Intel xeon e5 2670 инженерная версия отличается

Недавно встал вопрос о приобретении нового компьютера для работы. Необходимо было обеспечить максимальную производительность в программах для научных расчетов. Поэтому было решено собирать двухпроцессорную систему на базе процессоров Xeon E5-2670, по 8 ядер каждый. Этот некогда дорогущий процессор сейчас можно найти на Ali за 85 долларов (реферальная ссылка).

Прежде чем мне удалось его получить прошло много времени и нервов. Первый продавец, у которого я заказал процессоры не отправил его в течении 10 дней и деньги вернулись на карточку (еще через неделю), второй продавец сказал, что отправил, дал фейковый трек-номер и не получив ничего через месяц был открыт спор, деньги вернули. Третий продавец уже оказался честным и я получил свои процессоры через неделю после отправки. Суммарно после первого заказа прошло уже 2 месяца. Сделал для себя вывод - не покупать товары, по которым вообщ е нет отзывов у продавца или отзывов мало.


Материнскую плату на 2 сокета 2011 покупал отдельно на www.computeruniverse.net за 250$.

Наконец-то процессоры приехали, поставлены на свои места и можно приступать к тестам.

Конфигурация тестового компьютера:

  • Процессоры Intel Xeon E5-2670 (2 шт)
  • Кулеры ZALMAN CNPS10X Optima (2 шт)
  • Мат. плата Asus Z9PA-D8
  • Память 64 Гб DDR3 1333 Мгц
  • Видеокарта GeForce GTX 660 2 Гб
  • SSD Samsung 850 EVO 250 Гб

После установки процессора были сделаны тесты производительности с включенной технологией Hyper-Threading (делает из одного реального ядра 2 логических), тоесть система видела 32 ядра (2 проца * 8 ядер * 2 потока) и с выключенной HT, 16 ядер (2 проца * 8 ядер). Тесты показали, что более высокое быстродействие без HT. Отсюда вывод - если нет каких-либо специфических требований, технологию Hyper-Threading лучше отключить.

Тесты производительности


Для начала что нам скажет тест производительности Windows 7 :


По всем параметрам максимум 7.9, по процессору - 7.8. Непонятно как так получилось.

Далее проверим процессоры утилитой CPU-Z. Общая информация:



Тест производительности:

Производительность на 1 ядро всего на 20% выше моего старого Core2Duo E8400 (обзор его апгрейда). Зато полная мощь впечатляет.

Проверим систему встроенным тестом WinRar , который тестирует скорость архивирования и отображает производительность в реальных задачах:

Тут производительность на 1 ядро почти в 2 раза больше, чем у моего старого E8400 (скорее всего дело в количестве кэша), при подключении всей мощности ожидаемый прирост.

Также прогоним популярный тест Cinebench R15 , который тестирует скорость рендера.


Xeon на первом месте, в сравнении нет i7 6700, он примерно соответствует двум E5-2670, но стоит в 2 раза дороже.

Для тестирования быстродействия в повседневных задачах воспользуемся PcMark 8 , который замеряет скорость отрисовки страницы веб-браузером, редактирования фото, отображения потокового видео, редактирования таблиц и т.д. в режиме Home.
Также замеряна скорость работы с Word , Excel и PowerPoint . PcMark 8 позволяет тестировать скорость работы этих пакетов, если они установлены на компьютере.




Тут результаты вполне заурядные, при домашнем/офисном использовании высокой скорости не будет, так как большинство приложений не оптимизированы под многоядерность.

В играх никаких тестов не проводил, так как компьютер исключительно рабочий, да и обзор посвящен процессорам, а не видеокарте.

Выводы

Для людей, которым необходимо большое количество вычислительных потоков (рендер, расчеты и т.д.) данные процессоры являются оптимальным решением по соотношению цена/производительность .


Для игр это абсолютно бесполезное приобретение , так как в играх от процессора важна производительность на 1 ядро, которая тут не очень большая, а половина ядер Xeon"а в играх будет просто простаивать.


Фото компьютера в сборе:

Методика тестирования и стенд

В паре с Xeon E5-2670 хорошо смотрится видеокарта уровня GeForce GTX 1070. Конечно, для тестов процессорозависимости можно было бы использовать и более быстрый вариант графического ускорителя, но в реальности пользователь, у которого есть средства для покупки адаптеров уровня GeForce GTX 1080 и GeForce GTX 1080 Ti, вряд ли откажет себе в удовольствии от покупки современной и более производительной платформы.

Конфигурация тестового стенда
CPU Intel Xeon E5-2670 @2,6 ГГц
Материнская плата G218A-V1.1a
Оперативная память Samsung M393B1K70DH0-YK0 DDR3-1600, 2 × 8 Гбайт
ПЗУ Samsung 850 Pro
Видеокарта NVIDIA GeForce GTX 1070, 8 Гбайт
Блок питания Corsair AX1500i, 1500 Вт
Система охлаждения CPU Noctua NH-D9DX
Корпус Lian Li PC-T60A
Монитор NEC EA244UHD
Операционная система Windows 10 Pro x64
ПО для видеокарт
NVIDIA GeForce Game Ready Driver 378.78
Дополнительное ПО
Удаление драйверов Display Driver Uninstaller 17.0.6.1
Измерение FPS Fraps 3.5.99
Action! 2.3.0
Разгон и мониторинг GPU-Z 1.18.0
SetFSB 2.3.178.134
MSI Afterburner 4.3.0
Дополнительное оборудование
Тепловизор Fluke Ti400
Шумомер Mastech MS6708
Ваттметр watts up? PRO

Сравнить Xeon E5-2670 по уровню быстродействия решено с процессорами Core i3-6100, Core i5-7400 и Core i7-6400T. Первые два чипа выступают в роли альтернативы по цене. Эти CPU мы можем спокойно купить в любом компьютерном магазине. А Core i7-6400T — это еще один «привет из Китая». Подробно возможности этого процессора мы изучили в . Имеющаяся у автора инженерная версия с маркировкой QHQG (L501C679) при напряжении 1,375 В разгоняется до стабильных 4008 МГц (частота BCLK была увеличена с номинальных 100 до 167 МГц. Для достижения подобного результата пришлось использовать весьма производительное охлаждение — кулер Noctua NH-D15. Интересно, что на частоте 4000 МГц для всех четырех ядер работает и Core i7-7700. С учетом того, что разгон Core i7-6400T по шине не приводит к снижению быстродействия в приложениях, использующих AVX-инструкции, формируется, на мой взгляд, достаточно наглядная картина.

Вместе с процессорами Skylake и Kaby Lake использовалась материнская плата и двухканальный набор оперативной памяти Kingston HyperX Fury HX421C14FB2K2/16 (DDR4-2133, 14-14-14-35).

Игры
API Качество графики Полноэкранное сглаживание
1920 × 1080 / 2560 × 1440
1 Crysis 3, миссия Safeties off DirectX 11 Макс. качество 4 × MSAA
2 Ведьмак-3: Дикая охота, Новиград Макс. качество, NVIDIA HairWorks вкл AA
3 GTA V, встроенный бенчмарк Макс. качество 4 × MSAA + FXAA
4 Fallout 4, Содружество Макс. качество, текстуры высокого разрешения, осколки от пуль выкл. TAA
5 Watch_Dogs 2 Ультра SMAA
6 Far Cry 4 Макс. качество 4 × MSAA
7 Rise of the Tomb Raider, советская база DirectX 12 Макс. качество SMAA
8 HITMAN, встроенный бенчмарк Макс. качество SMAA
9 Total War: WARHAMMER, встроенный бенчмарк Макс. качество 4 × MSAA
10 Battlefield 1, миссия «Мыс Геллес» Ультра TAA
11 Sid Meier"s Civilization VI, встроенный бенчмарк Ультра 4 × MSAA

Графические настойки игр отображены в таблице, тестирование проводилось в разрешениях Full HD и WQHD, так как эти форматы являются наиболее подходящими для видеокарты уровня GeForce GTX 1070. Измерение вычислительной производительности было проведено при помощи следующего ПО:

  • WinRAR 5.40. Архивирование папки объемом 11 Гбайт с разными данными в формате RAR5 и с максимальной степенью компрессии.
  • Blender 2.76. Определение скорости финального рендеринга в одном из популярных свободных пакетов для создания трёхмерной графики. Измеряется продолжительность построения финальной модели из Blender Cycles Benchmark rev4.
  • x265 HD Benchmark. Тестирование скорости транскодирования видео в перспективный формат H.265/HEVC.
  • CINEBENCH R15. Измерение быстродействия фотореалистичного трехмерного рендеринга в анимационном пакете CINEMA 4D.
  • Adobe Photoshop Lightroom 6.9. Тестирование производительности при экспорте 200 фотографий формата RAW с разрешением 5184 × 3456 пикселей в формат JPEG с разрешением 1620 × 1080 и максимальным качеством.
  • Adobe After Effects CC 2017. Рендеринг проекта в формат 1920 × 1080 @60 FPS.
  • SONY Vegas Movie Studio Platinum v13. Рендеринг проекта в формат 1920 × 1080 @30 FPS с наложением разных эффектов.

⇡ Производительность в приложениях и бенчмарках

С конкурентами для Xeon E5-2670 определились. Но для начала давайте посмотрим, как серверный процессор позиционируется относительно современных и дорогих чипов Kaby Lake и Broadwell-E — просто ради интереса.

Что ж, Xeon E5-2670 явно не теряется на фоне более современных моделей. В CINEBENCH R15 он расположился аккурат между Core i7-7700K и Core i7-6800K. Восемь ядер и 16 потоков делают свое дело.

Xeon E5-2670 отлично подходит для создания контента. Особенно с учетом того, что по цене его конкурентом выступают двухъядерные Pentium и Core i3. При рендеринге трехмерной графики, кодировании видео и архивировании данных наличие у серверного CPU 16 потоков и 20 Мбайт кеша третьего уровня дают о себе знать. Хотя в After Effects разница в быстродействии архитектур Sandy Bridge и Skylake тоже сказывается. На этот раз не в пользу Xeon E5-2670.

Положительно во всех случаях на производительность влияет и разгон памяти. Даже с учетом того, что при установке режима DDR3-1866 увеличиваются задержки.

Xeon E5-2670 — это достойный вариант для тех, кто хочет собрать максимально бюджетный ПК для работы. Но в то же время нельзя не отметить, что разогнанный до 4 ГГц Core i7-6400T в большинстве случаев опережает 8-ядерный серверный «камень». Только для достижения такой субординации между процессорами нам необходим семпл, который, во-первых, сам по себе разгонится хотя бы до 3,8-4 ГГц, а, во-вторых, более дорогая материнская плата на базе чипсета Z170 Express.

⇡ Производительность в играх

То, что современные игры оптимизированы под многоядерные центральные процессоры, не является ни для кого секретом. В то же время демонстрирует другую картину: лучшим решением для развлечений на данный момент считается — четырехъядерник с поддержкой технологии Hyper-threading. Ему уступают не только флагманские чипы AMD, но и более дорогие модели Core i7-6800K, и . Так что наличие 12 и 16 потоков зачастую оказывается лишним в играх. Пока лишним.

Ниже в таблице указан не только средний FPS, но и минимальный. Это важный момент, так как некоторым играм четырех потоков бывает недостаточно. Видеокарта начинает работать не на полную мощность, но самое обидное — это просадки FPS, которые могут наблюдаться визуально и портить все впечатление. Xeon E5-2670, как мы уже выяснили, конкурирует с младшими решениями Intel — процессорами Pentium, которые в поколении Kaby Lake получили поддержку Hyper-threading, и Core i3. В играх модели Core i3-6100, Pentium G4560 и Pentium G4600 показывают схожие результаты, ведь в таких приложениях за небольшим исключением векторный набор команд не используется, а тактовая частота у перечисленных чипов различается несильно.

Игры, FPS
1920 × 1080 2560 × 1440
Intel Xeon E5-2670 Intel Core i3-6100
min avg min avg min avg min avg
Crysis 3 56 71 56 71 34 44 35 44
Ведьмак-3: Дикая охота 67 78 64 73 50 56 45 56
GTA V 45 63 42 57 39 55 39 53
Fallout 4 70 102 63 101 47 70 47 70
Watch_Dogs 2 38 55 30 43 31 41 29 39
Far Cry 4 37 58 56 77 36 51 45 53
Rise of the Tomb Raider 56 67 45 63 40 47 40 47
HITMAN 52 100 42 73 60 83 43 71
Total War: WARHAMMER 47 61 41 51 38 42 27 42
Battlefield 1 64 77 59 78 42 53 42 56
Sid Meier"s Civilization VI 26 54 44 55 30 54 45 54

В итоге стенд с восьмиядерным Xeon E5-2670 вместе с GeForce GTX 1070 проявляет себя лучше, чем система с Core i3-6100. Средний FPS выше в ряде игр: в третьем «Ведьмаке», GTA V, Watch_Dogs 2, Rise of the Tomb Raider, HITMAN и Total War: WARHAMMER. К тому же есть приложения (Fallout 4 и Battlefield 1), в которых Xeon E5-2670 и Core i3-6100 демонстрируют схожее среднее количество кадров, но у двухъядерного чипа Skylake минимальный FPS ниже.

В разрешении WQHD процессорозависимость в играх наблюдается меньше, так как видеокарта при заданных нами настройках качества графики работает на полную мощность. В роли аутсайдера опять оказывается Core i3-6100. Мы в очередной раз убеждаемся, что в пару к видеокарте уровня GeForce GTX 1070 надо ставить минимум Core i5, так как четыре ядра лучше четырех потоков.

Есть игры, в которых заметно серьезное превосходство архитектуры Skylake над Sandy Bridge. Например, в Far Cry 4 в разрешении Full HD Xeon E5-2670 уступает Core i3-6100 ни много ни мало 33%. При этом мы знаем, что движок игры DUNIA оптимизирован под восемь потоков. Аналогичная ситуация наблюдается в Sid Meier’s Civilization VI. Только здесь на первое место выходит тактовая частота процессора. Поэтому Core i3-6100 опережает в том числе и Core i5-7400.

Если после всех этих результатов вы всерьез задумались над сборкой игрового ПК на основе Xeon E5-2670, то можете смело действовать. Процессор во многих играх «вытягивает» адаптер уровня GeForce GTX 1070. Шестнадцати гигабайт оперативной памяти DDR3 хватает для любых современных игр. И будет достаточно еще долгое время.

Сравнение загруженности Xeon E5-2670 (снизу) и Core i5-7400 (сверху) в игре «Ведьмак-3: Дикая охота»

Напоследок давайте рассмотрим одну ситуацию. Выше приведена склейка двух скриншотов из игры «Ведьмак-3: Дикая охота». Как видите, процессор уровня Core i5-7400 в некоторых игровых локациях загружен на 100%. Это приводит к тому, что максимальная нагрузка на GeForce GTX 1070 может упасть — появятся просадки. В итоге среднее количество кадров у Core i5-7400 и Xeon E5-2670 оказалось одинаковым — 78 FPS, но минимальный показатель выше у 8-ядерника: 67 против 58 кадров в секунду.

Аналогичная ситуация, когда Core i3 и Core i5 нагружены на 100%, наблюдается во многих современных играх: в Battlefield 1 (и других играх на движке Frostbite Engine), Watсh_Dogs 2 и Total War: WARHAMMER.

⇡ Энергопотребление

Уровень TDP Xeon E5-2670 составляет 115 Вт — не самый высокий показатель, кстати. Восьмиядерные процессоры Core i7-5960X и Core i7-6900K, которые производятся по 22- и 14-нм техпроцессу соответственно, по паспорту имеют 140 Вт предельной тепловой мощности, а разгоняемый Xeon E5-1650 — 130 Вт.

Так как Xeon E5-2670 сравнивался с более экономичными моделями Core 6-го и 7-го поколений, то 8-ядерный чип совершенно ожидаемо уступил и Core i3, и Core i5, и Core i7.

⇡ Выводы

У нас есть плохая новость. Широкое распространение информации о возможностях и вкусностях инженерного образца Core i7-6400T серьезно подняло интерес к китайскому 4-ядернику. В результате предприимчивые торговцы из Поднебесной подняли цены на этот процессор. Возможно, ситуация повторится и с рассмотренным сегодня Xeon E5-2670, а также другими моделями для платформы LGA2011.

В остальном — новости отличные! Лично автора закупка процессора, материнской платы и оперативной памяти порадовала. Как оказалось, мелких недоработок у китайских производителей хватает, но, к счастью, многое уже исправлено. Большое спасибо энтузиастам, которые собрали большую базу знаний по этой теме. Связка «Xeon — плата — память» конкурирует по цене c двухъядерными Pentium и Core i3 поколений Skylake и Kaby Lake для платформы LGA1151. Только в случае с LGA2011 вы получите заметно более быстрое решение. Тестирование показало, что Xeon E5-2670 вместе с оперативной памятью DDR3-1866 выглядит лучше не только в ресурсоемких вычислительных приложениях, но и в играх. Архитектурная «отсталость» все же сказывается — между поколениями Sandy Bridge и Skylake (Kaby Lake) видна большая разница, но серверный чип берет свое за счет большого количества ядер и потоков.

При ограниченном бюджете сборка игрового компьютера на базе Xeon E5-2670, китайской материнской платы и недорогой оперативной памяти DDR3 выглядит вполне адекватным решением. Видеокарта уровня GeForce GTX 1070 гармонично вписывается в такую систему.

В 2017 году 16 Гбайт оперативной памяти достаточно для многих задач, включая игры. И хотя изначально вся эта затея с покупкой Xeon и X79-платы и была продиктована экономией, но с учетом небольшой стоимости этого товара будет не лишним взять сразу 32 Гбайт DDR3.

Многие интересуются, какой вариант предпочесть: заказать в Китае один из Xeon’ов или взять Core i7-6400T? Тестирование показало, что разогнанный инженерный семпл в играх все же выступает лучше. Сказываются и более современная архитектура, и более высокая тактовая частота (после разгона). Не забудем и про актуальную платформу, у которой есть будущее. Кроме того Core i7-6400T вместе с эффективным охлаждением и материнской платой на чипсете Z170/Z270 Express выйдет заметно дороже. Ну и должно повести с самим семплом, далеко не все модели разгоняются до 4 ГГц.

Минусы покупки Xeon и сопутствующих комплектующих очевидны. Покупка в китайском интернет-магазине — это лотерея, связанная как с самим железом, так и с его доставкой. Но риск, как известно, — дело благородное.

Был одной из самых востребованных моделей, благодаря отличному соотношению цена — производительность. Сейчас, после очередной волны апгрейдов серверов, в продаже появилось уже второе поколение Xeon E5 2600, построенное на архитектуре Ivy Bridge. Посмотрим, чем нас порадует обновленный 2670 v2 и будет ли он так же хорош, как старая модель.

Характеристики

Модель E5 2680 v2
Тех.процесс 22 nm
Ядер 10
Потоков 20
Базовая частота 2800 MHz
3100 MHz (6 и больше ядер)
3200 MHz (5 ядер)
3300 MHz (4 ядра)
3400 MHz (3 ядра)
3500 MHz (2 ядра)
3600 MHz (1 ядро)
Кэш 25 Мб
TDP 115 W
82 C
Множитель 28
Примерная стоимость 11000 - 12000 руб.
Модель E5 2687W v2
Тех.процесс 22 nm
Ядер 8
Потоков 16
Базовая частота 3400 MHz
Максимальная частота в Turbo Boost 3600 MHz (5 и больше ядер ядер)
3700 MHz (4 ядра)
3800 MHz (3 ядра)
3900 MHz (2 ядра)
4000 MHz (1 ядро)
Кэш 25 Мб
TDP 150 W
Макс. температура крышки процессора 72 C
Множитель Заблокирован
Примерная стоимость 20 000 руб.
Модель E5 2697 v2
Тех.процесс 22 nm
Ядер 12
Потоков 24
Базовая частота 2700 MHz
Максимальная частота в Turbo Boost 3000 MHz (6 и больше ядер)
3100 MHz (5 ядер)
3200 MHz (4 ядра)
3300 MHz (3 ядра)
3400 MHz (2 ядра)
3500 MHz (1 ядро)
Кэш 30 Мб
TDP 130 W
Макс. температура крышки процессора 86 C
Множитель Заблокирован
Примерная стоимость 20 000 - 25 000 руб.

Новый 22 nm техпроцесс благоприятно сказался на энергоэффективности процессора. Хотя TDP не изменился, потребление энергии и тепловыделение уменьшились. Ядра новой архитектуры немного мощнее, к тому же теперь их 10, а не 8. Увеличился и кэш третьего уровня, теперь он составляет внушительные 25 мб.

Появилась поддержка DDR3 (включая ECC) с частотой вплоть до 1866 Мгц, ранее такую частоту можно было получить только разгоном.

К сожалению, увеличения тактовой частоты не произошло, более того, она сократилась на 100 МГц и составляет теперь 2.5 ГГц против 2.6 у 2670 v1.

Производительность и разгон

Несмотря на меньшую частоту, в целом, производительность увеличилась примерно на 10-15%. Заметно выросло многопоточное быстродействие, благодаря увеличению количества ядер. Single-core производительность тоже стала посильнее, тут сыграл кэш и новая архитектура.

С современными играми процессор справляется хорошо, редкие исключения могут составить сильно процессорозависимые игрушки, но таких крайне мало. Количество кадров можно увидеть в видео. Стоит учесть, что процессор в небольшом разгоне, а видеокарта — nvidia 970, Xeon e5 2670 v2 может спокойно работать и с более мощными картами.

А вот сравнение со «старичком» Xeon X3440:

The date the product was first introduced.

Expected Discontinuance

Expected Discontinuance is an estimate of when a product will begin the Product Discontinuance process. The Product Discontinuance Notification (PDN), published at the start of the discontinuance process, will include all EOL Key Milestone details. Some business units may communicate EOL timeline details before the PDN is published. Contact your Intel representative for information on EOL timelines and extended life options.

Lithography

Lithography refers to the semiconductor technology used to manufacture an integrated circuit, and is reported in nanometer (nm), indicative of the size of features built on the semiconductor.

# of Cores

Cores is a hardware term that describes the number of independent central processing units in a single computing component (die or chip).

# of Threads

A Thread, or thread of execution, is a software term for the basic ordered sequence of instructions that can be passed through or processed by a single CPU core.

Processor Base Frequency

Processor Base Frequency describes the rate at which the processor"s transistors open and close. The processor base frequency is the operating point where TDP is defined. Frequency is measured in gigahertz (GHz), or billion cycles per second.

Max Turbo Frequency

Max turbo frequency is the maximum single core frequency at which the processor is capable of operating using Intel® Turbo Boost Technology and, if present, Intel® Thermal Velocity Boost. Frequency is measured in gigahertz (GHz), or billion cycles per second.

Cache

CPU Cache is an area of fast memory located on the processor. Intel® Smart Cache refers to the architecture that allows all cores to dynamically share access to the last level cache.

Bus Speed

A bus is a subsystem that transfers data between computer components or between computers. Types include front-side bus (FSB), which carries data between the CPU and memory controller hub; direct media interface (DMI), which is a point-to-point interconnection between an Intel integrated memory controller and an Intel I/O controller hub on the computer’s motherboard; and Quick Path Interconnect (QPI), which is a point-to-point interconnect between the CPU and the integrated memory controller.

# of QPI Links

QPI (Quick Path Interconnect) links are a high speed, point-to-point interconnect bus between the processor and chipset.

TDP

Thermal Design Power (TDP) represents the average power, in watts, the processor dissipates when operating at Base Frequency with all cores active under an Intel-defined, high-complexity workload. Refer to Datasheet for thermal solution requirements.

VID Voltage Range

VID Voltage Range is an indicator of the minimum and maximum voltage values at which the processor is designed to operate. The processor communicates VID to the VRM (Voltage Regulator Module), which in turn delivers that correct voltage to the processor.

Embedded Options Available

Embedded Options Available indicates products that offer extended purchase availability for intelligent systems and embedded solutions. Product certification and use condition applications can be found in the Production Release Qualification (PRQ) report. See your Intel representative for details.

Max Memory Size (dependent on memory type)

Max memory size refers to the maximum memory capacity supported by the processor.

Memory Types

Intel® processors come in four different types: a Single Channel, Dual Channel, Triple Channel, and Flex Mode.

Max # of Memory Channels

The number of memory channels refers to the bandwidth operation for real world application.

Max Memory Bandwidth

Max Memory bandwidth is the maximum rate at which data can be read from or stored into a semiconductor memory by the processor (in GB/s).

ECC Memory Supported ‡

ECC Memory Supported indicates processor support for Error-Correcting Code memory. ECC memory is a type of system memory that can detect and correct common kinds of internal data corruption. Note that ECC memory support requires both processor and chipset support.

PCI Express Revision

PCI Express Revision is the version supported by the processor. Peripheral Component Interconnect Express (or PCIe) is a high-speed serial computer expansion bus standard for attaching hardware devices to a computer. The different PCI Express versions support different data rates.

Max # of PCI Express Lanes

A PCI Express (PCIe) lane consists of two differential signaling pairs, one for receiving data, one for transmitting data, and is the basic unit of the PCIe bus. # of PCI Express Lanes is the total number supported by the processor.

Sockets Supported

The socket is the component that provides the mechanical and electrical connections between the processor and motherboard.

T CASE

Case Temperature is the maximum temperature allowed at the processor Integrated Heat Spreader (IHS).

Intel® Turbo Boost Technology ‡

Intel® Turbo Boost Technology dynamically increases the processor"s frequency as needed by taking advantage of thermal and power headroom to give you a burst of speed when you need it, and increased energy efficiency when you don’t.

Intel® vPro™ Platform Eligibility ‡

Intel® vPro™ Technology is a set of security and manageability capabilities built into the processor aimed at addressing four critical areas of IT security: 1) Threat management, including protection from rootkits, viruses, and malware 2) Identity and web site access point protection 3) Confidential personal and business data protection 4) Remote and local monitoring, remediation, and repair of PCs and workstations.

Intel® Hyper-Threading Technology ‡

Intel® Hyper-Threading Technology (Intel® HT Technology) delivers two processing threads per physical core. Highly threaded applications can get more work done in parallel, completing tasks sooner.

Intel® Virtualization Technology (VT-x) ‡

Intel® Virtualization Technology (VT-x) allows one hardware platform to function as multiple “virtual” platforms. It offers improved manageability by limiting downtime and maintaining productivity by isolating computing activities into separate partitions.

Intel® Virtualization Technology for Directed I/O (VT-d) ‡

Intel® Virtualization Technology for Directed I/O (VT-d) continues from the existing support for IA-32 (VT-x) and Itanium® processor (VT-i) virtualization adding new support for I/O-device virtualization. Intel VT-d can help end users improve security and reliability of the systems and also improve performance of I/O devices in virtualized environments.

Intel® VT-x with Extended Page Tables (EPT) ‡

Intel® VT-x with Extended Page Tables (EPT), also known as Second Level Address Translation (SLAT), provides acceleration for memory intensive virtualized applications. Extended Page Tables in Intel® Virtualization Technology platforms reduces the memory and power overhead costs and increases battery life through hardware optimization of page table management.

Intel® 64 ‡

Intel® 64 architecture delivers 64-bit computing on server, workstation, desktop and mobile platforms when combined with supporting software.¹ Intel 64 architecture improves performance by allowing systems to address more than 4 GB of both virtual and physical memory.

Instruction Set

An instruction set refers to the basic set of commands and instructions that a microprocessor understands and can carry out. The value shown represents which Intel’s instruction set this processor is compatible with.

Instruction Set Extensions

Instruction Set Extensions are additional instructions which can increase performance when the same operations are performed on multiple data objects. These can include SSE (Streaming SIMD Extensions) and AVX (Advanced Vector Extensions).

Idle States

Idle States (C-states) are used to save power when the processor is idle. C0 is the operational state, meaning that the CPU is doing useful work. C1 is the first idle state, C2 the second, and so on, where more power saving actions are taken for numerically higher C-states.

Enhanced Intel SpeedStep® Technology

Enhanced Intel SpeedStep® Technology is an advanced means of enabling high performance while meeting the power-conservation needs of mobile systems. Conventional Intel SpeedStep® Technology switches both voltage and frequency in tandem between high and low levels in response to processor load. Enhanced Intel SpeedStep® Technology builds upon that architecture using design strategies such as Separation between Voltage and Frequency Changes, and Clock Partitioning and Recovery.

Intel® Demand Based Switching

Intel® Demand Based Switching is a power-management technology in which the applied voltage and clock speed of a microprocessor are kept at the minimum necessary levels until more processing power is required. This technology was introduced as Intel SpeedStep® Technology in the server marketplace.

Thermal Monitoring Technologies

Thermal Monitoring Technologies protect the processor package and the system from thermal failure through several thermal management features. An on-die Digital Thermal Sensor (DTS) detects the core"s temperature, and the thermal management features reduce package power consumption and thereby temperature when required in order to remain within normal operating limits.

Intel® Flex Memory Access

Intel® Flex Memory Access facilitates easier upgrades by allowing different memory sizes to be populated and remain in dual-channel mode.

Intel® Identity Protection Technology ‡

Intel® Identity Protection Technology is a built-in security token technology that helps provide a simple, tamper-resistant method for protecting access to your online customer and business data from threats and fraud. Intel® IPT provides a hardware-based proof of a unique user’s PC to websites, financial institutions, and network services; providing verification that it is not malware attempting to login. Intel® IPT can be a key component in two-factor authentication solutions to protect your information at websites and business log-ins.

Intel® AES New Instructions

Intel® AES New Instructions (Intel® AES-NI) are a set of instructions that enable fast and secure data encryption and decryption. AES-NI are valuable for a wide range of cryptographic applications, for example: applications that perform bulk encryption/decryption, authentication, random number generation, and authenticated encryption.

Intel® Trusted Execution Technology ‡

Intel® Trusted Execution Technology for safer computing is a versatile set of hardware extensions to Intel® processors and chipsets that enhance the digital office platform with security capabilities such as measured launch and protected execution. It enables an environment where applications can run within their own space, protected from all other software on the system.

Execute Disable Bit ‡

Execute Disable Bit is a hardware-based security feature that can reduce exposure to viruses and malicious-code attacks and prevent harmful software from executing and propagating on the server or network.

The date the product was first introduced.

Expected Discontinuance

Expected Discontinuance is an estimate of when a product will begin the Product Discontinuance process. The Product Discontinuance Notification (PDN), published at the start of the discontinuance process, will include all EOL Key Milestone details. Some business units may communicate EOL timeline details before the PDN is published. Contact your Intel representative for information on EOL timelines and extended life options.

Lithography

Lithography refers to the semiconductor technology used to manufacture an integrated circuit, and is reported in nanometer (nm), indicative of the size of features built on the semiconductor.

# of Cores

Cores is a hardware term that describes the number of independent central processing units in a single computing component (die or chip).

# of Threads

A Thread, or thread of execution, is a software term for the basic ordered sequence of instructions that can be passed through or processed by a single CPU core.

Processor Base Frequency

Processor Base Frequency describes the rate at which the processor"s transistors open and close. The processor base frequency is the operating point where TDP is defined. Frequency is measured in gigahertz (GHz), or billion cycles per second.

Max Turbo Frequency

Max turbo frequency is the maximum single core frequency at which the processor is capable of operating using Intel® Turbo Boost Technology and, if present, Intel® Thermal Velocity Boost. Frequency is measured in gigahertz (GHz), or billion cycles per second.

Cache

CPU Cache is an area of fast memory located on the processor. Intel® Smart Cache refers to the architecture that allows all cores to dynamically share access to the last level cache.

Bus Speed

A bus is a subsystem that transfers data between computer components or between computers. Types include front-side bus (FSB), which carries data between the CPU and memory controller hub; direct media interface (DMI), which is a point-to-point interconnection between an Intel integrated memory controller and an Intel I/O controller hub on the computer’s motherboard; and Quick Path Interconnect (QPI), which is a point-to-point interconnect between the CPU and the integrated memory controller.

# of QPI Links

QPI (Quick Path Interconnect) links are a high speed, point-to-point interconnect bus between the processor and chipset.

TDP

Thermal Design Power (TDP) represents the average power, in watts, the processor dissipates when operating at Base Frequency with all cores active under an Intel-defined, high-complexity workload. Refer to Datasheet for thermal solution requirements.

VID Voltage Range

VID Voltage Range is an indicator of the minimum and maximum voltage values at which the processor is designed to operate. The processor communicates VID to the VRM (Voltage Regulator Module), which in turn delivers that correct voltage to the processor.

Embedded Options Available

Embedded Options Available indicates products that offer extended purchase availability for intelligent systems and embedded solutions. Product certification and use condition applications can be found in the Production Release Qualification (PRQ) report. See your Intel representative for details.

Max Memory Size (dependent on memory type)

Max memory size refers to the maximum memory capacity supported by the processor.

Memory Types

Intel® processors come in four different types: a Single Channel, Dual Channel, Triple Channel, and Flex Mode.

Max # of Memory Channels

The number of memory channels refers to the bandwidth operation for real world application.

Max Memory Bandwidth

Max Memory bandwidth is the maximum rate at which data can be read from or stored into a semiconductor memory by the processor (in GB/s).

ECC Memory Supported ‡

ECC Memory Supported indicates processor support for Error-Correcting Code memory. ECC memory is a type of system memory that can detect and correct common kinds of internal data corruption. Note that ECC memory support requires both processor and chipset support.

PCI Express Revision

PCI Express Revision is the version supported by the processor. Peripheral Component Interconnect Express (or PCIe) is a high-speed serial computer expansion bus standard for attaching hardware devices to a computer. The different PCI Express versions support different data rates.

Max # of PCI Express Lanes

A PCI Express (PCIe) lane consists of two differential signaling pairs, one for receiving data, one for transmitting data, and is the basic unit of the PCIe bus. # of PCI Express Lanes is the total number supported by the processor.

Sockets Supported

The socket is the component that provides the mechanical and electrical connections between the processor and motherboard.

T CASE

Case Temperature is the maximum temperature allowed at the processor Integrated Heat Spreader (IHS).

Intel® Turbo Boost Technology ‡

Intel® Turbo Boost Technology dynamically increases the processor"s frequency as needed by taking advantage of thermal and power headroom to give you a burst of speed when you need it, and increased energy efficiency when you don’t.

Intel® vPro™ Platform Eligibility ‡

Intel® vPro™ Technology is a set of security and manageability capabilities built into the processor aimed at addressing four critical areas of IT security: 1) Threat management, including protection from rootkits, viruses, and malware 2) Identity and web site access point protection 3) Confidential personal and business data protection 4) Remote and local monitoring, remediation, and repair of PCs and workstations.

Intel® Hyper-Threading Technology ‡

Intel® Hyper-Threading Technology (Intel® HT Technology) delivers two processing threads per physical core. Highly threaded applications can get more work done in parallel, completing tasks sooner.

Intel® Virtualization Technology (VT-x) ‡

Intel® Virtualization Technology (VT-x) allows one hardware platform to function as multiple “virtual” platforms. It offers improved manageability by limiting downtime and maintaining productivity by isolating computing activities into separate partitions.

Intel® Virtualization Technology for Directed I/O (VT-d) ‡

Intel® Virtualization Technology for Directed I/O (VT-d) continues from the existing support for IA-32 (VT-x) and Itanium® processor (VT-i) virtualization adding new support for I/O-device virtualization. Intel VT-d can help end users improve security and reliability of the systems and also improve performance of I/O devices in virtualized environments.

Intel® VT-x with Extended Page Tables (EPT) ‡

Intel® VT-x with Extended Page Tables (EPT), also known as Second Level Address Translation (SLAT), provides acceleration for memory intensive virtualized applications. Extended Page Tables in Intel® Virtualization Technology platforms reduces the memory and power overhead costs and increases battery life through hardware optimization of page table management.

Intel® 64 ‡

Intel® 64 architecture delivers 64-bit computing on server, workstation, desktop and mobile platforms when combined with supporting software.¹ Intel 64 architecture improves performance by allowing systems to address more than 4 GB of both virtual and physical memory.

Instruction Set

An instruction set refers to the basic set of commands and instructions that a microprocessor understands and can carry out. The value shown represents which Intel’s instruction set this processor is compatible with.

Instruction Set Extensions

Instruction Set Extensions are additional instructions which can increase performance when the same operations are performed on multiple data objects. These can include SSE (Streaming SIMD Extensions) and AVX (Advanced Vector Extensions).

Idle States

Idle States (C-states) are used to save power when the processor is idle. C0 is the operational state, meaning that the CPU is doing useful work. C1 is the first idle state, C2 the second, and so on, where more power saving actions are taken for numerically higher C-states.

Enhanced Intel SpeedStep® Technology

Enhanced Intel SpeedStep® Technology is an advanced means of enabling high performance while meeting the power-conservation needs of mobile systems. Conventional Intel SpeedStep® Technology switches both voltage and frequency in tandem between high and low levels in response to processor load. Enhanced Intel SpeedStep® Technology builds upon that architecture using design strategies such as Separation between Voltage and Frequency Changes, and Clock Partitioning and Recovery.

Intel® Demand Based Switching

Intel® Demand Based Switching is a power-management technology in which the applied voltage and clock speed of a microprocessor are kept at the minimum necessary levels until more processing power is required. This technology was introduced as Intel SpeedStep® Technology in the server marketplace.

Thermal Monitoring Technologies

Thermal Monitoring Technologies protect the processor package and the system from thermal failure through several thermal management features. An on-die Digital Thermal Sensor (DTS) detects the core"s temperature, and the thermal management features reduce package power consumption and thereby temperature when required in order to remain within normal operating limits.

Intel® Flex Memory Access

Intel® Flex Memory Access facilitates easier upgrades by allowing different memory sizes to be populated and remain in dual-channel mode.

Intel® Identity Protection Technology ‡

Intel® Identity Protection Technology is a built-in security token technology that helps provide a simple, tamper-resistant method for protecting access to your online customer and business data from threats and fraud. Intel® IPT provides a hardware-based proof of a unique user’s PC to websites, financial institutions, and network services; providing verification that it is not malware attempting to login. Intel® IPT can be a key component in two-factor authentication solutions to protect your information at websites and business log-ins.

Intel® AES New Instructions

Intel® AES New Instructions (Intel® AES-NI) are a set of instructions that enable fast and secure data encryption and decryption. AES-NI are valuable for a wide range of cryptographic applications, for example: applications that perform bulk encryption/decryption, authentication, random number generation, and authenticated encryption.

Intel® Trusted Execution Technology ‡

Intel® Trusted Execution Technology for safer computing is a versatile set of hardware extensions to Intel® processors and chipsets that enhance the digital office platform with security capabilities such as measured launch and protected execution. It enables an environment where applications can run within their own space, protected from all other software on the system.

Execute Disable Bit ‡

Execute Disable Bit is a hardware-based security feature that can reduce exposure to viruses and malicious-code attacks and prevent harmful software from executing and propagating on the server or network.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: