Ядерный источник питания. Ученый: изобретенная в РФ "ядерная батарейка" абсолютно безопасна. Атомная батарея - отличное решение для долгих игр

Сорок лет назад был создан первый мобильный телефон, а сегодня уже изобретена атомная батарея для него. Технологический прогресс в последние годы идет настолько уверенно, что на прилавках магазинов электроники появляются такие новинки, о которых еще совсем недавно писали фантасты.

Как вы считаете, сколько способен продержаться без подзарядки современный смартфон? Среднее время автономной работы подобного устройства составляет 1-3 суток. А если его оснастить аккумулятором, работающим на основе реакции трития, то это время можно будет растянуть до 20 лет!

Неужели телефоны могут работать на атомных аккумуляторах?

Подобная идея среди ученых появилась относительно недавно. По их предположению, использование атомной энергетики в работе современных гаджетов может решить множество проблем, связанных с постоянной необходимостью подзарядки.

Тритий является радиоактивным веществом, но его излучение слишком слабое. Оно неспособно навредить здоровью человека. От него не пострадает ни кожа, ни внутренние органы – это известно ученым с незапамятных времен. Именно радиоактивный тритий выступает своего рода топливом, которое будет содержаться в этих батареях.

Батарея представляет собой интегральную микросхему, источником энергии которой является ядерная реакция трития. Такой принцип работы позволяет производить 0.8 – 2.4 ватт энергии. И этот уровень вырабатываемой электроэнергии может поддерживаться на протяжении 20 лет, при этом радиоактивную батарею не придется подзаряжать.

Многие не подозревают, что тритий уже давно используется во многих сферах производства. Каждый из нас видел, либо носил часы, стрелки которых отчетливо светятся в темноте. В большинстве случаев для создания такого эффекта используется именно этот радиоактивный элемент. Он не получил распространения в основной сфере атомной энергетики из-за своего минимального радиоактивного излучения.

Среди особенностей аккумулятора, которому посвящен сегодняшний обзор, следует также выделить его устойчивость к внешним факторам. Он отлично работает при резких перепадах высоты, давления и температуры, а также демонстрирует хорошую стойкость при сильных вибрациях. Что касается температуры, то ее диапазон составляет от -50 до +150 градусов по Цельсию.

Несмотря на то, что эта идея еще не внедрена в производство, известна приблизительная стоимость атомной батареи - 124 доллара. Но далеко не каждый человек, даже если ему нужна высокая производительность его телефона, согласится на ношение в своем кармане крохотного радиоактивного источника энергии.

Компания City Labs начала выпуск настоящих атомных батареек NanoTritium. Источником энергии в этих батарейках служит распад сверхтяжелого водорода - трития. Батарейка изготавливается в корпусе микросхемы, на данный момент ее стоимость достаточно велика и составляет около $1000. Тритий входит в десятку самых дорогих веществ в мире и его грамм стоит $30000.

Тритий - это радиоактивный изотоп водорода. Ядро трития составляет протон и два нейтрона. При распаде тритий превращается в 3He. Период полураспада примерно 13 лет. Энергия испускаемых электронов мала - от 6.5 кэВ до 18.59 кэВ. Излучение останавливается такими преградами, как одежда или даже кожа человека. В герметической упаковке тритий безвреден. Пары трития все же представляют радиационную опасность. Впрочем, в атомных батарейках NanoTritium его настолько мало, что данная проблема не актуальна. Один кубический миллилитр тритиевого газа обладает активностью около 94 ГБк.

Тритий уже давно используется в ряде устройств. К примеру, его можно встретить на стрелках светящихся в темноте часов. Светящиеся элементы часов изготавливаются как герметичные колбы, заполненные газом трития. Стенки колб изнутри покрывают слоем люминофора. Принцип работы свечения достаточно прост. Электроны, испускаемые тритием при бета-распаде, соударяются с люминофором, поглощаются им, заставляя светиться.

Принцип работы атомной батарейки достаточно прост: распад трития - это бета-распад, ядро трития превращается в ядро гелий-3, и вылетает один электрон обладающий высокой энергией. Тритий закачивают в ячеистый, или можно сказать губчатый, рабочий объём из кремния. В кремнии каждый электрон высокой энергии создаёт огромное число электронно-дырочных пар. По сути, подобные процессы протекают в обычных фотоэлементах - с той лишь разницей, что в фотоэлементе один фотон порождает только одну пару (просто потому, что энергия оптического фотона в тысячи раз меньше, чем энергия бета-электрона). Дальше, достаточно, замкнуть цепь и потечёт ток.

Атомный источник питания от City Labs способен выдерживать перепад температур от -50 до 150 градусов Цельсия, а также хорошие перепады высот. Этот аккумулятор способен работать на протяжении 20 лет и выдавать до 2.4В с силой тока 50-300 наноампер.

Даже столь низкий ток вполне достаточен для питания многих устройств. Например, специальные прослушивающие устройства. Радиоактивность тритиевых элементов не выходит за пределы корпуса, и не может быть обнаружена, в сочетании с современными цифровыми технологиями кодирования сигнала такие элементы питания позволяют создать идеальную "прослушку". В медецине, также атомные батарейки NanoTritium могут использоваться для питания кардиостимуляторов.

Элементы питания на тритии - не единственная разработка изотопных источников питания. На американских междпланетных станциях "Пионер" и "Вояджер" используются плутониевые радиоизотопные источники. Их мощность уже существенно - порядка 400 ватт. И, между прочим, они были изготовлены более сорока лет назад и работают по сей день.

Изобретение относится к устройствам, преобразующим энергию частиц, испускаемых изотопами, в электрический ток, и может быть использовано в качестве элемента питания в различных электронных устройствах, потребляющих небольшой ток, но вынужденных работать без замены источников питания в течение десятка лет. Сущность изобретения заключается в том, что ядерная батарейка содержит корпус, наполненный материалом изотопа, куда помещен, по крайней мере, один полупроводниковый детектор, у которого в объеме созданы колодцы, причем все размеры колодцев меньше длины свободного пробега частиц, испускаемых газообразным изотопом, при этом детектор выполнен в виде чередующихся слоев n + , i (либо ν, либо π) и p + -типов проводимостей в такой последовательности n + -i-p + -i-…-n + -i-p + , причем эти слои лежат в плоскостях, перпендикулярных стенкам колодцев; к слоям n+-типа созданы омические контакты, электрически соединенные между собой, такие же контакты созданы и к слоям p + -типа, которые тоже соединены. Технический результат - упрощение технологии изготовления полупроводникового детектора, преобразующего энергию бета-частиц в электрический ток. 1 ил.

Изобретение относится к устройствам, преобразующим энергию частиц, испускаемых изотопами, в электрический ток, и может быть использовано в качестве элемента питания в различных электронных устройствах, потребляющих небольшой ток, но вынужденных работать без замены источников питания в течение десятка лет, например в кардиостимуляторах, или в глубоководных датчиках, или в приборах, запущенных в космос, либо в приборах, установленных в труднодоступных местах.

Известны ядерные батарейки, принцип действия которых основан на конверсии энергии частиц, возникающих при радиоактивном распаде изотопов, в электрический ток при прохождении через полупроводниковый детектор, работающий в бета- или фотовольтаическом режиме. Известные батарейки используют газообразные, жидкие и твердотельные изотопы, испускающие альфа-, бета-частицы, а также гаммакванты .

Известно устройство , которое содержит корпус, в котором помещен полупроводниковый детектор из аморфного кремния, представляющий p-i-n-структуру, а внутренность корпуса наполнена тритием (3 H), который испускает электроны. Время полураспада трития примерно 12 лет. В рабочем режиме каждая бета-частица, достигшая поверхности детектора, влетает в детектор и создает в нем более одной тысячи электронно-дырочных пар. Возникшие дырки и электроны разделяются внутренним полем p-i-n-структуры, что приводит к формированию напряжения на контактах детектора и появлению электрического тока при подключении нагрузки. Недостатком такой батарейки являются малые значения тока, пропорциональные площади только одной поверхности плоского детектора.

Наиболее близким аналогом предлагаемого изобретения является батарейка на изотопах, предложенная в американском патенте (Patent US 6774531) . В прототипе существенно увеличена эффективность детектора за счет специальной конструкции 3D-кремниевого детектора.

Известная батарейка содержит корпус, наполненный газообразным тритием, куда помещен бетавольтаический детектор из кремния n-типа. В объеме детектора созданы колодцы для трития, на стенках которых сформирован слой p + -типа проводимости, причем все размеры колодцев не превышают длину свободного пробега электронов в тритии.

Недостатком известного устройства является то, что реализация детектора, содержащего в объеме полупроводника глубокие колодцы, на стенках которых сформирован p-n-переход, является очень сложной технической задачей, решенной пока только для кремния. Для других полупроводников, имеющих более высокую плотность, чем у кремния, известная конструкция детектора вообще малоэффективна. Действительно, при средней энергии электронов Е=6 кэВ, испускаемых тритием, электрон сможет проникнуть в детектор только на глубину 0.1-0.2 мкм, а при наличии слоя p-типа на стенках колодцев значительная часть заряда, порожденная электронами, рекомбинирует в нем, не достигнув p-n-перехода.

Технический результат, на который направлено заявляемое решение, состоит в устранении указанных недостатков.

Этот результат достигается тем, что ядерная батарейка на радиоактивных изотопах, содержащая корпус, наполненный материалом изотопа, куда помещен, по крайней мере, один полупроводниковый детектор, у которого в объеме созданы колодцы, причем все размеры колодцев меньше длины свободного пробега частиц, испускаемых газообразным изотопом, отличается тем, что в объеме детектора созданы чередующиеся слои n + , i (либо ν, либо π) и p + -типов проводимостей в такой последовательности: n + -i-p + -i-…-n + -i-р + , причем эти слои лежат в плоскостях, перпендикулярных стенкам колодцев, к слоям n+-типа созданы омические контакты, электрически соединенные между собой, такие же контакты созданы и к слоям p + -типа и тоже соединены.

В предлагаемом устройстве конструкция детектора исключает необходимость формирования на стенках колодцев p-n-переходов. Поэтому детектор может быть изготовлен не только из кремния, но и из других полупроводников, например из арсенида галлия.

На фиг.1 схематично представлено сечение одной из возможных конструкций предлагаемой батарейки. Батарейка содержит корпус 1 с электродами 2 и 3. Корпус наполнен материалом радиоактивного изотопа 4. В корпус помещены два детектора 5 и 6 из арсенида галлия. Детекторы выполнены из эпитаксиального материала, содержащего последовательность слоев n + 7, i 8, p + 9, высоколегированным слоям n + 7, p + 9 созданы омические контакты соответственно 10 и 11, соединенные проволочками с электродами 2 и 3 корпуса. Перпендикулярно плоскостям, в которых выращены слои n + , i, p + в объеме детектора сформированы колодцы 12.

Пример практического исполнения. В герметичный металлический корпус 1, имеющий электроды 2 и 3, электрически развязанные с корпусом за счет диэлектрических вставок, были установлены два идентичных детектора 5 и 6. При этом внутренность корпуса была заполнена радиоактивным тритием, испускающим бета-частицы. Детекторы изготавливались из арсенида галлия, выращенного с помощью газофазовой эпитаксии. На проводящей подложке n + -типа последовательно были выращены слои: n + -слой 7 толщиной 10 мкм, i-слой 8, компенсированный хромом в процессе эпитаксии, толщиной 30 мкм, p + -слой 9 толщиной 10 мкм, затем i-слой 8 толщиной 30 мкм, n + -слой 7 толщиной 10 мкм и затем снова i-слой 8 толщиной 30 мкм, p + -слой 9 толщиной 10 мкм. С использованием стандартных методов фотолитографии, химического травления и вакуумного напыления формировались омические контакты 10 и 11 к высоколегированным слоям. С использованием реактивно-ионного травления и кратковременного химического травления в детекторах формировались колодцы 12 с диаметром верхнего отверстия 80 мкм и шагом 100 мкм. В результате была получена ядерная батарейка новой конструкции.

В рабочем режиме при размерах детекторов 5×5 см 2 общий объем колодцев, заполненных тритием, составляет 0.25 см 3 . При этом радиоактивность указанного объема с тритием равна 10 10 Бк. Поскольку 70% электронов, испущенных в результате радиоактивного распада трития, попадают в активные области детектора т.е. в полуизолирующие области 8 (часть попадает в высоколегированные слои) и каждый электрон порождает примерно 1700 электронно-дырочных пар, то максимальная величина тока от данной батарейки составит 2.5 мкА.

Таким образом, предложена ядерная батарейка с новой конструкцией бетавольтаического детектора. Реализация детектора не требует создания p-n-переходов на стенках колодцев, сформированных в объеме детектора, поэтому для создания полупроводникового детектора можно использовать не только кремниевые структуры.

Источники информации

1. Kherani N.P., Shmayda W.T., Zukotynski S. /Nuclear batteries/ Patent US 5606213, 1997.

2. Chu F.Y., Mannik L., Peralta S.B., Ruda H.E. /Radioisotope-powered semiconductor battery/ Patent US 5859484, 1999.

3. Gadeken L. /Apparatus and method for generating electrical current from the nuclear decay process of radioactive material/ Patent US 6774531, 2004.

Ядерная батарейка, содержащая корпус, наполненный материалом изотопа, куда помещен, по крайней мере, один полупроводниковый детектор, у которого в объеме созданы колодцы, причем все размеры колодцев меньше длины свободного пробега частиц, испускаемых газообразным изотопом, отличающаяся тем, что детектор выполнен в виде чередующихся слоев n + , i (либо ν либо π) и p + -типов проводимостей в такой последовательности n + -i-p + -i-…-n + -i-p + , причем эти слои лежат в плоскостях, перпендикулярных стенкам колодцев; к слоям n + -типа, созданы омические контакты, электрически соединенные между собой, такие же контакты созданы и к слоям p + -типа, которые тоже соединены.

Похожие патенты:

Изобретение относится к устройству плазменного осаждения из паровой фазы для получения кремниевых тонкопленочных модулей солнечного элемента, к способу получения тонкопленочных модулей и к кремниевым тонкопленочным фотогальваническим панелям.

Изобретение относится к применению пластикового композита, содержащего материал-носитель, выбранный из группы полиэтилентерефталата (PET), полиэтиленнафтената (PEN) или сополимера этилена с тетрафторэтиленом (ETFE), а также слои полиамида-12, граничащие с материалом-носителем по обеим сторонам, для получения фотоэлектрических модулей.

Изобретение относится к области конструкции и технологии изготовления фотоэлектрических преобразователей (ФП) солнечного излучения в электрический ток и может быть использовано в производстве солнечных фотоэлементов.

Создание портативного одноразового источника питания, срок службы которого измерялся бы не сутками или месяцами, а годами, прежде покорилось специалистам Корнельского университета. Элемент питания, в качестве базы для которого был выбран радиоактивный изотоп никеля-63, мог похвастаться непрерывным сроком службы до 50 лет. Но, разумеется, не обошлось и без существенных ограничений в номинальных параметрах «ядерной батарейки». Всё дело в том, что принцип, на котором строится работа таких устройств — сопровождающее распад никеля-63 испускание электронов для последующего заряда медной пластины — не позволял добиться серьёзной мощности источника питания. В итоге указанная характеристика для ядерных батареек находилась на уровне нескольких милливатт, что накладывало ряд существенных ограничений при её эксплуатации.

Решением описанной проблемы активно занялись учёные Национального исследовательского технологического университета «МИСиС», которые вчера рапортовали о достигнутых успехах. Им удалось изготовить прототип уникальной «ядерной батарейки», способной, как и её предшественник родом из США, питать определённую электронику на протяжении 50 лет.

Как рассказали в «МИСиС», спроектированная ими «ядерная батарейка» обладает огромным потенциалом и имеет широкий спектр потенциально возможного применения, начиная от использования разработки в медицинском оборудовании и миниатюрных приборах для поддержания жизнедеятельности, заканчивая размещением такого источника питания в космических аппаратах. Команде инженеров под руководством профессора Юрия Пархоменко удалось воплотить на практике концепцию преобразования энергии бета-излучения в электрическую на основе монокристаллов пьезоэлектриков. Этот принцип и лёг в основу показанного образца автономной бета-вольтаической батареи переменного напряжения, первичным источником энергии для которой послужил хорошо знакомый изотоп никель-63.

Излучение выбранного в качестве источника электронов изотопа, несмотря на свою радиоактивность, характеризуется периодом полураспада в 100 лет и не несёт какой-либо угрозы для здоровья биологических организмов. Но главной особенностью прототипа отечественного производства стало применение импульсных источников питания для накопления и последующей отдачи заряда. За счёт этого учёные сумели обойти главный недостаток бета-вольтаической «ядерной батарейки» — их крайне малую мощность, сильно сужавшую сферы дальнейшего эффективного применения.

«В импульсном режиме один бета-вольтаический элемент способен выдавать мощность вплоть до 1 мВт/см 3 . При низких удельных мощностях энергетического материала батарейка, собранная на их основе, способна обеспечивать непрерывную выходную мощность 10-100 нВт/см 3 — достаточную, чтобы обеспечить питание кардиоимплантата», — объяснил технические особенности продемонстрированного решения господин Пархоменко.

Инновационная российская «ядерная батарейка», ставшая реальностью благодаря усилиям сотрудников «МИСиС», обладает всеми необходимыми для начала серийного производства и скорейшего внедрения технологии преимуществами. Здесь и сверхмалые габариты источника питания, и отсутствие пагубного влияния энергетического материала, и длительный срок эксплуатации в несколько десятков лет. Однако дойдёт ли дело до выпуска коммерческого образца — покажет время.

Первый мобильный телефон был создан более сорока лет назад. Наука прогрессирует, безусловно. И кто бы мог подумать в то время, что спустя сорок лет на свет выйдет атомная Да, наука шагает не семимильными шагами, но все же со значительными прорывами во многих областях, особенно в последнее время. И эта статья будет посвящена именно теме использования атомных аккумуляторов в современных устройствах.

Вступление

Сейчас рынок смартфонов - одно из самых перспективных направлений электроники. Эта сфера динамично развивается, не останавливаясь ни на минуту. Казалось бы, вот только в продажу поступил iPhone 3, а на прилавках магазинов сотовой связи красуются уже iPhone 6 и iPhone 6 Plus. Стоит ли говорить о том, какой путь прошли инженеры компании, чтобы порадовать пользователей новейшей аппаратной частью?

То же самое можно сказать и об Android, и о Windows Phone. Еще пару лет назад весь школьный класс собирался вокруг счастливчика, у которого был телефон на базе операционной системы Android. А когда кому-нибудь удавалось лично поиграть в приложение, в котором управлять действием можно было при помощи поворота экрана (особенно если эта игра была из разряда гонок), он буквально сиял от счастья.

В настоящее время этим уже никого не удивишь. Даже первоклассники сейчас спокойно пользуются телефонами компании Apple без особой радости и восторга, не представляя, как им на самом деле повезло. Еще бы, они же просто не знают, что когда-то существовали телефоны, работающие при помощи кнопочного, а не сенсорного управления. Что на тех телефонах было всего пара-тройка игр. И что даже змейка на двухцветном экране была для детей того времени поводом для бескрайнего восторга, а играли в нее едва ли не дни напролет.

Безусловно, тогда игры были гораздо менее качественными. Пользоваться подобными телефонами можно было несколько дней, не применяя подзарядку. Сейчас же игровая индустрия в сфере смартфонов вышла на более качественный уровень, а это требует более мощных телефонных аккумуляторов. Сколько, по вашему мнению, способен продержаться самый современный, самый мощный в плане автономной работы смартфон?

Нужна ли нам атомная батарейка?

Заверяем вас, что даже при пассивном использовании он (смарфтон) вряд ли продержится более 3 суток. В качестве в современных смартфонах используются типа. Чуть реже встречаются модели, работающие на полимерных аккумуляторах. На самом деле подобные телефоны не выдерживают очень долгой работы. Играть в них во время автономной работы, смотреть на них фильмы можно считанное количество часов, которое обычно не превышает десяти. Компании-производители подобных аппаратов соревнуются сразу по нескольким направлениям. Наиболее активно идет борьба за первое место по следующим критериям:

Диагональ экрана.

Аппаратное оснащение и быстродействие.

Габариты (если конкретнее, то борьба идет за снижение толщины).

Мощный автономный источник питания.

Как мы видим, вопрос о том, нужна ли нам атомная батарейка для телефона, остается открытым. По расчетам ученных, телефоны в будущем можно будет оснастить батареями, которые работают по принципу реакции ядерного элемента под названием “тритий”. В таком случае телефоны смогут работать без подзарядки вплоть до 20 лет, по самым скромным подсчетам. Впечатляет, не правда ли?

Как нова идея об атомной батарее?

Идея создания миниатюрных атомных реакторов (речь идет об атомных аккумуляторах) появилась в светлых головах не так уж и давно. Было выдвинуто предположение о том, что использование подобного оснащения в соответствующих технических устройствах позволит разобраться с проблемой не только необходимости постоянной подзарядки, но и с другими.

ТАСС: атомная батарейка своими руками. Рассказывают инженеры

Первое заявление об изобретении батарейки, которая будет работать, основываясь на атомной энергии, сделало подразделение отечественного концерна под названием “Росатом”. Это был “Горно-химический комбинат”. Инженеры рассказали о том, что первый источник питания, который позиционируется как атомная батарейка, может быть создан уже в 2017 году.

Принцип работы будет заключаться в реакциях, которые произойдут при помощи изотопа “Никель-63”. Если говорить конкретнее, то речь идет о бета-излучении. Интересно, что батарейка, построенная по этому принципу, сможет работать примерно полвека. Размеры же будут очень и очень компактными. Для примера: если вы возьмете обыкновенную пальчиковую батарейку и сожмете ее в 30 раз, то вы сможете наглядно увидеть, какой размер будет иметь атомный аккумулятор.

Безопасна ли атомная батарея?

Инженеры абсолютно уверены в том, что такой источник питания не будет представлять никакой опасности для здоровья человека. Причиной такой уверенности стала конструкция батарейки. Безусловно, прямое бета-излучение любого изотопа будет наносить вред живому организму. Но, во-первых, в данном аккумуляторе оно будет “мягким”. Во-вторых, даже это излучение не выйдет наружу, поскольку оно поглотится внутри самого источника питания.

В связи с тем, что атомные батарейки “Россия А123” будут поглощать излучении внутри себя, не выпуская его наружу, эксперты уже сейчас строят стратегический прогноз на использование атомного аккумулятора в различных сферах медицины. Например, его могут внедрить в конструкцию кардиостимуляторов. Вторым по перспективности направлением является космическая индустрия. На третьем месте, конечно же, находится промышленность. За пределами тройки лидеров находится много ответвлений, в которых можно будет успешно использовать атомный источник энергии. Наиболее, пожалуй, важное из них - транспорт.

Недостатки атомного источника питания

Что же мы получаем взамен атомного аккумулятора? Так сказать, а что мы увидим, если посмотрим с другой стороны? Во-первых, производство подобных автономных источников энергии обойдется в копеечку. Инженеры точных сумм не пожелали назвать. Быть может, побоялись сделать неверно досрочные выводы. Однако была дана приблизительная оценка не в цифрах, а в словах. То есть “все очень дорого”. Что же, этого вполне следовало ожидать, прикинув суть дела просто логически. О серийном выпуске в промышленных масштабах говорить, пожалуй, слишком рано. Остается надеяться только на то, что со временем будут найдены альтернативные технологии, позволяющие создать атомный аккумулятор без ущерба его надежности и практичности, но гораздо дешевле.

К слову, ТАСС оценило 1 грамм вещества в 4 тысячи долларов. Таким образом, чтобы набрать необходимую массу атомного вещества, которое обеспечит долговременное использование батареи, в настоящее время необходимо потратить 4,5 миллиона рублей. Проблема заключается в самом изотопе. В природе его просто-напросто не существует, создают изотоп при помощи специальных реакторов. В нашей стране их всего лишь три. Как говорилось раньше, может, со временем удастся использовать другие элементы, чтобы снизить затраты на производство источника.

Томск. Атомная батарейка

Изобретением атомных аккумуляторов занимаются не только профессиональные инженеры и конструкторы. Недавно студент обучавшийся в аспирантуре, разработал модель нового аккумулятора, работающего на ядерной основе. Зовут этого человека Дмитрий Прокопьев. Его разработка способна в нормальном режиме функционировать 12 лет. За это время ее не нужно будет заряжать ни разу.

Центром системы стал радиоактивный изотоп под названием “тритий”. При умелом использовании он позволяет направить энергию, освобождающуюся во время в нужное русло. При этом энергия освобождается частями. Можно сказать, дозировано или порционно. Напомним, что период полураспада этого ядерного элемента составляет порядка 12 лет. Именно поэтому использование батареи на данном элементе возможно в течение указанного срока.

Преимущества трития

По сравнению с атомным аккумулятором, который имеет кремниевый детектор, атомная батарейка на основе трития не изменяет своих характеристик со временем. И это является ее несомненным плюсом, надо отметить. Протестировали изобретение в Новосибирском институте ядерной физики, а также в физико-техническом институте Томского университета. Атомная батарейка, принцип работы которой основан на ядерной реакции, имеет определенные перспективы. Это, как правило, сфера электроники. Наряду с ней стоят военная техника, медицина и аэрокосмическая отрасль. Об этом мы уже говорили.

Заключение

При всей дороговизне производства атомных аккумуляторов будем надеяться на то, что мы все же встретим их в телефонах ближайшего будущего. Теперь пара слов об элементе, который будет составлять основу аккумулятора. Тритий, безусловно, по своей природе - ядерный. Однако излучение данного элемента слабое. Навредить человеческому здоровью оно не может. Внутренние органы и кожа не пострадают от умелого использования. Именно поэтому для использования в батареях был выбран именно он.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: