиевым: именно они разделяют уровень нуля и единицы. Транзисторы могут быть с любыми буквенными индексами, либо заменены на КТ3102 и КТ3107.

Микросхемы могут быть заменены импортными аналогами: К155ЛА3 на SN7400N, а К155ИЕ5 на SN7493N.

Конструкция пробника произвольна, но лучше всего выполнить его с помощью печатного монтажа в виде щупа, поместив в подходящий пластмассовый корпус.

При работе с пробником необходимо внимательно следить за тем, чтобы не подключить питание к цепям с напряжением более 5В, а также не касаться таких цепей измерительным щупом. Подобные касания приводят к ремонту прибора.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: