Сложные структуры и поиск в них информации. Что такое структуры данных. Назначение базы данных

Что такое структура данных?

Я всегда считал, что «структура данных » — это термин, придуманный специально, чтобы сбить нас с толку. В конце концов, мне удалось выяснить, что такое структура данных, просто переставив местами слова в термине «структура данных » — с «data structure » на «structure of data «. В таком контексте акцент внимания смещается с данных (вещи ) на структуру (организацию ). Другими словами, мы акцентируем внимание не на вещах, а на процессе организации вещей.

Давайте представим, что вещи, о которых мы говорим — это книги. Какое выражение имеет больше смысла: книги со структурой или организация книг? По-моему, последнее. Акцент поставлен на организацию, а не на книги.

Различные типы структур данных

Книги, подобно данным, могут быть организованы по-разному. Давайте представим, что у нас есть 20 книг. Как мы их структурируем?

Если мы хотим быстро найти книгу, то нам нужен какой-то указатель. Например, можно расставить книги на полке в алфавитном порядке. Благодаря этому мы сможем быстро находить нужный том.

Если мы хотим прочитать все книги в определенном порядке, например, первой прочитать книгу, которая первая появилась в нашей коллекции, и так далее до последней книги, то нужно разместить книги в соответствии с этим. Кроме этого мы установим определенное ограничение, чтобы мы могли перечитывать книги только в такой последовательности.

Если нам не хватает места, чтобы хранить все книги в одной комнате, то можно разместить их по всему дому. После этого создать список с двумя столбцами: первый столбец будет содержать название книги, а второй – ее местоположение.

Теперь стало ясно, что существует много способов сортировки книг. Но также существует много различных типов структур данных. Структура данных, которую мы используем в веб-разработке, зависит от конкретных условий.

Мы должны понять, что можно использовать и создавать эти структуры данных без каких-либо узкоспециализированных навыков программирования. Все что нам нужно — это понимание JavaScript , его простейших типов данных (например, логических выражений ) и ссылочных типов (например, объектов ).

Вначале это трудно представить, но не волнуйтесь. Раньше я представлял себе набор, который тоже является типом структуры данных, как просто набор. Но набор это не вещь, а название, присвоенное конкретному способу организации данных. Что не менее важно, набор создается с использованием объектов.

Наша цель

Эта серия статей о структурировании данных с помощью JavaScript должна показать вам, что структуры данных используются, чтобы сделать нашу жизнь проще.

Поскольку структур данных слишком много, чтобы их можно было полностью описать в этой серии статей, мы рассмотрим лишь некоторые из них, но самые распространенные:

  • Стек и Очередь;
  • Односвязные и двусвязные списки;
  • Дерево.

Заключение

Когда мы закончим рассмотрение данной серии статей, я надеюсь, вы не только узнаете, как реализовать распространенные структуры данных, но и поймете, что они используются вокруг вас. Тогда вы по-другому начнете относиться к данным и к их организации.

Перевод статьи «Data Structures With JavaScript: What’s a Data Structure? » был подготовлен дружной командой проекта .

Хорошо Плохо

    Дерево - одна из наиболее часто используемых в веб-разработке структур данных. Каждый веб-разработчик, который писал HTML-код и загружал его в браузер, создавал…

Классификации структур данных

Данные в памяти компьютера представляются в виде последовательности битов. Последовательности битов недостаточно структурированы, что затрудняет их практическое использование. Поэтому на практике применяются структуры данных.

Определение 1

Структурой данных называется множество элементов данных и внутренних связей между ними.

Существуют простые и интегрированные структуры данных. Простые структуры данных сводятся к битам и организуются непосредственно из битов. К простым структурам относятся:

  • числовые;
  • битовые;
  • символьные;
  • логические;
  • указатели.

Интегрированные структуры данных организуются из простых и других интегрированных структур.

Следует различать физическую и логическую структуру данных. Когда говорят о физической структуре простых типов, то под этим понимают их размер и способ размещения битов в памяти. С точки зрения логической структуры простой тип является неделимой элементарной единицей.

Определение 2

Изменчивостью структуры называется изменение числа элементов и связей между ними.

В соответсвии с признаком изменчивости структуры делятся на

  • Статические (векотр, массив, множество, запись, таблица);
  • Динамические (стек, очередь, строка, линейные связанные списки, разветвленные связанные списки, графы, деревья.).

Элементы в структуре могут быть упорядоченными и неупорядоченными. В соответствии с этим признаком структуры делятся на

  • Нелинейные(многосвязный список, граф, дерево);
  • Линейные с последовательным распределением (вектор, строка, массив, стек, очередь);
  • Линейные с произвольным связным распределением (односвязный, и двусвязный список).

Простые структуры и типы данных

Простые структуры данных называют также примитивами или базовыми структурами. В языках программирования простые структуры данных представлены простыми типами данных. В различных языках программирования набор типов данных несколько отличается, но имеются некоторые общие принципы.

Целый тип используется для представления количества дискретных объектов. Целые числа могут быть беззнаковыми или отрицательными. Внутреннее представление целого числа может занимать 1, 2 или 4 байта.

Вещественные числа представляются в виде формата с плавающей точкой . Число с плавающей точкой представляется с помощью двух целый чисел – порядка и матиссы, а также знака.

В случае двоичной системы счисления B=2.

Десятичный тип поддерживают не все языки программирования. Число такого типа представляется в виде m десятичных цифр из которых d цифр находятся справа от десятичной точки.

Для случаев, когда нужно работать с отдельными двоичными разрядами числа, предусмотрен битовый тип данных . Данные в нем представляются набором битов, объединенных в байты или слова. Все операции с битовым типом предполагают обращение к каждому биту по отдельности.

Переменная логического типа может принимать одно из двух значений: истина или ложь. Для хранения переменной логического типа нужен один байт памяти. При этому значение «ложь» кодируется нулевым значением байта, а значение «истина» любым отличным от нулевого значением.

Символьный тип позволяет представить данные в виде последовательности символов некоторого заранее предопределенного множества. Каждый символ множества хранится в памяти в виде последовательности битов. Соответствие символов и таких последовательностей называется кодировкой. Различные кодировки представляют символы в виде битовых последовательностей различной длины.

Указатель представляет собой переменную, значением которой является адрес ячейки памяти. Таким образом, указатель ссылается на некий блок данных, указывая его первую ячейку.

Примеры статических структур

Для того чтобы обратиться к элементу нужно использовать имя массива и индекс элемента. В памяти массивы размещаются я ячейках, расположенных одна за другой.

Пример 1

Пусть дан массив с именем A.

Тогда элемент А равен 30.

Пример 2

Двумерный массив – это массив, каждый элемент которого сам является одномерным массивом.

В двумерном массиве у каждого элемента есть два индекса.

Определение 4

Записи (хеш-массивы, ассоциативные массивы) – это массивы, которые индексируются не натуральными числами, а строками.

Индекс элемента в таком массиве называется ключом. Для обращения к элементу используется имя массива и индекс.

Пример 3

Пусть дан хеш-массив с именем B.

Тогда элемент массива B[‘овощ’] равен ‘огурец’.

Примеры динамических структур

Для динамических структур память отводится «на ходу» в процессе выполнения программы. Для работы с динамическими типами данных в разных языках программирования широко используются указатели. Сами указатели имеют статический тип.

Стек представляет собой вектор, в котором каждый следующий элемент адресуется указателем на текущий элемент. На рисунках показано последовательное добавление элементов в стек и последовательное извлечение.

Для того чтобы извлечь элемент, нужно сначала последовательно извлечь все элементы, добавленные после него. Элемент, добавленный первым, можно извлечь только в самую последнюю очередь.

Очередь также динамическая структура, которая отличается от стека наличием двух указателей: на первый и последний элемент очереди. Новые элементы записываются вслед за последним записанным элементом. А выборка элементов начинается с первого. При таком алгоритме первым можно получить тот элемент, который был добавлен первым.

ТИПЫ И СТРУКТУРЫ ДАННЫХ

Методические указания по дисциплине «Алгоритмы и структуры данных»

Составитель О.Л. Чагаева

Подготовлены кафедрой «Программные средства и системы» ФУО УрФУ

Введение

В окружающем нас мире находится огромное разнообразие предметов, объектов, явлений, процессов, отображаемых посредством информации.

Каждая представляемая информацией сущность (объект, явление) имеет ряд характерных для нее свойств (черт, признаков, параметров, характеристик, моментов). Например, свойствами материала являются его вес, габариты, сорт, цена, номенклатурный номер и др. Свойствами-признаками, характеризующими такую сущность, как организация-покупатель, являются наименование, ведомственная принадлежность, адрес, номер расчетного счета в Госбанке и др.

Свойства физической сущности отображаются с помощью переменных величин, являющихся элементарными единицами информации и называемых реквизитами.

Реквизит - это логически неделимый элемент любой сложной информационной совокупности, соотносимый с определенным свойством отображаемого информацией объекта или процесса.

В обрабатываемой информации реквизиты представляются как бы «атомами», из которых компонуются все остальные, более сложные по структуре образования информации. И наоборот, единицы информации любой сложности можно последовательным разложением на составляющие компоненты в конечном итоге расчленить до таких составляющих - переменных величин, которые не поддаются дальнейшему логическому разбиению. Такие элементарные компоненты и будут реквизитами.

Другими часто встречающимися в литературе синонимами реквизита являются элемент, поле, терм, признак иатрибут .

У каждого реквизита есть имя. При алгоритмизации и программировании с целью компактного написания чаще всего применяют сокращенные имена-идентификаторы, причем конкретные реализации обычно ограничивают их длину, алфавит и сферу действия. В ряде случаев допускается также употребление синонимов наименований реквизита, в том числе таких полных наименований, которые используются только во внешних документах, например, в качестве заголовков граф отчетов.

Каждому реквизиту присуще некоторое конечное множество значений в зависимости от характеристики того свойства объекта (явления), которое информационно отображает данный реквизит. Это множество, именуемое классом значений, одно, например, для параметра «температура больного» и другое - для признака «пол больного».

Значение реквизита, таким образом, есть в каждый заданный момент времени одна из позиций класса значений данного реквизита, отображающая, как предполагается, соответствующее состояние (из множества состояний) того свойства объекта (явления), которое характеризует реквизит. Так, текущим значением реквизита «температура больного» может быть 37,4°, а реквизита «пол больного» - «мужской». Другими словами, значение реквизита используется для представления значения соответствующего свойства сущности.

Существует ряд типов реквизитов в зависимости от видов значений, которые они могут иметь. Наиболее распространенными типами реквизитов, однако, являются числовой и текстовой .

Реквизиты числового типа характеризуют количественные свойства сущностей, полученные в результате подсчета натуральных единиц, измерения, взвешивания, вычисления на основе других количественно-суммовых данных и т. п. Поэтому значениями таких реквизитов служат числа со всеми свойственными им чертами и атрибутами.

В конкретных представлениях фигурирует несколько типов числовых величин в зависимости от класса чисел, системы счисления, фиксации десятичной запятой, упаковки и других; накладываются ограничения на диапазон чисел, форматы их представления на вводевыводе и различных носителях даже в рамках одной реализации. Поскольку все реквизиты числового типа активно используются в различных арифметических операциях, а большинство из них вообще создается в результате осуществления таких операций, указанные отличия и ограничения следует постоянно иметь в виду, так же как и необходимость соответствующего аппарата преобразования.

Реквизиты текстового типа выражают, как правило, качественные свойства сущностей и характеризуют обстоятельства, при которых имел место изучаемый процесс и были получены те или

иные числовые значения. Поэтому такие реквизиты называются признаками.

Значениями признаков являются последовательности символов (букв, цифр, различных знаков и специальных обозначений), называемые строками, или текстом.

Полный набор всевозможных попарно различимых символов данной информационной системы составляет ее алфавит, зависящий от характера задач, применяемых технических средств обработки данных и других факторов. Причем на различных стадиях обработки и даже в рамках одной вычислительной системы возможно применение различных алфавитов.

Размер алфавита (число разнообразных символов, которые могут быть в одном разряде величины) и его состав (набор) имеют прямое отношение к решению следующих проблем:

кодирования и дешифровки,

компактной записи значений единиц информации,

эффективного хранения данных, ускорения их поиска, передачи, ввода в вычислительные машины,

получения от машин информации в наиболее удобной для потребления форме,

снижения затрат на всевозможные перезаписи.

Поэтому выбору алфавита придается немаловажное значение.

Для использования информации, в алгоритмизации и программировании очень большое значение уделяется таким понятиям, как тип и структура данного.

1. ТИПЫ ДАННЫХ

Вычислительный процесс на ЭВМ реализуется, как известно, с помощью программ и данных. Сама программа тоже относится к данным. Поэтому можно сказать, что данные описывают любую информацию, с которой может работать ЭВМ. При этом под информацией понимаются любые факты и знания об объектах реального мира, процессах и отношениях и связях между ними. Все данные характеризуются рядом атрибутов (признаков, реквизитов), в том числе значением.

Кроме значения, к таким признакам относится понятие «тип данного». Тип данного определяется множеством значений данного и набором операций, которые можно выполнять над этими значениями в соответствии с их известными свойствами. Следовательно, тип данного определяет те операции, которые допустимы над соответствующим значением.

В языках программирования обычно используются такие распространенные типы данных, как целые, вещественные, символьные, битовые, указатели и пр.

2. СТРУКТУРЫ ДАННЫХ

Особенностью данного того или иного типа является простота организации (неструктурированность).

Структура данных – это совокупность элементов данных, между которыми существуют некоторые отношения, причем элементами данных могут быть как простые данные (скаляры), так и структуры данных.

Таким образом, структуру можно определить следующим образом: S = (D, R), где D - множество элементов данных, R – множество отношений между элементами данных.

Все связи одного элемента данных с другими образуют элемент отношений, ассоциированный с соответствующим элементом данных.

Графическое изображение структуры должно отражать ее элементы данных и связи (отношения между ними), поэтому структуру удобно изображать в виде графа. При этом вершины графа можно интерпретировать как элементы данных, а отношениям между элементами данных соответствуют ориентированные дуги или неориентированное ребра (рис. 1).

Таким образом описанную и представленную структуру данных называют абстрактной или логической, так как она рассматривается без учета ее представления в машинной памяти. Но любая структура данных должна быть представлена в машинной памяти. Такая структура данных называется физической структурой, структурой хранения, внутренней структурой или структурой памяти.

Рис 1. Неориентированный (а) и ориентированный (б) граф

Таким образом, физическая структура данных отражает способ представления данных в машинной памяти.

В общем случае между логической и соответствующей ей физической структурой существует различие, степень которого зависит от самой структуры и особенностей той физической среды, в которой она должна быть отражена.

Например, с точки зрения языков программирования двумерный массив представляет собой прямоугольную таблицу, а в памяти – это линейная последовательность ячеек, в каждой из которых хранится значение одного из элементов массива, причем элементы массива упорядочены по строкам (или столбцам).

Разумеется, между логической и физической структурой должен существовать механизм, позволяющий отобразить логическую структуру в физическую.

Таким образом, каждую структуру данных можно характеризовать ее логическим (абстрактным) и физическим (конкретным) представлением, а также совокупностью операций на этих двух уровнях представления структуры (рис. 2).

Операции над логической структурой

Логическая структура данных

Операции над физической структурой

Физическая структура данных

Рис. 2. Отображение между логическим и физическим представлением структуры данных

2.1. Классификация структур данных

В зависимости от отсутствия или наличия явно заданных связей между элементами данных следует различать несвязанные структуры (векторы, массивы, строки, стеки, очереди) и связные структуры (связные списки).

Важные признак структуры – ее изменчивость – изменение числа элементов и/или связей между элементами структуры. Значение элемента данных не имеется в виду, так как в этом случае это свойство было бы характерно для всех структур данных за исключением, может быть, констант и данных, хранящихся в ПЗУ. По признаку изменчивости различают статические, полустатические и динамические структуры.

Важный признак структуры данных – характер упорядоченности ее элементов. По этому признаку структуры можно делить на линейно-упорядоченные, или линейные, и нелинейные.

В зависимости от характера взаимного расположения элементов в памяти линейные структуры можно разделить на структуры с последовательным распределением их элементов в памяти (векторы, строки, массивы, стеки, очереди) и структуры с произвольным связным распределением элементов в памяти (односвязные, двусвязные, циклически связанные, ассоциативные списки). Примером нелинейных структур являются многосвязные списки, древовидные структуры и графовые структуры общего вида.

2.2. Простейшие статические структуры

К простейшим структурам данных обычно относят векторы, массивы, записи, таблицы. Они характеризуются следующими свойствами:

постоянство структуры в течение всего времени ее существования;

смежность элементов и непрерывность области памяти, отводимой сразу для всех элементов структуры;простота и постоянство отношений между элементами

структуры, позволяющие исключить информацию об этих отношениях из области памяти, выделенной для элементов структуры, и хранить ее, например, в компактной форме в дескрипторах.

В силу этих свойств векторы, массивы, записи и таблицы принято считать статическими структурами.

2.2.1. Вектор

Вектор – это конечное упорядоченное множество простых данных или скаляров, одного и того же типа. С геометрической точки зрения вектор задает точку в многомерном пространстве, координатами которой служат значения элементов вектора.

Элементы вектора находятся друг с другом в единственно возможном отношении – отношении непосредственного следования. Строгая последовательность элементов вектора позволяет

пронумеровать их последовательными целыми числами – индексами. Логическая структура вектора полностью описывается числом и типом его элементов. Например, int array – целочисленный массив, состоящий из 10 элементов.

Важнейшая операция над вектором – доступ к его элементам. Как только организован доступ к элементу, над ним может быть выполнена любая операция, имеющая смысл для выбранного типа данных.

На логическом уровне для доступа к элементу вектора достаточно указать имя вектора и значение индекса соответствующего элемента. Например: array + array.

Физическая структура вектора – это последовательность одинаковых по длине участков памяти, называемых полями или слотами, каждый из которых предназначен для хранения одного элемента вектора. Поле может иметь размер минимально адресуемой ячейки памяти или соответствовать целой группе последовательных ячеек памяти.

Нередко физической структуре ставится в соответствие дескриптор или заголовок, который содержит информацию о данной физической структуре. Дескриптор необходим, например, в том случае, когда граничные размеры вектора становятся известны только на этапе выполнения программы.

Дескриптор тоже хранится в машинной памяти и представляет собой структуру, называемую записью. Для вектора дескриптор обычно хранит его имя, размер, значения граничных индексов, тип элемента, размер поля или слота, адрес первого элемента вектора (поля, хранящего этот элемент).

2.2.2. Массив

Массивом называется такой вектор, каждый элемент которого - вектор. В свою очередь, элементы вектора, являющегося элементом массива, также могут быть векторами. Процесс перехода от элемента к элементу этого элемента и так далее рано или поздно должен завершиться скаляром некоторого типа данных, причем этому типу должны соответствовать все скалярные элементы массива (рис. 3).

Рис. 3. Вид многомерного массива

На рис.3 представлен вид многомерного массива: в каждом узле решетки находится элемент массива. Таким образом, размерность его равна (3,3,2).

Как и для вектора, важнейшей элементарной операцией для массива является доступ к его элементу. На уровне логической структуры она осуществляется при помощи имени массива и упорядоченного набора индексов, однозначно идентифицирующих элемент массива. Например: array[i][j].

В отличие от вектора, для массива общего вида преобразование логической структуры в физическую имеет более сложный вид. Это преобразование выполняется путем процесса линеаризации, в ходе которого многомерная логическая структура массива отображается в одномерную физическую структуру. Эта физическая структура представляет собой линейно упорядоченную последовательность элементов массива. Таким образом, физическая структура многомерного массива аналогична физической структуре вектора.

Несмотря на это, дескриптор многомерного массива отличается от дескриптора вектора. Например, в нем должна хранится информация о размерности массива, способе упорядочения элементов (по строкам или столбцам).

2.2.3. Запись

Запись – это конечное упорядоченное множество элементов, содержащее в общем случае данные различных типов.

Элементы записи часто называют полями. Запись – это обобщенное понятие вектора, при котором не требуется однотипность или

Экзамен Информатика

Информация как ресурс. Способы хранения и обработки информации.

Информация от лат. «Information» означает разъяснение, осведомление, изложение.

В широком смысле информация – это общенаучное понятие, включающее в себя обмен сведениями между людьми, обмен сигналами между живой и неживой природой, людьми и устройствами.
Информация – это сведения об объектах и явлениях окружающей среды, их параметрах, свойствах и состоянии, кот-е уменьшают имеющуюся о них степень неопределенности, неполноты знаний.

Информатика рассматривает информацию как концептуально связанные между собой сведения, данные, понятия, изменяющие наши представления о явлении или объекте окружающего мира.

Информационные ресурсы это отдельные документы и отдельные массивы документов, документы и массивы документов в информационных системах (библиотеках, архивах, фондах, банках).
Чтобы информация могла использоваться, причем многократно, необходимо ее хранить.

Хранение информации – это способ распространения информации в пространстве и времени. Способ хранения информации зависит от ее носителя (книга - библиотека, картина - музей, фотография - альбом). ЭВМ предназначена для компактного хранения информации с возможностью быстрого доступа к ней.
Обработка информации – это преобразование информации из одного вида в другой.
Обработка информации – сам процесс перехода от исходных данных к результату и есть процесс обработки. Объект или субъект, осуществляющий обработку - исполнитель обработки.
1-ый тип обработки: обработка, связанная с получением новой информации, нового содержания знаний.
2-ой тип обработки: обработка, связанная с изменением формы, но не изменяющая содержания (например,
перевод текста с одного языка на другой).

Важный вид обработки - кодирование – преобразование информации в символьную форму,
удобную для ее хранения, передачи, обработки. Другой вид обработки информации – структурирование данных (внесение определенного порядка в хранилище информации, классификация, каталогизация данных).
Ещё один вид обработки информации – поиск в некотором хранилище информации нужных данных, удовлетворяющих определенным условиям поиска (запросу).



Понятие структурированных данных. Определение и назначение базы данных.

Создавая базу данных, пользователь стремится упорядочить информацию по различным признакам и быстро извлекать выборку с произвольным сочетанием признаком. Сделать это возможно, только если данные структурированы.

Структурирование - это введение соглашений о способах представления данных.

Структурированные данные - это упорядоченные данные.

Неструктурированные данные – это данные, записанные, например, в текстовом файле: Личное дело № 1 Сидоров Олег Иванович, дата рожд. 14.11.92, Личное дело № 2 Петрова Анна Викторовна, дата рожд. 15.03.91.

Чтобы автоматизировать поиск и систематизировать эти данные, необходимо выработать определенные соглашения о способах предоставления данных, т.е. дату рожд. нужно записывать одинаково для каждого студента, она должна иметь одинаковую длину и опред. место среди остальной информации. Эти же замечания справедливы и для остальных данных (№ личного дела, Ф., И., О.) После проведения несложной структуризации с информацией, она будет выглядеть так:

Пример структурированных данных: № Ф. И. О. Дата рожд.

1 Сидоров Олег Иванович 14.11.92

Элементы структурированных данных:

1) А – поле (столбец) – это элементарная неделимая единица организации информации

2) Б – запись (строка) – это совокупность логически связанных полей

3) В – таблица (файл) – это совокупность экземпляров записей одной структуры.

База данных – это организованная на машинном носителе совокупность взаимосвязанных структурированных данных, содержащая сведения о различных сущностях некоторой предметной области (объектах, процессах, событиях, явлениях).

В широком смысле слова база данных – это совокупность сведений о конкретных объектах реального мира в какой-либо предметной области.

Под предметной областью понимается часть реального мира, подлежащая изучению для организации управления, автоматизации, например, предприятии, ВУЗ и т.д.

Назначение базы данных:

1)Контроль за избыточностью данных. Как уже говорилось, традиционные файловые системы неэкономно рас­ходуют внешнюю память, сохраняя одни и те же данные в нескольких файлах. При использовании базы данных, наоборот, предпринимается попытка исключить избыточность данных за счет интеграции файлов, чтобы избежать хранения нескольких копий одного и того же эле­мента информации.

2)Непротиворечивость данных. Устранение избыточности данных или контроль над ней позволяет сократить риск возникновения противоречивых состояний. Если элемент данных хранится в базе только в одном экземпляре, то для изменения его значения потребуется выполнить только одну операцию обновления, причем новое значение станет доступным сразу всем пользователям базы данных. А если этот элемент данных с ведома системы хранится в базе данных в нескольких экземплярах, то такая система сможет следить за тем, чтобы копии не противоречили друг другу.

3)Совместное использование данных. Файлы обычно принадлежат отдельным лицам или целым отделам, которые используют их в своей работе. В то же время база данных принадлежит всей организации в целом и может совместно использоваться всеми зарегистрированными пользователями. При такой организации работы большее количество пользователей может работать с большим объемом данных. Более того, при этом можно создавать новые приложения на основе уже существующей в базе данных информации и добавлять в нее только те данные, которые в настоящий момент еще не хранятся в ней, а не определять заново требования ко всем данным, необходимым новому приложению.

4)Поддержка целостности данных. Целостность базы данных означает корректность и непротиворечивость хранимых в ней данных. Целостность обычно описывается с помощью ограничений, т.е. правил под­держки непротиворечивости, которые не должны нарушаться в базе данных. Ограничения можно применять к элементам данных внутри одной записи или к связям между записями. Например, ограничение целостности может гласить, что зарплата сотрудника не должна превышать 40 000 рублей в год или же что в записи с данными о сотруднике номер отделения, в котором он работает, должен соответствовать реально существующему отделению компании.

5)Повышенная безопасность. Безопасность базы данных заключается в защите базы данных от несанкционированного доступа со стороны пользователей. Без привлечения соответствующих мер безопасности интегрированные данные становятся более уязвимыми, чем данные в файловой системе. Однако интеграция позволяет определить требуемую систему безопасности базы данных, а СУБД привести ее в действие. Система обеспечения безопасности может быть выражена в форме учетных имен и паролей для идентификации пользователей, которые зарегистрированы в этой базе данных. Доступ к данным со стороны зарегистрированного пользователя может быть ограничен только некоторыми операциями (извлечением, вставкой, обновлением и удалением).

  • Перевод

Екатерина Малахова, редактор-фрилансер, специально для блога Нетологии адаптировала статью Beau Carnes об основных типах структур данных.

«Плохие программисты думают о коде. Хорошие программисты думают о структурах данных и их взаимосвязях», - Линус Торвальдс, создатель Linux.

Структуры данных играют важную роль в процессе разработки ПО, а еще по ним часто задают вопросы на собеседованиях для разработчиков. Хорошая новость в том, что по сути они представляют собой всего лишь специальные форматы для организации и хранения данных.

В этой статье я покажу вам 10 самых распространенных структур данных. Для каждой из них приведены видео и примеры их реализации на JavaScript. Чтобы вы смогли попрактиковаться, я также добавил несколько упражнений из бета-версии новой учебной программы freeCodeCamp.

В статье я привожу примеры реализации этих структур данных на JavaScript: они также пригодятся, если вы используете низкоуровневый язык вроде С. В многие высокоуровневые языки, включая JavaScript, уже встроены реализации большинства структур данных, о которых пойдет речь. Тем не менее, такие знания станут серьезным преимуществом при поиске работы и пригодятся при написании высокопроизводительного кода.

Связные списки

Связный список - одна из базовых структур данных. Ее часто сравнивают с массивом, так как многие другие структуры можно реализовать с помощью либо массива, либо связного списка. У этих двух типов есть преимущества и недостатки.

Так устроен связный список

Связный список состоит из группы узлов, которые вместе образуют последовательность. Каждый узел содержит две вещи: фактические данные, которые в нем хранятся (это могут быть данные любого типа) и указатель (или ссылку) на следующий узел в последовательности. Также существуют двусвязные списки: в них у каждого узла есть указатель и на следующий, и на предыдущий элемент в списке.

Основные операции в связном списке включают добавление, удаление и поиск элемента в списке.

Временная сложность связного списка ╔═══════════╦═════════════════╦═══════════════╗ ║ Алгоритм ║Среднее значение ║ Худший случай ║ ╠═══════════╬═════════════════╬═══════════════╣ ║ Space ║ O(n) ║ O(n) ║ ║ Search ║ O(n) ║ O(n) ║ ║ Insert ║ O(1) ║ O(1) ║ ║ Delete ║ O(1) ║ O(1) ║ ╚═══════════╩═════════════════╩═══════════════╝

Упражнения от freeCodeCamp

Стеки

Стек - это базовая структура данных, которая позволяет добавлять или удалять элементы только в её начале. Она похожа на стопку книг: если вы хотите взглянуть на книгу в середине стека, сперва придется убрать лежащие сверху.

Стек организован по принципу LIFO (Last In First Out, «последним пришёл - первым вышел») . Это значит, что последний элемент, который вы добавили в стек, первым выйдет из него.


Так устроен стек

В стеках можно выполнять три операции: добавление элемента (push), удаление элемента (pop) и отображение содержимого стека (pip).

Временная сложность стека ╔═══════════╦═════════════════╦═══════════════╗ ║ Алгоритм ║Среднее значение ║ Худший случай ║ ╠═══════════╬═════════════════╬═══════════════╣ ║ Space ║ O(n) ║ O(n) ║ ║ Search ║ O(n) ║ O(n) ║ ║ Insert ║ O(1) ║ O(1) ║ ║ Delete ║ O(1) ║ O(1) ║ ╚═══════════╩═════════════════╩═══════════════╝

Упражнения от freeCodeCamp

Очереди

Эту структуру можно представить как очередь в продуктовом магазине. Первым обслуживают того, кто пришёл в самом начале - всё как в жизни.


Так устроена очередь

Очередь устроена по принципу FIFO (First In First Out, «первый пришёл - первый вышел»). Это значит, что удалить элемент можно только после того, как были убраны все ранее добавленные элементы.

Очередь позволяет выполнять две основных операции: добавлять элементы в конец очереди (enqueue ) и удалять первый элемент (dequeue ).

Временная сложность очереди ╔═══════════╦═════════════════╦═══════════════╗ ║ Алгоритм ║Среднее значение ║ Худший случай ║ ╠═══════════╬═════════════════╬═══════════════╣ ║ Space ║ O(n) ║ O(n) ║ ║ Search ║ O(n) ║ O(n) ║ ║ Insert ║ O(1) ║ O(1) ║ ║ Delete ║ O(1) ║ O(1) ║ ╚═══════════╩═════════════════╩═══════════════╝

Упражнения от freeCodeCamp

Множества



Так выглядит множество

Множество хранит значения данных без определенного порядка, не повторяя их. Оно позволяет не только добавлять и удалять элементы: есть ещё несколько важных функций, которые можно применять к двум множествам сразу.

  • Объединение комбинирует все элементы из двух разных множеств, превращая их в одно (без дубликатов).
  • Пересечение анализирует два множества и  создает еще одно из тех элементов, которые присутствуют в обоих изначальных множествах.
  • Разность выводит список элементов, которые есть в одном множестве, но отсутствуют в другом.
  • Подмножество выдает булево значение, которое показывает, включает ли одно множество все элементы другого множества.
Пример реализации на JavaScript

Упражнения от freeCodeCamp

Map

Map - это структура, которая хранит данные в парах ключ/значение, где каждый ключ уникален. Иногда её также называют ассоциативным массивом или словарём. Map часто используют для быстрого поиска данных. Она позволяет делать следующие вещи:
  • добавлять пары в коллекцию;
  • удалять пары из коллекции;
  • изменять существующей пары;
  • искать значение, связанное с определенным ключом.

Так устроена структура map

Упражнения от freeCodeCamp

Хэш-таблицы

Так работают хэш-таблица и хэш-функция

Хэш-таблица - это похожая на Map структура, которая содержит пары ключ/значение. Она использует хэш-функцию для вычисления индекса в массиве из блоков данных, чтобы найти желаемое значение.

Обычно хэш-функция принимает строку символов в качестве вводных данных и выводит числовое значение. Для одного и того же ввода хэш-функция должна возвращать одинаковое число. Если два разных ввода хэшируются с одним и тем же итогом, возникает коллизия. Цель в том, чтобы таких случаев было как можно меньше.

Таким образом, когда вы вводите пару ключ/значение в хэш-таблицу, ключ проходит через хэш-функцию и превращается в число. В дальнейшем это число используется как фактический ключ, который соответствует определенному значению. Когда вы снова введёте тот же ключ, хэш-функция обработает его и вернет такой же числовой результат. Затем этот результат будет использован для поиска связанного значения. Такой подход заметно сокращает среднее время поиска.

Временная сложность хэш-таблицы ╔═══════════╦═════════════════╦═══════════════╗ ║ Алгоритм ║Среднее значение ║ Худший случай ║ ╠═══════════╬═════════════════╬═══════════════╣ ║ Space ║ O(n) ║ O(n) ║ ║ Search ║ O(1) ║ O(n) ║ ║ Insert ║ O(1) ║ O(n) ║ ║ Delete ║ O(1) ║ O(n) ║ ╚═══════════╩═════════════════╩═══════════════╝

Упражнения от freeCodeCamp

Двоичное дерево поиска


Двоичное дерево поиска

Дерево - это структура данных, состоящая из узлов. Ей присущи следующие свойства:

  • Каждое дерево имеет корневой узел (вверху).
  • Корневой узел имеет ноль или более дочерних узлов.
  • Каждый дочерний узел имеет ноль или более дочерних узлов, и так далее.
У двоичного дерева поиска есть два дополнительных свойства:
  • Каждый узел имеет до двух дочерних узлов (потомков).
  • Каждый узел меньше своих потомков справа, а его потомки слева меньше его самого.
Двоичные деревья поиска позволяют быстро находить, добавлять и удалять элементы. Они устроены так, что время каждой операции пропорционально логарифму общего числа элементов в дереве.

Временная сложность двоичного дерева поиска ╔═══════════╦═════════════════╦══════════════╗ ║ Алгоритм ║Среднее значение ║Худший случай ║ ╠═══════════╬═════════════════╬══════════════╣ ║ Space ║ O(n) ║ O(n) ║ ║ Search ║ O(log n) ║ O(n) ║ ║ Insert ║ O(log n) ║ O(n) ║ ║ Delete ║ O(log n) ║ O(n) ║ ╚═══════════╩═════════════════╩══════════════╝


Упражнения от freeCodeCamp

Префиксное дерево

Префиксное (нагруженное) дерево - это разновидность дерева поиска. Оно хранит данные в метках, каждая из которых представляет собой узел на дереве. Такие структуры часто используют, чтобы хранить слова и выполнять быстрый поиск по ним - например, для функции автозаполнения.

Так устроено префиксное дерево

Каждый узел в языковом префиксном дереве содержит одну букву слова. Чтобы составить слово, нужно следовать по ветвям дерева, проходя по одной букве за раз. Дерево начинает ветвиться, когда порядок букв отличается от других имеющихся в нем слов или когда слово заканчивается. Каждый узел содержит букву (данные) и булево значение, которое указывает, является ли он последним в слове.

Посмотрите на иллюстрацию и попробуйте составить слова. Всегда начинайте с корневого узла вверху и спускайтесь вниз. Это дерево содержит следующие слова: ball, bat, doll, do, dork, dorm, send, sense.

Упражнения от freeCodeCamp

Двоичная куча

Двоичная куча - ещё одна древовидная структура данных. В ней у каждого узла не более двух потомков. Также она является совершенным деревом: это значит, что в ней полностью заняты данными все уровни, а последний заполнен слева направо.


Так устроены минимальная и максимальная кучи

Двоичная куча может быть минимальной или максимальной. В максимальной куче ключ любого узла всегда больше ключей его потомков или равен им. В минимальной куче всё устроено наоборот: ключ любого узла меньше ключей его потомков или равен им.

Порядок уровней в двоичной куче важен, в отличие от порядка узлов на одном и том же уровне. На иллюстрации видно, что в минимальной куче на третьем уровне значения идут не по порядку: 10, 6 и 12.


Временная сложность двоичной кучи ╔═══════════╦══════════════════╦═══════════════╗ ║ Алгоритм ║ Среднее значение ║ Худший случай ║ ╠═══════════╬══════════════════╬═══════════════╣ ║ Space ║ O(n) ║ O(n) ║ ║ Search ║ O(n) ║ O(n) ║ ║ Insert ║ O(1) ║ O(log n) ║ ║ Delete ║ O(log n) ║ O(log n) ║ ║ Peek ║ O(1) ║ O(1) ║ ╚═══════════╩══════════════════╩═══════════════╝

Упражнения от freeCodeCamp

Граф

Графы - это совокупности узлов (вершин) и связей между ними (рёбер). Также их называют сетями.

Графы делятся на два основных типа: ориентированные и неориентированные. У неориентированных графов рёбра между узлами не имеют какого-либо направления, тогда как у рёбер в ориентированных графах оно есть.

Чаще всего граф изображают в каком-либо из двух видов: это может быть список смежности или матрица смежности.


Граф в виде матрицы смежности

Список смежности можно представить как перечень элементов, где слева находится один узел, а справа - все остальные узлы, с которыми он соединяется.

Матрица смежности - это сетка с числами, где каждый ряд или колонка соответствуют отдельному узлу в графе. На пересечении ряда и колонки находится число, которое указывает на наличие связи. Нули означают, что она отсутствует; единицы - что связь есть. Чтобы обозначить вес каждой связи, используют числа больше единицы.

Существуют специальные алгоритмы для просмотра рёбер и вершин в графах - так называемые алгоритмы обхода. К их основным типам относят поиск в ширину (breadth-first search ) и в глубину (depth-first search ). Как вариант, с их помощью можно определить, насколько близко к корневому узлу находятся те или иные вершины графа. В видео ниже показано, как на JavaScript выполнить поиск в ширину.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: