Как сделать часы на arduino. Часы на Arduino без использования модуля RTC. Библиотека Arduino для работы с DS1307

Предупреждения начали приходить рано утром 17 августа. Гравитационные волны, порождённые столкновением двух нейтронных звёзд - плотных ядер умерших звёзд - омывали Землю. Более 1000 физиков обсерватории aLIGO (Advanced Laser Interferometer Gravitational-Wave Observatory - лазерно-интерферометрическая гравитационно-волновая обсерватория) поспешили расшифровать вибрации пространства-времени, прокатившиеся по детекторам подобно долгому раскату грома. Тысячи астрономов боролись за право стать свидетелями послесвечения. Однако официально весь этот переполох держался в секрете. Нужно было собирать данные и писать научные работы. Внешний мир не должен был узнать об этом ещё два месяца.

Этот строгий запрет поставил Джоселин Рид и Катерино Чатциоаноу , двух членов коллаборации LIGO, в неловкое положение. Днём 17 числа они должны были вести конференцию , посвящённую вопросу о том, что происходит в невообразимых условиях внутренностей нейтронной звезды. А их темой как раз было то, как должно происходить слияние двух нейтронных звёзд. «Мы вышли на перерыв, сели и уставились друг на друга, - говорит Рид, профессор Калифорнийского университета в Фуллертоне. - Так как же мы это сделаем?»

Десятилетиями физики спорили о том, содержат или нет нейтронные звёзды в себе новые виды материи, появляющиеся, когда звезда ломает привычный мир протонов и нейтронов и создаёт новые взаимодействия между кварками или другими экзотическими частицами. Ответ на этот вопрос также пролил бы свет на астрономические загадки, окружающие сверхновые и появление тяжёлых элементов, вроде золота.

Кроме наблюдения за столкновениями при помощи LIGO, астрофизики разрабатывали творческие методы зондирования нейтронной звезды. Задача состоит в том, чтобы узнать какие-либо свойства её внутренних слоёв. Но сигнал, пришедший на LIGO, и подобные ему - испускаемые двумя нейтронными звёздами, обращающимися вокруг общего центра масс, притягивающимися друг к другу, и, наконец, врезающимися - предлагает совершенно новый подход к проблеме.

Странная материя

Нейтронная звезда - это сжатое ядро массивной звезды, очень плотные угли, оставшиеся после сверхновой. Её масса сравнима с солнечной, но сжата она до размеров города. Таким образом, нейтронные звёзды служат плотнейшими резервуарами материи во Вселенной - «последнее вещество на рубеже чёрной дыры», как говорит Марк Алфорд , физик из Вашингтонского университета в Сент-Луисе.

Пробурив такую звезду, мы бы приблизились к переднему краю науки. Пара сантиметров нормальных атомов - в основном, железо и кремний - лежат на поверхности, будто ярко-красное покрытие самых плотных сосательных конфет Вселенной. Затем атомы так сильно сжимаются, что теряют электроны, попадающие в общее море. Ещё глубже протоны начинают превращаться в нейтроны, находящиеся так близко, что они начинают перекрывать друг на друга.


Необыкновенное ядро нейтронной звезды. Физики пока ещё обсуждают, что именно находится внутри неё. Вот несколько основных идей.

Традиционная теория

Атмосфера - лёгкие элементы вроде водорода и гелия
Внешняя оболочка - ионы железа
Внутренняя оболочка - решётка ионов
Внешнее ядро - богатые нейтронами ионы в море свободных нейтронов

А что внутри?

  • В кварковом ядре нейтроны разваливаются на верхние и нижние кварки.
  • В гиперонном существуют нейтроны, состоящие из странных кварков.
  • В каонном - двухкварковые частицы с одним странным кварком.
Теоретики спорят о том, что происходит дальше, когда плотность в 2-3 раза начинает превышать плотность нормального атомного ядра. С точки зрения ядерной физики нейтронные звёзды могут просто состоять из протонов и нейтронов, то есть, нуклонов. «Всё можно объяснить вариациями нуклонов», - говорит Джеймс Латтимер , астрофизик из Университета в Стони-Брук.

Другие астрофизики считают иначе. Нуклоны - не элементарные частицы. Они состоят из трёх кварков [на самом деле, нет - прим. перев. ]. Под невероятно сильным давлением кварки могут сформировать новое состояние - кварковую материю. «Нуклоны - это не бильярдные шары», - говорит Дэвид Блашке , физик из Вроцлавского университета в Польше. «Они больше похожи на вишенки. Их можно немного сжимать, но в какой-то момент вы их раздавите».

Но некоторые считают джем из кварков слишком простым вариантом. Теоретики давно думают о том, что внутри нейтронной звезды могут появляться слои из более странных частиц. Энергия сжимаемых вместе нейтронов может перейти в создание более тяжёлых частиц, содержащих не только верхние и нижние кварки, из которых состоят протоны и нейтроны, но и более тяжёлые и экзотические странные кварки.

К примеру, нейтроны могут уступать место гиперонам , трёхкварковым частицам, в которые входит по меньшей мере один странный кварк. В лабораторных экспериментах гипероны получались, но они практически сразу исчезали. Внутри нейтронных звёзд они могут стабильно существовать миллионы лет.

Как вариант, скрытые глубины нейтронных звёзд могут быть заполнены каонами - также состоящими из странных кварков - собирающимися в один кусок материи, находящийся в едином квантовом состоянии.

Но несколько десятилетий поле этих исследований было в тупике. Теоретики изобретали идеи по поводу того, что может происходить внутри нейтронных звёзд, но это окружение настолько экстремальное и малознакомое, что эксперименты на Земле не могут воссоздать нужных условий. В Брукхейвенской национальной лаборатории и в ЦЕРН физики сталкивают друг с другом тяжёлые ядра, например, золота и свинца. Это создаёт состояние материи, напоминающее суп частиц, в котором присутствуют свободные кварки, известное, как кварк-глюонная плазма . Но это вещество получается разреженным, не плотным, а его температура в миллиарды или триллионы градусов оказывается гораздо выше, чем у внутренностей нейтронной звезды, внутри которой царят относительно прохладные температуры в миллионы градусов.

Даже теория возрастом в несколько десятилетий, описывающая кварки и ядра, "квантовая хромодинамика " или КХД, не может дать ответов на эти вопросы. Вычисления, требующиеся для изучения КХД в относительно холодных и плотных средах до такой степени ужасно сложные, что их нельзя провести даже на компьютере. Исследователям остаётся довольствоваться чрезмерными упрощениями и разными трюками.

Единственный вариант - изучать сами нейтронные звёзды. К несчастью, они очень далеки, тусклы, и очень сложно измерить у них что-либо кроме самых основных свойств. Что ещё хуже, самая интересная физика происходит под их поверхностью. «Ситуация напоминает лабораторию, в которой происходит что-то удивительное, - говорит Алфорд, - в то время, как вы можете видеть только свет из её окон».

Но с новым поколением экспериментов теоретики могут, наконец, вскоре взглянуть на это как следует.




Инструмент NICER прямо перед запуском на МКС. Он отслеживает рентгеновское излучение нейтронных звёзд

Мягкое или твёрдое?

Что бы ни находилось в ядре нейтронной звезды - свободные кварки, конденсат каонов, гипероны или старые, добрые нуклоны - этот материал должен держаться против сокрушительной гравитации, превышающей солнечную. Иначе звезда схлопнулась бы в чёрную дыру. Но разные материалы могут сжиматься гравитацией в разной степени, что определяет максимально возможный вес звезды для заданного физического размера.

Астрономы, вынужденные оставаться снаружи, распутывают эту цепочку, пытаясь понять, из чего состоят нейтронные звёзды. А для этого очень хорошо было бы знать, насколько они мягкие или жёсткие на сжатие. Чтобы узнать это, астрономам необходимо измерить массы и радиусы различных нейтронных звёзд.

Среди нейтронных звёзд легче всего взвешивать пульсары: быстро вращающиеся нейтронные звёзды, радиолуч которых проходит сквозь Землю с каждым их поворотом. Порядка 10% из 2500 известных пульсаров относятся к двойным системам. В процессе движения этих пульсаров те их импульсы, что должны с равными промежутками достигать Земли, варьируются, выдавая движение пульсаров и их положение на орбитах. А зная орбиты, астрономы могут, воспользовавшись законами Кеплера и дополнительными поправками Эйнштейна и ОТО, находить массы этих парочек.

Пока что крупнейшим прорывом стало открытие неожиданно здоровых нейтронных звёзд. В 2010 году команда под руководством Скотта Рэнсома в Национальной радиоастрономической обсерватории Виргинии объявила, что измерила массу пульсара и нашла её равной двум солнечным - что гораздо больше ранее виденного. Некоторые даже сомневались в возможности существования таких нейтронных звёзд; это приводит к серьёзным последствиям для нашего представления о поведении ядер атомов. «Сейчас это одна из самых часто цитируемых работ по наблюдению за пульсарами, и всё благодаря физикам-ядерщикам», - говорит Рэнсом.

В соответствии с некоторыми моделями нейтронных звёзд, утверждающих, что гравитация должна их сильно сжимать, объект такой массы должен схлопнуться в чёрную дыру. Каонные конденсаты в таком случае пострадают, поскольку они достаточно мягкие, а также это не очень хорошо для некоторых вариантов квантовой материи и гиперонов, которые тоже сжались бы слишком сильно. Измерение было подтверждено открытием ещё одной нейтронной звезды, имеющей массу в две солнечных, в 2013 году.


Ферьял Озель, астрофизик из Аризонского университета, провела измерения, из которых следует, что в ядрах нейтронных звёзд содержится экзотическая материя

С радиусами всё немного сложнее. Астрофизики, например, Ферьял Озель из Аризонского университета, разработала различные приёмы для подсчёта физического размера нейтронных звёзд при помощи наблюдения за рентгеновскими лучами, исходящими с их поверхности. Вот один способ: можно измерить общее рентгеновское излучение, использовать его для оценки температуры поверхности, и затем рассчитать размер нейтронной звезды, способной излучать такие волны (внося поправки на то, как они изгибаются из-за гравитации). Также можно искать горячие точки на поверхности нейтронной звезды, постоянно появляющиеся и исчезающие из поля зрения. Сильное гравитационное поле звезды будет изменять световые импульсы в зависимости от этих горячих точек. Разобравшись в гравитационном поле звезды, можно воссоздать её массу и радиус.

Если верить этим расчётам Озел, получается, что хотя нейтронные звёзды и бывают довольно тяжёлыми, их размер находится в пределах 20-22 км в диаметре.

Принятие того факта, что нейтронные звёзды маленькие и массивные «загоняет вас в рамки, в хорошем смысле», - говорит Озел. Она говорит, что так должны выглядеть нейтронные звёзды, набитые взаимодействующими кварками, а у нейтронных звёзд, состоящих только из нуклонов, радиус должен был быть большим.


Джеймс Латтимер, астрофизик из Университета в Стони-Брук, утверждает, что в ядрах нейтронных звёзд нейтроны остаются нетронутыми

Но у Латтимера, среди прочих критиков, есть сомнения по поводу предположений, используемых при рентгеновских измерениях - он считает, что они ошибочные. Он думает, что они могут неоправданно уменьшить радиус звёзд.

Обе соперничающие стороны считают, что их спор вскоре разрешится. В прошлом июне 11-я миссия SpaceX доставила на МКС ящик весом 372 кг, содержащий рентгеновский телескоп Найсер (англ. Neutron star Interior Composition Explorer, NICER). Найсер, в данное время собирающий данные, создан для определения размеров нейтронных звёзд через изучение горячих точек на их поверхности. Эксперимент должен выдать лучшие измерения радиусов нейтронных звёзд, считая пульсары, массы которых измерены.

«Мы все очень ждём результатов», - говорит Блашке. Точно измеренные масса и радиус даже одной нейтронной звезды сразу отметут множество вероятных теорий, описывающих их внутреннюю структуру, и оставит только те, что выдают определённое соотношение размера и веса.

А теперь к экспериментам подключился ещё и LIGO.

Сначала сигнал, который Рид обсуждала за кофе 17 августа, обрабатывали как результат столкновения чёрных дыр, а не нейтронных звёзд. И это имело смысл. Все предыдущие сигналы с LIGO были получены от чёрных дыр, более сговорчивых объектов с вычислительной точки зрения. Но в порождении этого сигнала участвовали более лёгкие объекты, а продолжался он гораздо дольше, чем происходит объединение чёрных дыр. «Совершенно очевидно, что это оказалась не такая система, на которых мы тренировались», - сказала Рид.

Когда две ЧД сближаются по спирали, они излучают орбитальную энергию в пространство время в виде гравитационных волны. Но в последнюю секунду нового 90-секундного сигнала, полученного LIGO, каждый объект испытал то, чего не испытывают ЧД: он деформировался. Пара объектов стала растягивать и сжимать материю друг друга, создавая волны, изымающие энергию их орбит. Это заставило их столкнуться быстрее, чем было бы в ином случае.

После нескольких месяцев неистовой работы с компьютерными симуляциями, группа Рид в LIGO выпустила своё первое измерение эффектов, оказываемых этими волнами на сигнал. Пока у команды есть только верхний предел - что означает, что эффект, оказываемый волнами, слаб или даже просто незаметен. А это значит, что нейтронные звёзды физически малы, и их материя удерживается вокруг центра в очень плотном состоянии, что препятствует её приливному растяжению. «Думаю, что первое измерение через гравитационные волны вроде бы подтверждает то, о чём говорили рентгеновские наблюдения», - говорит Рид. Но это ещё не конец. Она ожидает, что более сложное моделирование того же сигнала выдаст более точную оценку.

Найсер и LIGO предоставляют новые способы изучения нейтронных звёзд, и многие эксперты с оптимизмом ждут, что в следующие несколько лет появятся недвусмысленные ответы на вопрос сопротивления материала гравитации. Но теоретики, например, Альфорд, предупреждают, что простое измерение мягкости материи нейтронной звезды не даст полной информации о ней.

Возможно, другие признаки скажут больше. К примеру, идущие наблюдения за скоростью охлаждения нейтронных звёзд должны позволить астрофизикам рассуждать о присутствующих внутри них частицах и их способности излучать энергию. Или же изучение замедления их вращения может помочь определить вязкость их внутренностей.

Но, в любом случае, просто знать, в какой момент происходит фазовый переход материи и во что она превращается - это достойная задача, считает Альфорд. «Изучение свойств материи, существующей в разных условиях - это, в общем, и есть физика», - говорит он.

Вы можете помочь и перевести немного средств на развитие сайта

  • Перевод

Ядро нейтронной звезды находится в таком экстремальном состоянии, что физики не могут договориться о том, что происходит внутри неё. Но новый космический эксперимент - и несколько сталкивающихся нейтронных звёзд - должны показать, могут ли ломаться нейтроны

Предупреждения начали приходить рано утром 17 августа. Гравитационные волны, порождённые столкновением двух нейтронных звёзд - плотных ядер умерших звёзд - омывали Землю. Более 1000 физиков обсерватории aLIGO (Advanced Laser Interferometer Gravitational-Wave Observatory - лазерно-интерферометрическая гравитационно-волновая обсерватория) поспешили расшифровать вибрации пространства-времени, прокатившиеся по детекторам подобно долгому раскату грома. Тысячи астрономов боролись за право стать свидетелями послесвечения. Однако официально весь этот переполох держался в секрете. Нужно было собирать данные и писать научные работы. Внешний мир не должен был узнать об этом ещё два месяца.

Этот строгий запрет поставил Джоселин Рид и Катерино Чатциоаноу , двух членов коллаборации LIGO, в неловкое положение. Днём 17 числа они должны были вести конференцию , посвящённую вопросу о том, что происходит в невообразимых условиях внутренностей нейтронной звезды. А их темой как раз было то, как должно происходить слияние двух нейтронных звёзд. «Мы вышли на перерыв, сели и уставились друг на друга, - говорит Рид, профессор Калифорнийского университета в Фуллертоне. - Так как же мы это сделаем?»

Десятилетиями физики спорили о том, содержат или нет нейтронные звёзды в себе новые виды материи, появляющиеся, когда звезда ломает привычный мир протонов и нейтронов и создаёт новые взаимодействия между кварками или другими экзотическими частицами. Ответ на этот вопрос также пролил бы свет на астрономические загадки, окружающие сверхновые и появление тяжёлых элементов, вроде золота.

Кроме наблюдения за столкновениями при помощи LIGO, астрофизики разрабатывали творческие методы зондирования нейтронной звезды. Задача состоит в том, чтобы узнать какие-либо свойства её внутренних слоёв. Но сигнал, пришедший на LIGO, и подобные ему - испускаемые двумя нейтронными звёздами, обращающимися вокруг общего центра масс, притягивающимися друг к другу, и, наконец, врезающимися - предлагает совершенно новый подход к проблеме.

Странная материя

Нейтронная звезда - это сжатое ядро массивной звезды, очень плотные угли, оставшиеся после сверхновой. Её масса сравнима с солнечной, но сжата она до размеров города. Таким образом, нейтронные звёзды служат плотнейшими резервуарами материи во Вселенной - «последнее вещество на рубеже чёрной дыры», как говорит Марк Алфорд , физик из Вашингтонского университета в Сент-Луисе.

Пробурив такую звезду, мы бы приблизились к переднему краю науки. Пара сантиметров нормальных атомов - в основном, железо и кремний - лежат на поверхности, будто ярко-красное покрытие самых плотных сосательных конфет Вселенной. Затем атомы так сильно сжимаются, что теряют электроны, попадающие в общее море. Ещё глубже протоны начинают превращаться в нейтроны, находящиеся так близко, что они начинают перекрывать друг на друга.


Необыкновенное ядро нейтронной звезды. Физики пока ещё обсуждают, что именно находится внутри неё. Вот несколько основных идей.

Традиционная теория

Атмосфера - лёгкие элементы вроде водорода и гелия
Внешняя оболочка - ионы железа
Внутренняя оболочка - решётка ионов
Внешнее ядро - богатые нейтронами ионы в море свободных нейтронов

А что внутри?

  • В кварковом ядре нейтроны разваливаются на верхние и нижние кварки.
  • В гиперонном существуют нейтроны, состоящие из странных кварков.
  • В каонном - двухкварковые частицы с одним странным кварком.
Теоретики спорят о том, что происходит дальше, когда плотность в 2-3 раза начинает превышать плотность нормального атомного ядра. С точки зрения ядерной физики нейтронные звёзды могут просто состоять из протонов и нейтронов, то есть, нуклонов. «Всё можно объяснить вариациями нуклонов», - говорит Джеймс Латтимер , астрофизик из Университета в Стони-Брук.

Другие астрофизики считают иначе. Нуклоны - не элементарные частицы. Они состоят из трёх кварков [ - прим. перев. ]. Под невероятно сильным давлением кварки могут сформировать новое состояние - кварковую материю. «Нуклоны - это не бильярдные шары», - говорит Дэвид Блашке , физик из Вроцлавского университета в Польше. «Они больше похожи на вишенки. Их можно немного сжимать, но в какой-то момент вы их раздавите».

Но некоторые считают джем из кварков слишком простым вариантом. Теоретики давно думают о том, что внутри нейтронной звезды могут появляться слои из более странных частиц. Энергия сжимаемых вместе нейтронов может перейти в создание более тяжёлых частиц, содержащих не только верхние и нижние кварки, из которых состоят протоны и нейтроны, но и более тяжёлые и экзотические странные кварки.

К примеру, нейтроны могут уступать место гиперонам , трёхкварковым частицам, в которые входит по меньшей мере один странный кварк. В лабораторных экспериментах гипероны получались, но они практически сразу исчезали. Внутри нейтронных звёзд они могут стабильно существовать миллионы лет.

Как вариант, скрытые глубины нейтронных звёзд могут быть заполнены каонами - также состоящими из странных кварков - собирающимися в один кусок материи, находящийся в едином квантовом состоянии.

Но несколько десятилетий поле этих исследований было в тупике. Теоретики изобретали идеи по поводу того, что может происходить внутри нейтронных звёзд, но это окружение настолько экстремальное и малознакомое, что эксперименты на Земле не могут воссоздать нужных условий. В Брукхейвенской национальной лаборатории и в ЦЕРН физики сталкивают друг с другом тяжёлые ядра, например, золота и свинца. Это создаёт состояние материи, напоминающее суп частиц, в котором присутствуют свободные кварки, известное, как кварк-глюонная плазма . Но это вещество получается разреженным, не плотным, а его температура в миллиарды или триллионы градусов оказывается гораздо выше, чем у внутренностей нейтронной звезды, внутри которой царят относительно прохладные температуры в миллионы градусов.

Даже теория возрастом в несколько десятилетий, описывающая кварки и ядра, "квантовая хромодинамика " или КХД, не может дать ответов на эти вопросы. Вычисления, требующиеся для изучения КХД в относительно холодных и плотных средах до такой степени ужасно сложные, что их нельзя провести даже на компьютере. Исследователям остаётся довольствоваться чрезмерными упрощениями и разными трюками.

Единственный вариант - изучать сами нейтронные звёзды. К несчастью, они очень далеки, тусклы, и очень сложно измерить у них что-либо кроме самых основных свойств. Что ещё хуже, самая интересная физика происходит под их поверхностью. «Ситуация напоминает лабораторию, в которой происходит что-то удивительное, - говорит Алфорд, - в то время, как вы можете видеть только свет из её окон».

Но с новым поколением экспериментов теоретики могут, наконец, вскоре взглянуть на это как следует.




Инструмент NICER прямо перед запуском на МКС. Он отслеживает рентгеновское излучение нейтронных звёзд

Мягкое или твёрдое?

Что бы ни находилось в ядре нейтронной звезды - свободные кварки, конденсат каонов, гипероны или старые, добрые нуклоны - этот материал должен держаться против сокрушительной гравитации, превышающей солнечную. Иначе звезда схлопнулась бы в чёрную дыру. Но разные материалы могут сжиматься гравитацией в разной степени, что определяет максимально возможный вес звезды для заданного физического размера.

Астрономы, вынужденные оставаться снаружи, распутывают эту цепочку, пытаясь понять, из чего состоят нейтронные звёзды. А для этого очень хорошо было бы знать, насколько они мягкие или жёсткие на сжатие. Чтобы узнать это, астрономам необходимо измерить массы и радиусы различных нейтронных звёзд.

Среди нейтронных звёзд легче всего взвешивать пульсары: быстро вращающиеся нейтронные звёзды, радиолуч которых проходит сквозь Землю с каждым их поворотом. Порядка 10% из 2500 известных пульсаров относятся к двойным системам. В процессе движения этих пульсаров те их импульсы, что должны с равными промежутками достигать Земли, варьируются, выдавая движение пульсаров и их положение на орбитах. А зная орбиты, астрономы могут, воспользовавшись законами Кеплера и дополнительными поправками Эйнштейна и ОТО, находить массы этих парочек.

Пока что крупнейшим прорывом стало открытие неожиданно здоровых нейтронных звёзд. В 2010 году команда под руководством Скотта Рэнсома в Национальной радиоастрономической обсерватории Виргинии объявила, что измерила массу пульсара и нашла её равной двум солнечным - что гораздо больше ранее виденного. Некоторые даже сомневались в возможности существования таких нейтронных звёзд; это приводит к серьёзным последствиям для нашего представления о поведении ядер атомов. «Сейчас это одна из самых часто цитируемых работ по наблюдению за пульсарами, и всё благодаря физикам-ядерщикам», - говорит Рэнсом.

В соответствии с некоторыми моделями нейтронных звёзд, утверждающих, что гравитация должна их сильно сжимать, объект такой массы должен схлопнуться в чёрную дыру. Каонные конденсаты в таком случае пострадают, поскольку они достаточно мягкие, а также это не очень хорошо для некоторых вариантов квантовой материи и гиперонов, которые тоже сжались бы слишком сильно. Измерение было подтверждено открытием ещё одной нейтронной звезды, имеющей массу в две солнечных, в 2013 году.


Ферьял Озель, астрофизик из Аризонского университета, провела измерения, из которых следует, что в ядрах нейтронных звёзд содержится экзотическая материя

С радиусами всё немного сложнее. Астрофизики, например, Ферьял Озель из Аризонского университета, разработала различные приёмы для подсчёта физического размера нейтронных звёзд при помощи наблюдения за рентгеновскими лучами, исходящими с их поверхности. Вот один способ: можно измерить общее рентгеновское излучение, использовать его для оценки температуры поверхности, и затем рассчитать размер нейтронной звезды, способной излучать такие волны (внося поправки на то, как они изгибаются из-за гравитации). Также можно искать горячие точки на поверхности нейтронной звезды, постоянно появляющиеся и исчезающие из поля зрения. Сильное гравитационное поле звезды будет изменять световые импульсы в зависимости от этих горячих точек. Разобравшись в гравитационном поле звезды, можно воссоздать её массу и радиус.

Если верить этим расчётам Озел, получается, что хотя нейтронные звёзды и бывают довольно тяжёлыми, их размер находится в пределах 20-22 км в диаметре.

Принятие того факта, что нейтронные звёзды маленькие и массивные «загоняет вас в рамки, в хорошем смысле», - говорит Озел. Она говорит, что так должны выглядеть нейтронные звёзды, набитые взаимодействующими кварками, а у нейтронных звёзд, состоящих только из нуклонов, радиус должен был быть большим.


Джеймс Латтимер, астрофизик из Университета в Стони-Брук, утверждает, что в ядрах нейтронных звёзд нейтроны остаются нетронутыми

Но у Латтимера, среди прочих критиков, есть сомнения по поводу предположений, используемых при рентгеновских измерениях - он считает, что они ошибочные. Он думает, что они могут неоправданно уменьшить радиус звёзд.

Обе соперничающие стороны считают, что их спор вскоре разрешится. В прошлом июне 11-я миссия SpaceX доставила на МКС ящик весом 372 кг, содержащий рентгеновский телескоп Найсер (англ. Neutron star Interior Composition Explorer, NICER). Найсер, в данное время собирающий данные, создан для определения размеров нейтронных звёзд через изучение горячих точек на их поверхности. Эксперимент должен выдать лучшие измерения радиусов нейтронных звёзд, считая пульсары, массы которых измерены.

«Мы все очень ждём результатов», - говорит Блашке. Точно измеренные масса и радиус даже одной нейтронной звезды сразу отметут множество вероятных теорий, описывающих их внутреннюю структуру, и оставит только те, что выдают определённое соотношение размера и веса.

А теперь к экспериментам подключился ещё и LIGO.

Сначала сигнал, который Рид обсуждала за кофе 17 августа, обрабатывали как результат столкновения чёрных дыр, а не нейтронных звёзд. И это имело смысл. Все предыдущие сигналы с LIGO были получены от чёрных дыр, более сговорчивых объектов с вычислительной точки зрения. Но в порождении этого сигнала участвовали более лёгкие объекты, а продолжался он гораздо дольше, чем происходит объединение чёрных дыр. «Совершенно очевидно, что это оказалась не такая система, на которых мы тренировались», - сказала Рид.

Когда две ЧД сближаются по спирали, они излучают орбитальную энергию в пространство время в виде гравитационных волны. Но в последнюю секунду нового 90-секундного сигнала, полученного LIGO, каждый объект испытал то, чего не испытывают ЧД: он деформировался. Пара объектов стала растягивать и сжимать материю друг друга, создавая волны, изымающие энергию их орбит. Это заставило их столкнуться быстрее, чем было бы в ином случае.

После нескольких месяцев неистовой работы с компьютерными симуляциями, группа Рид в LIGO выпустила своё первое измерение эффектов, оказываемых этими волнами на сигнал. Пока у команды есть только верхний предел - что означает, что эффект, оказываемый волнами, слаб или даже просто незаметен. А это значит, что нейтронные звёзды физически малы, и их материя удерживается вокруг центра в очень плотном состоянии, что препятствует её приливному растяжению. «Думаю, что первое измерение через гравитационные волны вроде бы подтверждает то, о чём говорили рентгеновские наблюдения», - говорит Рид. Но это ещё не конец. Она ожидает, что более сложное моделирование того же сигнала выдаст более точную оценку.

Найсер и LIGO предоставляют новые способы изучения нейтронных звёзд, и многие эксперты с оптимизмом ждут, что в следующие несколько лет появятся недвусмысленные ответы на вопрос сопротивления материала гравитации. Но теоретики, например, Альфорд, предупреждают, что простое измерение мягкости материи нейтронной звезды не даст полной информации о ней.

Возможно, другие признаки скажут больше. К примеру, идущие наблюдения за скоростью охлаждения нейтронных звёзд должны позволить астрофизикам рассуждать о присутствующих внутри них частицах и их способности излучать энергию. Или же изучение замедления их вращения может помочь определить вязкость их внутренностей.

Но, в любом случае, просто знать, в какой момент происходит фазовый переход материи и во что она превращается - это достойная задача, считает Альфорд. «Изучение свойств материи, существующей в разных условиях - это, в общем, и есть физика», - говорит он.

2013-2014 учебный год

Время выполнения 3 часа

5 - 6 класс

  1. На приведенном рисунке художник изобразил Луну на фоне звездного неба. Что на этом рисунке изображено неправильно и почему? А как надо верно нарисовать?

Школьный этап Всероссийской олимпиады по астрономии

2013-2014 учебный год

Время выполнения 4 часа

Каждое задание оценивается в 8 баллов

Школьная олимпиада по астрономии

7 - 8 класс

  1. В настоящее время на небе известно 88 созвездий. Могут ли ученые открыть 89-е созвездие? Ответ подробно объясните.

« Всю ночь за облаками

Светил фонарь с рогами».

  1. На Солнце произошла вспышка, в результате которой была выброшена плазма.

Через 3 суток выброс солнечной плазмы достиг Земли и вызвал сильное

Возмущение магнитосферы Земли. С какой скоростью двигалась плазма? (1 а.е. –

150 млн.км). Пренебречь тем, что движение солнечной плазмы происходит по

Спирали, рассматривать прямолинейную траекторию движения.

Школьный этап Всероссийской олимпиады по астрономии

2013-2014 учебный год

Время выполнения 4 часа

Каждое задание оценивается в 8 баллов

Школьная олимпиада по астрономии

9 класс

  1. На каких планетах земной группы дневное небо черное, голубое и красноватое?

Меркурий, Земля и Марс.

3. Земля, двигаясь вокруг Солнца по эллиптической орбите, в январе бывает ближе к

Солнцу почти на 5 млн. км, чем в июле. Так почему же в январе у нас холоднее, чем в

Июле?

Нептун, Меркурий, Марс, Юпитер, Уран и карликовые планеты Плутон и Церера.

Как называется такое расположение планет? Какая планета будет видна ночью?

  1. Различают четыре основных фазы Луны: новолуние, первая четверть, полнолуние и последняя четверть. В новолуние Ф = 0, в первую четверть Ф Ф Ф = 0,5.

Сделайте поясняющий чертеж.

  1. В настоящее время космический аппарат Кассини исследует и фотографирует планету Сатурн и его спутники. Расстояние от Сатурна до Солнца 29,46 астрономические единицы. За какое минимальное время информация, полученная аппаратом, достигает Земли?

Школьный этап Всероссийской олимпиады по астрономии

2013-2014 учебный год

Время выполнения 4 часа

Каждое задание оценивается в 8 баллов

Школьная олимпиада по астрономии

10 класс

  1. 29 марта 2006 года наблюдалось полное солнечное затмение, видимое в России. Почему полное лунное затмение можно наблюдать со всей территорий огромной страны одновременно, а солнечное затмение – только из нескольких определенных мест и при этом в разное время? Что означает фаза Ф = 0,65?
  1. 2 .

Школьный этап Всероссийской олимпиады по астрономии

2013-2014 учебный год

Время выполнения 4 часа

Каждое задание оценивается 8 баллов

Школьная олимпиада по астрономии

11 класс

◉ = 2·10 30 кг.

Вот перечень четырех пар:

ОТВЕТЫ

Школьный этап Всероссийской олимпиады по астрономии

2013-2014 учебный год

Время выполнения 3 часа

Каждое задание оценивается в 8 баллов

Школьная олимпиада по астрономии

5 - 6 класс

1. На приведенном рисунке художник изобразил Луну на фоне звездного неба. Что на этом рисунке изображено неправильно и почему? А как надо верно нарисовать?

Решение. На рисунке изображен серп Луны на фоне звезд. На ночной стороне Луны изображена звезда. Этого не может быть, т.к. звезды расположены очень далеко (за орбитой Луны), а Луна не прозрачна для света.

  1. Какие созвездия северного неба указывают на северный полюс мира? В каком созвездии он расположен? Сделайте чертеж. Какие созвездия южного неба можно использовать как ориентиры для определения местоположения южного полюса мира? В каком созвездии расположен южный полюс мира?

Решение. По астеризму Большой Ковш в созвездии Б.Медведица легко определить направление на северный полюс мира. Если две крайние звезды, те, что дальше от ручки (Дубхе и Мерак), соединить воображаемой линией, и продолжить эту линию примерно на пять таких же расстояний, то легко можно заметить яркую звезду. Это и будет Полярная звезда, (α М. Медведицы), около которой расположен северный полюс мира.

В районе южного полюса мира нет ни одной яркой звезды, которая играет роль ориентира. Самое известное созвездие южного неба – Южный крест. Две крайние звезды Южного креста, образующие большую диагональ ромба, направлены на южный полюс мира. Южный полюс мира окружает созвездие Октант, в котором нет ярких звезд.

  1. Назовите самую большую и самую маленькую планету Солнечной системы. Где они расположены по отношению к Солнцу, у какой из этих планет имеются спутники?

Решение. По последним данным самая маленькая планета – Меркурий, а самая большая Юпитер. Меркурий расположен ближе всего к Солнцу, а Юпитер пятая по счету и расположена за Марсом. У Меркурия нет спутников у Юпитера их много.

  1. Вы находитесь на южном магнитном полюсе и посмотрели на стрелку компаса. Куда показывают северный и южный конец стрелки компаса? Сделать пояснительный чертеж.

Ответ: на юг. Хорошо, если учащиеся укажут, что южный магнитный полюс расположен в Канаде.

Некоторые учащиеся могут написать, что одна стрелка укажет на зенит, а другая – на надир. И это будет также верный ответ!

Школьный этап Всероссийской олимпиады по астрономии

2013-2014 учебный год

Время выполнения 4 часа

Каждое задание оценивается в 8 баллов

Школьная олимпиада по астрономии

7 - 8 класс

1. В настоящее время на небе известно 88 созвездий. Могут ли ученые открыть 89-е созвездие? Ответ подробно объясните.

Ответ: Нет. По решению МАС на небе именно 88 созвездий и это не имеет никакого отношения к развитию техники астрономических наблюдений.

  1. Известна такая загадка о Луне:

« Всю ночь за облаками

Светил фонарь с рогами».

Найдите в загадке астрономическую ошибку.

Решение.

«Рогатой» Луна бывает в начале и в конце лунного месяца. Молодая Луна видна по вечерам и заходит вслед за Солнцем. Старая Луна восходит перед рассветом и видна утром. Чтобы светить всю ночь, Луна должна располагаться на небесной сфере напротив Солнца и быть полной, а не «рогатой».

  1. Нарисуйте, как Вы представляете себе Солнечную систему. Из каких объектов она состоит?

Решение. Изображения Солнца, планет, комет, двух поясов астероидов. Около планет могут быть изображены спутники планет.

  1. Сколько планет Вы наблюдали невооруженным глазом в этом учебном году? Когда? В какой стороне горизонта? Какая из планет была самой яркой?

Ответ. Учащиеся могут описать, что они видели Венеру, Марс, Юпитер, Сатурн. Вряд ли Меркурий. Тогда они должны описать, как видели Меркурий, где. Учащиеся должны описать, что утром видели Меркурий перед восходом Солнца, на востоке. Или вечером, после захода Солнца, на западе.

  1. Что представляют собой две самые яркие, видимые даже невооруженным глазом, туманности земного неба Туманность Андромеды и Туманность Ориона, из чего они состоят, и за счет чего они светят?

Решение. Туманность Андромеда - ближайшая спиральная галактика из крупных галактик в созвездии Андромеды. Расстояние до Туманности Андромеды - около 2 млн св. лет. Галактику можно увидеть невооруженным глазом в созвездии Андромеда. Ее свечение обусловлено совокупным свечением всех звезд.

Галактику Туманность Андромеды также называют Великой спиральной галактикой. Известна под номером М31 (по каталогу Мессье) и под номером NGC224 по Новому общему каталогу. Туманность Андромеды имеет восемь спутников, из которых два самых известных – эллиптическая галактика М 32 (NGC221) рядом с центром М 31 и эллиптическая галактика NGC205. Другие спутники галактики Туманность Андромеды М31 менее яркие, например карликовая галактика, названная Андромеда VIII, расположена на небе вблизи карликовой эллиптической галактики M32.

Угловой диаметр галактики М31 - 100 ′ (16 кпк), расстояние – 670 кпк (около 2 млн св. лет.). Абсолютная звездная величина М= − 21,1 m . Видимая звездная величина m=3,4 m .

Туманность Ориона (или М 42) – это газовая туманность, состоящая в основном из водорода (из газа). Она находится в нашей Галактике на расстоянии около 1000 св. лет, ее диаметр около 16 св. лет. Ее свечение объясняется свечением горячего газа. Туманность Ориона видна невооруженным глазом в созвездии Ориона. Иногда эту туманность, чтобы отличить от других туманностей в созвездии Ориона, называют Большой туманностью Ориона. Большую туманность Ориона можно наблюдать невооруженным глазом в созвездии Ориона, ниже и левее так называемого пояса Ориона, состоящего из трех легко узнаваемых звезд. Газовая туманность Большая туманность Ориона светится за счет молодых горячих звезд спектрального класса О. Эти звезды имеют мощное ультрафиолетовое излучение, которое ионизирует газ туманности Ориона. Большая туманность Ориона представляет собой огромную область звездообразования и является одной из самых известных астрономических туманностей. Она расположена сравнительно недалеко от нас. Расстояние до туманности Ориона 460 пк. Диаметр туманности 35 ′ или 5 пк. Масса 300 М Солнца .

Учащиеся могут ответить лишь частично, но главное, что они обязаны написать в ответе – это принципиальное отличие в этих объектах: галактика, её свечение обусловлено свечением звёзд, и газовая туманность, её свечение объясняется свечением горячего газа.

6. На Солнце произошла вспышка, в результате которой была выброшена плазма. Через 3 суток выброс солнечной плазмы достиг Земли и вызвал сильное возмущение магнитосферы Земли. С какой скоростью двигалась плазма? (1 а.е. – 150 млн.км). Пренебречь тем, что движение солнечной плазмы происходит по спирали, рассматривать прямолинейную траекторию движения.

Ответ:

V = 150 000 000 км ⋅ 1000м / 3 ⋅ 24 часа ⋅ 60мин ⋅ 60 сек = 578703 м/с (или 578 км/с).

Школьный этап Всероссийской олимпиады по астрономии

2013-2014 учебный год

Время выполнения 4 часа

Каждое задание оценивается в 8 баллов

Школьная олимпиада по астрономии

9 класс

1. На каких планетах земной группы дневное небо черное, голубое и красноватое?

Меркурий, Земля и Марс.

Решение. На Меркурии практически нет атмосферы, нет рассеяния света, небо черное. На Земле небо голубое из-за рассеяния солнечного света на молекулах воздуха, при этом голубые лучи рассеиваются сильнее, чем красные. На Марсе из-за сильных пылевых бурь атмосфера насыщена мельчайшими пылевыми частичками, имеющими красный цвет, как и почва.

  1. Нарисуйте, как вы представляете себе нашу Галактику. Какие объекты входят в ее состав? Где примерно расположено наше Солнце?

Решение. Рисунок должен отражать, что наша Галактика – спиральная. Примерные размеры Галактики и расстояние Солнца от центра Галактики должны быть выдержаны в соответствующем масштабе. Очень хорошо, если на рисунке будут изображены шаровые скопления. Рассеянные скопления, гигантские молекулярные облака на рисунке не изображаются. в данном масштабе, но могут быть перечислены. Могут быть перечислены различные типы звезд (звезды главной последовательности, гиганты, сверхгиганты, белые карлики, нейтронные звезды), межзвездный газ, межзвездная пыль, но эти объекты на рисунке не отражаются.

Типичный ожидаемый рисунок нашей Галактики, которая похожа на галактику М31. Стрелка (диск галактики) указывает на примерное расстояние Солнца от центра Галактики

Но наши учащиеся вполне могут изобразить и темное гало вокруг светящейся материи нашей Галактики.

За любое упоминание о темной материи рекомендуется добавлять баллы.

3.Земля, двигаясь вокруг Солнца по эллиптической орбите, в январе бывает ближе к Солнцу почти на 5 млн. км, чем в июле. Так почему же в январе у нас холоднее, чем в июле?

Решение. Основная причина сезонных изменений температуры и климата на Земле связана с углом наклоном ее оси вращения к плоскости орбиты вокруг Солнца (эклиптики), который составляет около 66˚. Это определяет высоту Солнца над горизонтом (летом она выше) и продолжительность дня (летом день длиннее). Т.е. летом больше солнечной энергии попадает на Землю в северном полушарии. Зимой наоборот. Для средней полосы это разница достигает несколько раз. А за счет большей близости Земли к Солнцу зимой чем летом, то за счет этого разница в получаемом тепле составляет всего несколько процентов.

4.Сейчас (днем 27 октября 2013 года) над горизонтом могут быть видны Венера, Нептун, Меркурий, Марс, Юпитер, Уран и карликовые планеты Плутон и Церера. Как называется такое расположение планет? Какая планета будет видна ночью?

Решение. Это расположение планет называется парадом планет. К сожалению, сегодня парад планет не виден вечером и ночью, так как планеты находятся над горизонтом днем.Всю ночь будет виден Сатурн.

5.Различают четыре основных фазы Луны: новолуние, первая четверть, полнолуние и последняя четверть. В новолуние Ф = 0, в первую четверть Ф = 0,5, в полнолуние фаза равна Ф = 1,0, а в последнюю четверть снова Ф = 0,5. 29 января 2006 года было новолуние. Какая фаза была у Луны 29 марта? В какой стороне неба была видна Луна в эту дату? В эту же дату наблюдалось полное солнечное затмение. Является ли это простым совпадением двух астрономических явлений?

Сделайте поясняющий чертеж.

Ответ: 29 марта будет новолуние, следовательно Ф = 0. Луна не будет видна ни в какой стороне неба, так как будет новолуние.

Именно в эту дату будет полное солнечное затмение, которое в Москве будет наблюдаться, как частное.

Это не простое совпадение, так как солнечные затмения происходят только во время новолуний.

6.В настоящее время космический аппарат Кассини исследует и фотографирует планету Сатурн и его спутники. Расстояние от Сатурна до Солнца 29,46 астрономические единицы. За какое минимальное время информация, полученная аппаратом, достигает Земли?

Решение.

Минимальное расстояние от Земли до Сатурна 29,46 – 1 = 28,46 а.е. = 28,46·150000000 = 4,27·10 9 км. Свет имеет скорость с = 300000 км/с, поэтому информация достигнет Земли за время 4,27·10 9 км/300000 км/с =1,42·10 4 с = 3ч 57м.

Школьный этап Всероссийской олимпиады по астрономии

2013-2014 учебный год

Время выполнения 4 часа

Каждое задание оценивается в 8 баллов

Школьная олимпиада по астрономии

10 класс

1. 29 марта 2006 года наблюдалось полное солнечное затмение, видимое в России. Почему полное лунное затмение можно наблюдать со всей территорий огромной страны одновременно, а солнечное затмение – только из нескольких определенных мест и при этом в разное время? Что означает фаза Ф = 0,65?

Решение. Солнечные затмения можно видеть только в тех областях Земли, по которым проходит полоса тени Луны. Диаметр тени не превышает 270 км, поэтому полное солнечное затмение одновременно видно лишь на малом участке земной поверхности, и область тени перемещается, поэтому в разных точках полосы затмения оно наступает в разное время. Хотя солнечные затмения случаются чаще лунных затмений, в каждой местности Земли солнечные затмения наблюдаются редко. В Москве будет наблюдаться частное солнечное затмение с фазой Ф = 0,65.

Луна в момент полного лунного затмения в действительности лишается солнечного света, поэтому полное лунное затмение видно из любой точки полушария Земли. Лунное затмение начинается и заканчивается одновременно для всех географических точек, для всех стран. Однако местное время этого явления будет разное.

  1. На рисунке изображены восходы и заходы Солнца в северном полушарии. Укажите, в чем ошибка художника и нарисуйте верный рисунок.

Решение. Только в дни равноденствий 21 марта и 23 сентября Солнце восходит в точке востока и заходит в точке запада (везде).

Например, для Москвы, ϕ =56 ° , в день летнего солнцестояния Солнце восходит на северо-востоке, а в день зимнего солнцестояния – на юго-востоке.

Поэтому надо по-другому нарисовать направления сторон горизонта: стрелку востока направить на точку восхода Солнца 21 марта, а стрелку запада – на точку захода 21 марта.

  1. В каком направлении происходит видимое движение Солнца и Луны относительно звезд?

По каким созвездиям проходит в течение года Солнце, сколько таких созвездий?

Решение.

Относительно звезд Луна движется с запада на восток с угловой скоростью примерно 13 ° в сутки.

Относительно звезд Солнце движется с запада на восток со скоростью примерно 1 ° в сутки.

Видимый годовой путь Солнца проходит через тринадцать созвездий, начиная от точки весеннего равноденствия: Овен, Телец, Близнецы, Рак, Лев, Дева, Весы, Скорпион, Змееносец, Стрелец, Козерог, Водолей, Рыбы. Двенадцать из них называются зодиакальными .

  1. В индейской сказке «О белой кувшинке» говорится: «Ваби приподнял кожаный полог, и глаза его от удивления стали круглыми, как у совы. Звезды – голубоватые, зеленые, крохотные и чуть крупнее – весело шевелили лучами почти у самого его носа!».

Что неверно данном описании?

Решение.

Цвет звезды зависит от температуры звезды. Голубоватые звезды имеют высокую температуру, большую 12000К. Зеленых звезд не бывает. Видимые размеры звезд соответствуют разным видимым звездным величинам.

«Шевеление лучей» - дрожание атмосферы.

Таким образом, неверно – зеленый цвет звезд.

  1. Солнце находится на расстоянии 7,5 кпк от центра Галактики и движется со скоростью 220 км/с. За какой период времени Солнце совершает полный оборот вокруг центра Галактики?

Ответ.

Т= = лет

  1. Две одинаковые по массе автоматические межпланетные станции (АМС) совершают мягкие посадки: первая – на Венеру, вторая – на Марс. На какой из планет – Земле, Венере или Марсе – эти АМС имеют наибольший вес? Ускорение свободного падения на Земле и Венере считать одинаковыми, а на Марсе g = 3,7 м/с 2 .

Ответ. Наибольший вес будет на Земле. Вес АМС на Венере будет меньше, чем на Земле, из-за плотной атмосферы (закон Архимеда). На Марсе АМС будет иметь наименьший вес.

Школьный этап Всероссийской олимпиады по астрономии

2013-2014 учебный год

Время выполнения 4 часа

Каждое задание оценивается в 8 баллов

Школьная олимпиада по астрономии

11 класс

1. Какая из перечисленных звезд - Арктур, Вега, Капелла, Полярная, Сириус - является самой яркой звездой северного полушария неба? В каком созвездии она расположена и какую примерно имеет видимую звездную величину?

Решение. Самая яркая звезда на небе – Сириус. Но эта звезда не северного небесного полушария, а южного. Поэтому самая яркая звезда – Вега (α Лиры). У нее примерно нулевая видимая звездная величина.

2. Чему равны сутки на Луне, как видна Земля для космонавта на Луне и существуют ли области на Луне, где Земля восходит и заходит?

Решение. Солнечные сутки на Луне равны 29,5 земных суток. Земля на Луне практически неподвижно висит на небе и не совершает таких движений, как Луна на небе Земли. Это следствие того, что Луна всегда обращена к Земле одной своей стороной. Но благодаря физическим либрациям (покачиваниям) Луны, из областей около края лунного диска можно наблюдать регулярные восходы и заходы Земли. Земля восходит и заходит (приподнимается над горизонтом и опускается за горизонт) с периодом около 27,3 земных суток.

3. Сезоны года на Земле сменяются «в противофазе» (когда в северном полушарии лето, то в южном - зима). Допустим, что гипотетическая планета вращается вокруг Солнца по сильно вытянутой эллиптической орбите, большая полуось которой также равна 1 а.е., и ось вращения перпендикулярна плоскости ее орбиты. Как происходит смена времен года? Как изменится климат по сравнению с климатом Земли?

Решение. На такой планете смена времен года будет проходить синхронно, а не в противофазе, как на Земле или Марсе. Вблизи апогелия на всей планете, в обоих полушариях, синхронно, будет условная зима, а вблизи перигелия - условное лето. «Условные», потому что в общепринятых понятиях на полюсах такой планеты будет вечная зима... Тогда сезоны, зависящие только от потока тепла, будут по всей планете определяться только ее положением на орбите, а значит, будут везде меняться синхронно. Климат на такой планете, несмотря на одинаковую большую полуось а=1 а.е., будет более резким, зимы будут более холодными и долгими по второму закону Кеплера (и путь длиннее, и скорость меньше).

4. Объясните, почему Титан - спутник Сатурна, смог сохранить свою атмосферу, а Меркурий - нет?

Ответ. Титан и Меркурий имеют сходную массу и размеры, но Меркурий находится значительно ближе к Солнцу и получает от него намного больше тепла. В разогретой атмосфере частицы имеют большие скорости и легче уходят от планеты. Поэтому Меркурий не удержал атмосферу. Холодная атмосфера Титана значительно более устойчива.

5. Две нейтронные звезды обращаются вокруг общего центра масс по круговой орбите с периодом 7 часов. На каком расстоянии они находятся, если их массы больше массы Солнца в 1,4 раз? Масса Солнца М ◉ = 2·10 30 кг.

Решение. Звезды находятся на расстоянии 2R друг от друга. F грав. = G ⋅

С другой стороны, F =

3 ⋅ 10 6 м, меньше, чем размеры Земли.

6. Очень редкое и чрезвычайно интересное астрономическое явление - прохождение планеты Венера по диску Солнца. 6 мая 1761 во время прохождения планеты Венеры по диску Солнца М.В. Ломоносов открыл существование атмосферы у Венеры, впервые правильно истолковав «выпячивание» солнечного края при двукратном прохождении Венеры через край диска Солнца.

Прохождения Венеры по диску Солнца группируются парами с интервалом в 8 лет одно от другого. А между парами проходит либо 121,5 лет либо 105,5 лет.

Вот перечень четырех пар:

  1. Какие планеты могут проходить по диску Солнца? Какая из них проходит по диску Солнца чаще и почему?
  2. Как пересекает диск Солнца Венера, справа-налево или слева-направо?
  3. Почему прохождения наблюдаются только в начале июня и декабря?
  4. Почему между двумя последовательными прохождениями должно пройти не менее 8 лет?

Решение. Какие планеты могут проходить по диску Солнца? Какая из них проходит по диску Солнца чаще и почему?

Меркурий и Венера могут проходить по диску Солнца.

Если бы все орбиты лежали точно в одной плоскости, то в каждое из нижних соединений мы могли бы наблюдать, как планета на некоторое время проецируется на солнечный диск, медленно пересекая его слева-направо . Однако, из-за того, что действительные орбиты Меркурия и Венеры наклонены к плоскости орбиты Земли (на 7.0 и 3.4 градуса соответственно), то гораздо чаще в моменты соединений обе эти планеты проходят чуть выше или ниже диска Солнца, надежно прячась в его лучах и оставаясь недоступными для наблюдений.

Орбита Венеры наклонена к эклиптике на 3,4 градуса, поэтому мы можем наблюдать Венеру на фоне Солнца только в те моменты, когда и она и Земля находятся вблизи одного из узлов орбиты Венеры. В июне и декабре Венера находится вблизи линии узлов своей орбиты - в плоскости эклиптики. В другие месяцы прохождения просто невозможны из-за наклона орбиты Венеры к плоскости эклиптики.

Долгота ее восходящего узла 76,7 градуса. Чтобы Земле от точки весеннего равноденствия (21 марта) пройти такой путь по своей орбите (считаем ее круговой), требуется

(76,7 °⋅ 365 сут)/360 ° = 78 сут.

Получаем дату возможного прохождения Венеры по Солнцу:

Дата, конечно, приблизительная, поскольку календарь (простой или високосный год) может менять ее на 1-2 дня, и конечный угловой размер Солнца делает возможным прохождение по его диску в пределах 2-3 дней до или после пересечения Венерой эклиптики (0,5 ° / sin 3,4 ° = 8,4 ° ; их Венера проходит за 5 сут).

Ну а вторая возможная дата наступает, когда Земля проходит у нисходящего узла Венериной орбиты - полгода спустя.

Последний вопрос очень сложный.

Почему между двумя последовательными прохождениями должно пройти не менее 8 лет?

Через окрестности узла орбиты Венеры должны одновременно пройти Земля и Венера с точностью до 2-3 сут, т.е. до 1/100 года. Орбитальный Венеры - 0,61521 года. Умножая его последовательно на целые числа (1, 2, 3, ...), впервые получим целое число с точностью выше 1/100 при умножении на 13:

0,61521 года ⋅ 13 = 7,998 года

Т.е. через 13 оборотов Венеры и 8 оборотов Земли они снова сходятся у избранной точки орбиты Венеры. Если это была точка узла венерианской орбиты, то и через 8 лет будет она же.


Понадобилось как-то сделать большие настенные часы с автоматической яркостью.

Такие часы отлично подойдут для больших помещений, например холл офиса или большая квартира.

Сделать такие большие настенные часы не представляет серьёзных сложностей при помощи данной инструкции.


Для оценки размера часов можно принять тот факт, что один сегмент часов будет размером с бумагу формата А4, что позволит легко использовать рамки для фотографий соответствующего размера.

Шаг 1. Составные части больших настенных часов.

Провода, припой, паяльник, лента светодиодная Arduino Nano DC-DC преобразователь LM2596
4 метра светодиодной ленты WS2811 датчик света часы реального времени DS3231
микропереключатели

Что я использовал для этого проекта:

Шаг 8. Программируем часы.

Немного повозившись, мне удалось получить часы, полностью удовлетворяющие моим потребностям. Я уверен что вам удастся сделать лучше моего.

Код хорошо прокоментирован и вам не составит труда в нём разобраться, сообщения отладки так-же прокоментированы очень хорошо.

Если вам нужно поменять используемый цвет настенных часов вам необходимо поменять переменную на строчке 22 (int ledColor = 0x0000FF; // Color used (in hex) ). Вы можете найти список цветов и их коды в hex на странице: https://github.com/FastLED/FastLED/wiki/Pixel-refe…

Если у вас возникли проблемы при загрузке, используйте зеркало:http://bit.ly/1Qjtgg0

Мой итоговый скетч можно скачать .

Шаг 9. Делаем цифры используя полистирол.

Основание резака Рабочий орган резака Общий вид резака
Результат работы резака

Разрежьте каждый сегмент в шаблоне, напечатаетанного в начале.
Полистирол можно разрезать острым ножом, что довольно трудно, либо нехитрым приспособлением из нихромовой проволоки или гитарной струны и нескольких отрезков ОСБ-плиты.

Вы можете видеть, как это сделал я в изображениях выше.

Для того, чтобы запитать резак я использовал 12v блок питания.

В результате отрезаний должны получиться четыре сегмента для больших часов, один из которых показан на фото.

Шаг 10. Приклеиваем цифры и закрываем всё рассеивателем. Итоговые большие настенные часы.

Свечение днем Свечение ночью

После вырезания всех четырех цифр и точек настенных часов приклеиваем их всех на картон вместе со светодиодными лентами (для упрощения процесса я использовал двустороннюю клейкую ленту)

Для того, чтобы рассеять жесткий светодиодный свет я использовал два листа бумаги поверх полистироловых цифр. Для удобства и эстетичности я использовал бумагу размера А2, сложенную вдвое.

После завершения всех этих шагов я поместил получившуюся сборку больших настенных часов в соответствующую им большую фоторамку.

Эти часы получились очень эффектными и притягивающими взгляд. Я думаю что такие большие настенные часы отлично украсят множество помещений.

Вконтакте



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: