Венгерский метод решения. Задача о назначениях. Венгерский метод для задачи о назначениях

Предварительный этап .

Шаг 1 . При максимизации целевой функции С найти максимальный элемент и каждый элемент этого столбца вычесть из максимального. При минимизации целевой функции (суммы показателей эффективности назначений) в каждом столбце матрицы С найти минимальный элемент и вычесть его из каждого элемента этого столбца.

С с неотрицательными элементами. В каждом столбце матрицы С имеется, по крайней мере, один нуль.

Шаг 2 . В каждой строке матрицы С найти минимальный элемент и вычесть его из каждого элемента этой строки.

В результате образуется матрица С 0 с неотрицательными элементами. В каждом столбце и каждой строке матрицы С 0 имеется, по крайней мере, по одному нулю.

Шаг 3 . Отме­тить произвольный нуль в первом столбце звездочкой. Начиная со второго столбца просматривать каждый столбец матрицы С 0 и отмечать в нем звездочкой нуль, расположенный в строке, где нет нуля со звездочкой. В каждом столбце можно отметить звездочкой только один нуль. Очевидно, что нули матрицы С 0 , отмеченные звездочкой, являются по построению независимыми. На этом предварительный этап заканчи­вается.

( k + 1)-я итерация . Допустим, что k -я итерация уже проведена и в результате получена матрица С k . Если в матрице С k имеется ровно п нулей со звездочкой, то процесс решения заканчивается. Если же число нулей со звездочкой меньше п , то переходим к (k + 1)-й ите­рации.

Каждая итерация начинается первым и заканчивается вторым эта­пом. Между ними может несколько раз проводиться пара этапов: третий – первый . Перед началом итерации знаком «+» выделяют столбцы матрицы С k , которые содержат нули со звездочкой .

Первый этап . Просмотреть невыделенные столбцы матри­цы С k . Если среди них не окажется нулевых элементов, то перейти к третьему этапу .

Если же невыделенный нуль матрицы С k обнаружен, то возможен один из двух случаев:

    эта строка не содержит нуля со звездочкой.

В первом случае невыделенный нуль отметить штрихом и выделить строку , в которой он содержится, постановкой справа от нее зна­ка «+». Затем уничтожить знак «+», обводя его кружком над тем столбцом , на пересечении которого с данной выделенной строкой со­держится нуль со звездочкой.

 Если такой нуль найден и он единственный в столбце, то отметить его штрихом и выделить строку (строки), содержащую такой нуль (нули), знаком «+». Затем просмотреть эту строку (строки), отыскивая в них нуль со звез­дочкой.

 Если такой нуль в столбце найден, но он не единственный в столбце, то из этих нулей следует выбрать:

    в первую очередь такой нуль, в одной строке с которым, нет 0*;

    во вторую очередь такой нуль, в одной строке с которым имеется 0*, но в одном столбце с этим 0* имеется невыделенный нуль;

    в последнюю очередь такой нуль, в одной строке с которым имеется 0*, но в одном столбце с этим 0* отсутствует невыделенный нуль;

Этот процесс законечное число шагов заканчивается одним изследующих исходов:

Исход 1 . Все нули матрицы С k выделены, т. е. находятся в выделенных строках или столбцах. В этом случае перейти к третьему этапу ;

Исход 2 . Имеется невыделенный нуль в строке, где нет нуля со звездочкой. Тогда перейти ко второму этапу , отметив последний по порядку нуль штрихом .

Во втором случае , отметив невыделенныйнуль штрихом, сразупереходят ко второму этапу.

Второй этап . Построить следующую цепочку из элементов матрицы С k : исходный нуль со штрихом, нуль со звездочкой, располо­женный в одном столбце с первым, нуль со штрихом, расположенный в одной строке с предшествующим нулем со звездочкой, и т. д. Итак, цепочка образуется передвижением от 0" к 0* по столбцу , от 0* к 0" по строке и т. д.

Можно доказать, что описанный алгоритм построения цепочки однозначен и конечен. При этом цепочка всегда начинается и закан­чивается нулем со штрихом . Далее над элементами цепочки, стоящими на нечетных местах (0"), поставить звездочки, уничтожая их над четными элементами (0*). Затем уничтожить все штрихи над элементами мат­рицы С k и знаки «+». При этом количество независимых нулей будет увеличено на единицу . (k + 1)-я итерация закончена .

Третий этап . К этому этапу следует переходить после первого этапа в случае, если все нули матрицы С k выделены , т. е. находятся в выделенных строках или столбцах. В таком случае среди невыделенных элементов матрицы С k выбрать минимальный элемент и обозначить его h > 0.

    вычесть h из всех элементов матрицы С k , расположенных в невыделенных стро­ках , и

    прибавить h ко всем элементам матрицы С k , расположенным в выделенных столбцах .

В результате получается новая матрица , эквивалентнаяС k .

Поскольку среди невыделенных элементов матрицы
появятся новые нули (согласно определению), следует перейти к первому этапу, а вместо матрицыС k рассматривать матрицу
.

Завершив первый этап либо перейти ко второму этапу , если невыделенный нуль находится в строке, которая не содержит нуля со звездочкой , либо вновь возвратиться к третье­му этапу , если в результате выполнения первого этапа все нули матрицы
окажутся выделенными .

В первом случае после проведения второго этапа итерация закан­чивается .

Во втором случае после проведения третьего этапа получается матрица
~
~С k . В матрице
появятся невыделенные нули, и всю последовательность операций, начиная с первого этапа, надо повторить.После конечного числа повторений очередной первый этап обязательно закончится переходом на второй этап , при выполнении которого количество независимых нулей увеличится на единицу, а после выполнения которого (k + 1)-я итерация за­канчивается .

Пример 9. Решим венгерским методом задачу:

На боевом надводном корабле имеется 5 зенитных огневых средств (ЗОС). На корабль совершается одновременный налет авиации противника в количестве 5 единиц. Поражающий потенциал каждого i –го ЗОС по j –му летательному аппарату противника равен (количество потенциально уничтожаемыхj –х летательных аппаратов за время атаки НК одним ЛА). Предполагается, что любое ЗОС может обстрелять любую цель.

Распределить ЗОС по ВЦ таким образом, чтобы суммарный поражающий потенциал был максимален, при условиях:

    на одну ВЦ может быть назначено только одно ЗОС;

    все цели должны быть обстреляны ЗОС.

Решение :

Предварительный этап .



Первая итерация .

Первый этап .

+ +


В

+ +

торой этап .


Вторая итерация .

П

+ +

ервый этап .


Поскольку все нули матрицы С 1 выделены следует перейти к третьему этапу.

Третий этап .

+ +

+ +

h =1 

Первый этап .

Второй этап .


В результате решения задачи о назначениях венгерским методом получили, что последовательность
=4,
=4,
=3,
=2,
=2 дает максимальное значение целевой функции=15. Из этого следует, что для отражения атаки СВН противника наиболее эффективным будет следующий вариант назначения ЗОС на ВЦ:

Упражнения .

    Найти опорный план транспортной задачи методами «Северо-западного угла», «Наименьшей стоимости», «Фогеля»:

a i

Заявки b j

    Решить транспортную задачу из задания 1 распределительным методом.

    Решить транспортную задачу из задания 1 методом потенциалов.

    Венгерским методом решить задачу назначения при поиске максимума:

    Венгерским методом решить задачу назначения при поиске минимума:

Контрольные вопросы :

    Дайте формулировку транспортной задачи линейного программирования.

    Чем отличается сбалансированная транспортная задача от не сбалансированной транспортной задачи?

    Сколько в сбалансированной транспортной задаче должно быть базисных переменных?

    Дайте определение понятиям: план, допустимый план, опорный допустимый план, оптимальный план, используемым при решении транспортной задачи.

    Сформулируйте алгоритм нахождения опорного плана методом северо-западного угла.

    Сформулируйте алгоритм нахождения опорного плана методом наименьшей стоимости.

    Сформулируйте алгоритм нахождения опорного плана методом Фогеля.

    Сформулируйте алгоритм нахождения оптимального плана распределительным методом.

    Сформулируйте алгоритм нахождения оптимального плана методом потенциалов.

    Дайте формулировку задачи о назначениях.

    Каким образом в задаче о назначениях при разных количествах объектов и средств формируется квадратная матрица назначений?

    Сформулируйте алгоритм решения задачи о назначениях Венгерским методом.

    Каким образом на предварительном этапе формируется исходная матрица назначений при максимизации целевой функции?

    Каким образом на предварительном этапе формируется исходная матрица назначений при минимизации целевой функции?

    В чем заключается суть первого этапа решения задачи о назначениях Венгерским методом?

    В чем заключается суть второго этапа решения задачи о назначениях Венгерским методом?

    В чем заключается суть третьего этапа решения задачи о назначениях Венгерским методом?

    Сколько первых, вторых и третьих этапов может находиться в одной итерации решения задачи о назначениях Венгерским методом? Какова последовательность выполнения этапов в итерации?

    Сколько независимых нулей должно быть в матрице назначений для принятия решения о том, что оптимальное назначение средств на объекты найдено?

Задача о назначениях ставится весьма естественно.

Приведём несколько вариантов постановки (как легко видеть, все они эквивалентны друг другу):

Отметим, что все приведённые выше постановки "квадратны ": в них обе размерности всегда совпадают (и равны ). На практике часто встречаются аналогичные "прямоугольные " постановки, когда , и надо выбрать элементов. Впрочем, как легко заметить, от "прямоугольной" задачи всегда можно перейти к "квадратной", добавив строки/столбцы с нулевыми/бесконечными значениями соответственно.

Также заметим, что по аналогии с поиском минимального решения также можно ставить задачу поиска максимального решения. Впрочем, эти две задачи эквивалентны друг другу: достаточно все веса умножить на .

Венгерский алгоритм

Историческая справка

Алгоритм был разработан и опубликован Гарольдом Куном (Harold Kuhn) в 1955 г. Сам Кун дал алгоритму название "венгерский", потому что он был в значительной степени основан на более ранних работах двух венгерских математиков: Денеша Кёнига (Dénes Kőnig) и Эйгена Эгервари (Jenő Egerváry).

В 1957 г. Джеймс Манкрес (James Munkres) показал, что этот алгоритм работает за (строго) полиномиальное время (т.е. за время порядка полинома от , не зависящего от величины стоимостей).

Поэтому в литературе данный алгоритм известен не только как "венгерский", но и как "алгоритм Куна-Манкреса" или "алгоритм Манкреса".

Впрочем, недавно (в 2006 г.) выяснилось, что точно такой же алгоритм был изобретён за век до Куна немецким математиком Карлом Густавом Якоби (Carl Gustav Jacobi). Дело в том, что его работа "About the research of the order of a system of arbitrary ordinary differential equations", напечатанная посмертно в 1890 г., содержавшая помимо прочих результатов и полиномиальный алгоритм решения задачи о назначениях, была написана на латыни, а её публикация прошла незамеченной среди математиков.

Также стоит отметить, что первоначальный алгоритм Куна имел асимптотику , и лишь позже Джек Эдмондс (Jack Edmonds) и Ричард Карп (Richard Karp) (и независимо от них Томидзава (Tomizawa)) показали, каким образом улучшить его до асимптотики .

Построение алгоритма за

Сразу отметим во избежание неоднозначностей, что мы в основном рассматриваем здесь задачу о назначениях в матричной постановке (т.е. дана матрица , и надо выбрать из неё ячеек, находящихся в разных строках и столбцах). Индексацию массивов мы начинаем с единицы, т.е., например, матрица имеет индексы .

Назовём потенциалом два произвольных массива чисел и таких, что выполняется условие:

(Как видно, числа соответствуют строкам, а числа — столбцам матрицы.)

Назовём значением потенциала сумму его чисел:

С одной стороны, легко заметить, что стоимость искомого решения не меньше значения любого потенциала:

(Доказательство. Искомое решение задачи представляет из себя ячеек матрицы, и для каждой из них выполняется условие . Поскольку все элементы находятся в разных строках и столбцах, то, суммируя эти неравенства по всем выбранным , в левой части неравенства получаем , а в правой — , что и требовалось доказать.)

С другой стороны, оказывается, что всегда существует решение и потенциал, на которых это неравенство обращается в равенство . Венгерский алгоритм, описанный ниже, будет конструктивным доказательством этого факта. Пока же лишь обратим внимание на то, что если какое-либо решение имеет стоимость, равную по величине какому-либо потенциалу, то это решение — оптимально .

Зафиксируем некоторый потенциал. Назовём ребро жёстким , если выполняется:

Вспомним об альтернативной постановке задачи о назначениях, с помощью двудольного графа. Обозначим через двудольный граф, составленный только из жёстких рёбер. Фактически, венгерский алгоритм поддерживает для текущего потенциала максимальное по количеству рёбер паросочетание графа : и как только это паросочетание станет содержать рёбер, рёбра этого паросочетания и будут являться искомым оптимальным решением (ведь это будет решение, стоимость которого совпадает с величиной потенциала).

Перейдём непосредственно к описанию алгоритма .

  • В начале алгоритма потенциал полагается равным нулю , и паросочетание полагается пустым.
  • Далее, на каждом шаге алгоритма мы пытаемся, не меняя потенциала, увеличить мощность текущего паросочетания на единицу (напоминаем, паросочетание ищется в графе жёстких рёбер ).

    Для этого фактически используется обычный алгоритм Куна поиска максимального паросочетания в двудольных графах . Напомним здесь этот алгоритм.

    Все рёбра паросочетания ориентируются по направлению от второй доли к первой, все остальные рёбра графа ориентируются в противоположную сторону.

    Напомним (из терминологии поиска паросочетаний), что вершина называется насыщенной, если ей смежно ребро из текущего паросочетания. Вершина, которой не смежно ни одно ребро из текущего паросочетания, называется ненасыщенной. Путь нечётной длины, в котором первое ребро не принадлежит паросочетанию, а для всех последующих рёбер происходит чередование (принадлежит/не принадлежит) — называется увеличивающим путём.

    Из всех ненасыщенных вершин первой доли запускается обход в глубину /в ширину . Если в результате обхода удалось достигнуть ненасыщенной вершины второй доли, то это означает, что мы нашли увеличивающий путь из первой доли во вторую. Если прочередовать рёбра вдоль этого пути (т.е. первое ребро включить в паросочетание, второе исключить, третье включить, и т.д.), то тем самым мы увеличим мощность паросочетания на единицу.

    Если же увеличивающего пути не было, то это означает, что текущее паросочетание — максимально в графе , поэтому в таком случае переходим к следующему пункту.

  • Если на текущем шаге не удалось увеличить мощность текущего паросочетания, то производится некий пересчёт потенциала таким образом, чтобы на следующих шагах появилось больше возможностей для увеличения паросочетания.

    Обозначим через множество вершин первой доли, которые были посещены обходом алгоритма Куна при попытке поиска увеличивающей цепи; через — множество посещённых вершин второй доли.

    Посчитаем величину :

    Эта величина строго положительна.

    (Доказательство. Предположим, что . Тогда существует жёсткое ребро , причём и . Из этого следует, что ребро должно было быть ориентированным от второй доли к первой, т.е. это жёсткое ребро должно входить в паросочетание . Однако это невозможно, т.к. мы не могли попасть в насыщенную вершину , кроме как пройдя по ребру из в . Пришли к противоречию, значит, >.)

    Теперь пересчитаем потенциал таким образом: для всех вершин сделаем , а для всех вершин — сделаем . Получившийся потенциал по-прежнему останется корректным потенциалом.

    (Доказательство. Для этого надо показать, что по-прежнему для всех и выполняется: . Для случаев, когда или — это так, поскольку для них сумма и не изменилась. Когда — неравенство только усилилось. Наконец, для случая — хотя левая часть неравенства и увеличивается, неравенство всё равно сохраняется, поскольку величина , как видно по её определению — это как раз максимальное увеличение, не приводящее к нарушению неравенства.)

    Кроме того, старое паросочетание из жёстких рёбер можно будет оставить, т.е. все рёбра паросочетания останутся жёсткими.

    (Доказательство. Чтобы некоторое жёсткое ребро перестало быть жёстким в результате изменения потенциала, надо, чтобы равенство превратилось в неравенство . Однако левая часть могла уменьшиться только в одном случае: когда . Но раз , то это означает, что ребро не могло быть ребром паросочетания, что и требовалось доказать.)

    Наконец, чтобы показать, что изменения потенциала не могут происходить бесконечно , заметим, что при каждом таком изменении потенциала количество вершин, достижимых обходом, т.е. , строго увеличивается. (При этом нельзя утверждать, что увеличивается количество жёстких рёбер.)

    (Доказательство. Во-первых, любая вершина, которая была достижимой, достижимой и останется. В самом деле, если некоторая вершина достижима, то до неё есть некоторый путь из достижимых вершин, начинающийся в ненасыщенной вершине первой доли; а поскольку для рёбер вида сумма не меняется, то весь этот путь сохранится и после изменения потенциала, что и требовалось доказать. Во-вторых, покажем, что в результате пересчёта потенциала появилась хотя бы одна новая достижимая вершина. Но это почти очевидно, если вернуться к определению : то ребро , на котором был достигнут минимум, теперь станет жёстким, а, значит, вершина станет достижимой благодаря этому ребру и вершине .)

    Таким образом, всего может происходить не более пересчётов потенциала, прежде чем обнаружится увеличивающая цепочка и мощность паросочетания будет увеличена.

Таким образом, рано или поздно будет найден потенциал, которому соответствует совершенное паросочетание , являющееся ответом на задачу.

Если говорить об асимптотике алгоритма, то она составляет , поскольку всего должно произойти увеличений паросочетания, перед каждым из которых происходит не более пересчётов потенциала, каждый из которых выполняется за время .

Реализацию за мы здесь приводить не будем, поскольку она всё равно получится не короче, чем описанная ниже реализация за .

Построение алгоритма за ()

Научимся теперь реализовывать тот же алгоритм за асимптотику (для прямоугольных задач — ).

Ключевая идея: теперь мы будем добавлять в рассмотрение строки матрицы одну за одной , а не рассматривать их все сразу. Таким образом, описанный выше алгоритм примет вид:

Чтобы достичь требуемой асимптотики, надо реализовать шаги 2-3, выполняющиеся для каждой строки матрицы, за время (для прямоугольных задач — за ).

Для этого мы вспомним два факта, доказанных нами выше:

Отсюда вытекают ключевые идеи , позволяющие достичь требуемой асимптотики:

Таким образом, алгоритм принимает такой вид: во внешнем цикле мы добавляем в рассмотрение строки матрицы одну за другой. Каждая строка обрабатывается за время , поскольку при этом могло происходить лишь пересчётов потенциала (каждый — за время ), для чего за время поддерживается массив ; алгоритм Куна суммарно отработает за время (поскольку он представлен в форме итераций, на каждой из которых посещается новый столбец).

Итоговая асимптотика составляет — или, если задача прямоугольна, .

Реализация венгерского алгоритма за ()

Приведённая реализация фактически была разработана Андреем Лопатиным несколько лет назад. Её отличает удивительная лаконичность: весь алгоритм помещается в 30 строк кода .

Данная реализация ищет решение для прямоугольной входной матрицы , где . Матрица хранится в -индексации в целях удобства и краткости кода. Дело в том, что в данной реализации вводятся фиктивные нулевая строка и нулевой столбец, что позволяет написать многие циклы в общем виде, без дополнительных проверок.

Массивы и хранят потенциал. Изначально он нулевой, что верно для матрицы, состоящей из нуля строк. (Отметим, что для данной реализации не важно, имеются или нет в матрице отрицательные числа.)

Массив содержит паросочетание: для каждого столбца он хранит номер соответствующей выбранной строки (или , если пока ничего не выбрано). При этом для удобства реализации полагается равным номеру текущей рассматриваемой строки.

Массив содержит для каждого столбца вспомогательные минимумы, необходимые для быстрого пересчёта потенциала:

Массив содержит информацию о том, где эти минимумы достигаются, чтобы мы впоследствии смогли восстановить увеличивающую цепочку. На первый взгляд кажется, что в массиве для каждого столбца надо хранить номер строки, а также завести ещё один массив: для каждой строки запомнить номер столбца, из которого мы в неё пришли. Однако вместо этого можно заметить, что алгоритм Куна всегда попадает в строки, проходя по ребру паросочетания из столбцов, поэтому номера строк для восстановления цепочки всегда можно взять из паросочетания (т.е. из массива ). Таким образом, для каждого столбца содержит номер предшествующего столбца (или , если такого нет).

Сам алгоритм представляет из себя внешний цикл по строкам матрицы , внутри которого происходит добавление в рассмотрение -ой строки матрицы. Внутренняя часть представляет собой цикл "do-while (p != 0)", который работает, пока не будет найден свободный столбец . Каждая итерация цикла помечает посещённым новый столбец с номером (посчитанным на прошлой итерации; а изначально равным нулю — т.е. стартуем мы с фиктивного столбца), а также новую строку — смежную ему в паросочетании (т.е. ; а изначально при берётся -ая строка). Из-за появления новой посещённой строки нужно соответствующим образом пересчитать массив , заодно мы находим минимум в нём — величину , и в каком столбце этот минимум был достигнут (заметим, что при такой реализации могло оказаться равной нулю, что означает, что на текущем шаге потенциал можно не менять: новый достижимый столбец есть и без того). После этого производится пересчёт потенциала , соответствующее изменение массива . По окончании цикла "do-while" мы нашли увеличивающую цепочку, оканчивающуюся в столбце , "раскрутить" которую можно, пользуясь массивом предков .

Константа — это "бесконечность", т.е. некоторое число, заведомо большее всех возможных чисел во входной матрице .

Vector< int > u (n+ 1 ) , v (m+ 1 ) , p (m+ 1 ) , way (m+ 1 ) ; for (int i= 1 ; i<= n; ++ i) { p[ 0 ] = i; int j0 = 0 ; vector< int > minv (m+ 1 , INF) ; vector< char > used (m+ 1 , false ) ; do { used[ j0] = true ; int i0 = p[ j0] , delta = INF, j1; for (int j= 1 ; j<= m; ++ j) if (! used[ j] ) { int cur = a[ i0] [ j] - u[ i0] - v[ j] ; if (cur < minv[ j] ) minv[ j] = cur, way[ j] = j0; if (minv[ j] < delta) delta = minv[ j] , j1 = j; } for (int j= 0 ; j<= m; ++ j) if (used[ j] ) u[ p[ j] ] + = delta, v[ j] - = delta; else minv[ j] - = delta; j0 = j1; } while (p[ j0] ! = 0 ) ; do { int j1 = way[ j0] ; p[ j0] = p[ j1] ; j0 = j1; } while (j0) ; }

Восстановление ответа в более привычной форме, т.е. нахождение для каждой строки номера выбранного в ней столбца , делается следующим образом:

Vector< int > ans (n+ 1 ) ; for (int j= 1 ; j<= m; ++ j) ans[ p[ j] ] = j;

Стоимость найденного паросочетания можно просто взять как потенциал нулевого столбца (взятый с противоположным знаком). В самом деле, как легко проследить по коду, содержит в себе сумму всех величин , т.е. суммарное изменение потенциала. Хотя при каждом изменении потенциала изменяться могли сразу несколько величин и , суммарное изменение величины потенциала в точности равно , поскольку пока нет увеличивающей цепи, число достижимых строк ровно на единицу больше числа достижимых столбцов (только текущая строка не имеет себе "пары" в виде посещённого столбца):

int cost = - v[ 0 ] ;

Примеры задач

Приведём здесь несколько примеров на решение задачи о назначениях: начиная от совсем тривиальных, и заканчивая менее очевидными задачами:

  • максимальное паросочетание минимального веса (т.е. в первую очередь максимизируется размер паросочетания, во вторую — минимизируется его стоимость).

    Для решения просто строим задачу о назначениях, ставя на месте отсутствующих рёбер число "бесконечность". После этого решаем задачу венгерским алгоритмом, и удаляем из ответа рёбра бесконечного веса (они могли войти в ответ, если у задачи нет решения в виде совершенного паросочетания).

  • Дан двудольный граф, требуется найти в нём паросочетание максимальное паросочетание максимального веса .

    Решение опять же очевидно, только все веса надо умножить на минус единицу (либо в венгерском алгоритме заменить все минимумы на максимумы, а бесконечности — на минус бесконечности).

  • Задача детектирования движущихся объектов по снимкам : было произведено два снимка, по итогам которых было получено два набор координат. Требуется соотнести объекты на первом и втором снимке, т.е. определить для каждой точки второго снимка, какой точке первого снимка она соответствовала. При этом требуется минимизировать сумму расстояний между сопоставленными точками (т.е. мы ищем решение, в котором объекты суммарно прошли наименьший путь).

    Для решения мы просто строим и решаем задачу о назначениях, где в качестве весов рёбер выступают евклидовы расстояния между точками.

  • Задача детектирования движущихся объектов по локаторам : есть два локатора, которые умеют определять не положение объекта в пространстве, а лишь направление на него. С обоих локаторов (расположенных в различных точках) поступила информация в виде таких направлений. Требуется определить положение объектов, т.е. определить предполагаемые положения объектов и соответствующие им пары направлений так, чтобы минимизировать сумму расстояний от объектов до лучей-направлений.

    Решение — опять же, просто строим и решаем задачу о назначениях, где вершинами первой доли являются направлений с первого локатора, вершинами второй доли — направлений со второго локатора, а весами рёбер — расстояния между соответствующими лучами.

  • Покрытие ориентированного ациклического графа путями : дан ориентированный ациклический граф, требуется найти наименьшее число путей (при равенстве — с наименьшим суммарным весом), чтобы каждая вершина графа лежала бы ровно в одном пути.
  • Раскраска дерева . Дано дерево, в котором каждая вершина, кроме листьев, имеет ровно сыновей. Требуется выбрать для каждой вершины некоторый цвет из цветов так, чтобы никакие две смежные вершины не имели одинакового цвета. Кроме того, для каждой вершины и каждого цвета известна стоимость покраски этой вершины в этот цвет, и требуется минимизировать суммарную стоимость.

    Для решения воспользуемся методом динамического программирования. А именно, научимся считать величину , где — номер вершины, — номер цвета, а само значение — это минимальная стоимость раскраски вершины вместе с её потомками, причём сама вершина имеет цвет . Чтобы посчитать такую величину , надо распределить остальные цветов по сыновьям вершины , а для этого надо построить и решить задачу о назначениях (в которой вершины одной доли — цвета, вершины другой доли — вершины-сыновья, а веса рёбер — это значения соответствующих динамик ).

    Таким образом, каждая величина считается с помощью решения задачи о назначениях, что в итоге даёт асимптотику .

  • Если в задаче о назначениях веса заданы не у рёбер, а у вершин, причём только у вершин одной доли , то можно обойтись без венгерского алгоритма, а достаточно лишь отсортировать вершины по весу и запустить обычный алгоритм Куна (более подробно см. ).
  • Рассмотрим следующий частный случай . Пусть каждой вершине первой доли приписано некоторое число , а каждой вершине второй доли — . Пусть вес любого ребра равен (числа и нам известны). Решить задачу о назначениях.

    Для решения без венгерского алгоритма рассмотрим сначала случай, когда в обеих долях по две вершины. В этом случае, как нетрудно убедиться, выгодно соединять вершины в обратном порядке: вершину с меньшей соединить с вершиной с большей . Это правило легко обобщить на произвольное количество вершин: надо отсортировать вершины первой доли в порядке увеличения , второй доли — в порядке уменьшения , и соединять вершины попарно в таком порядке. Таким образом, мы получаем решение с асимптотикой .

  • Задача о потенциалах . Дана матрица . Требуется найти два массива и такие, что для любых и выполняется , но при этом сумма элементов массивов и максимальна.

    Зная венгерский алгоритм, решение этой задачи не составит никакого труда: венгерский алгоритм как раз находит именно такой потенциал , который удовлетворяет условию задачи. С другой стороны, без знания венгерского алгоритма решить такую задачу представляется почти невозможным.

Литература

  • Harold Kuhn. The Hungarian Method for the Assignment Problem
  • James Munkres. Algorithms for Assignment and Transportation Problems

При обсуждении постановки задачи о назначениях было отмечено, что эта задача является частным случаем классической транспортной задачи и, как следствие, является задачей транспортного типа. Применительно к задаче о назначениях симплексный метод не эффективен, так как любое ее допустимое базисное решение является вырожденным. Специфические особенности задачи о назначениях позволили разработать эффективный метод ее решения, известный как венгерский метод.

Частным случаем транспортной задачи является задача о назначениях, в которой число пунктов производства равно числу пунктов назначения, т.е. транспортная таблица имеет форму квадрата. Кроме того, в каждом пункте назначения объем потребности равен 1, и величина предложения каждого пункта производства равна 1. Любая задача о назначениях 2может быть решена с использованием методов линейного программирования или алгоритма решения транспортной задачи. Однако ввиду особой структуры данной задачи был разработан специальный алгоритм, получивший название Венгерского метода.

Венгерский метод является одним из интереснейших и наиболее распространенных методов решения транспортных задач.

Рассмотрим основные идеи венгерского метода на примере решения задачи выбора (задачи о назначениях), которая является частным случаем Т-задачи, а затем обобщим этот метод для произвольной Т-задачи.

Постановка задачи. Предположим, что имеется различных работ и механизмов, каждый из которых может выполнять любую работу, но с неодинаковой эффективностью. Производительность механизма при выполнении работы обозначим, и = 1,...,n; j = 1,...,n. Требуется так распределить механизмы по работам, чтобы суммарный эффект от их использования был максимален. Такая задача называется задачей выбора или задачей о назначениях.

Формально она записывается так. Необходимо выбрать такую последовательность элементов из матрицы

чтобы сумма была максимальна и при этом из каждой строки и столбца С был выбран только один элемент.

Введем следующие понятия.

Нулевые элементы матрицы С называются независимыми нулями, если для любого строка и столбец, на пересечении которых расположен элемент, не содержат другие такие элементы.

Две прямоугольные матрицы С и D называются эквивалентными (C ~ D), если для всех i,j . Задачи о назначениях, определяемые эквивалентными матрицами, являются эквивалентными (т.е. оптимальные решения одной из них будут оптимальными и для второй, и наоборот).

Содержательная постановка задачи. В объединении находится n автомобилей, способных каждый перевозить в месяц Q i тонн груза (i = 1,2,…, n). С их помощью необходимо обеспечить перевозку грузов (пиломатериал, шурупы и т.д.) от поставщиков к потребителям по n маршрутам в количестве R j тонн в месяц (j = 1,2,…, n).
Задача заключается в том, чтобы перевезти все грузы с минимальными издержками, для этого надо каждый автомобиль пустить по одному и только его маршруту. Если возможность автомобиля в перевозке груза ниже потребности потребителя этого груза, то на данный маршрут автомобиль не может быть назначен. Поэтому составляется матрицу С, характеризующую издержки i-го автомобиля, в случае, если он будет назначен на j-й маршрут.

Венгерский метод решения задач о назначениях

Алгоритм венгерского метода .

Задача о назначениях является частным случаем транспортной задачи , поэтому для ее решения можно воспользоваться любым алгоритмом линейного программирования, однако более эффективным является венгерский метод .

Специфические особенности задач о назначениях послужили поводом к появлению эффективного венгерского метода их решения. Основная идея венгерского метода заключается в переходе от исходной квадратной матрицы стоимости С к эквивалентной ей матрице Сэ с неотрицательными элементами и системой n независимых нулей, из которых никакие два не принадлежат одной и той же строке или одному и тому же столбцу. Для заданного n существует n! допустимых решений. Если в матрице назначения X расположить n единиц так, что в каждой строке и столбце находится только по одной единице, расставленных в соответствии с расположенными n независимыми нулями эквивалентной матрицы стоимости Сэ, то получим допустимые решения задачи о назначениях.

Следует иметь в виду, что для любого недопустимого назначения соответствующая ему стоимость условно полагается равной достаточно большому числу М в задачах на минимум. Если исходная матрица не является квадратной, то следует ввести дополнительно необходимое количество строк или столбцов, а их элементам присвоить значения, определяемые условиями задачи, возможно после редукции, а доминирующие альтернативы дорогие или дешевые исключить.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: