Самый лучший бот в мире. Самый лучший Бот. Почему в мире нет хороших ботов? Чатботы для продаж

В статье приводится методика расчета емкости гасящего конденсатора и напряжения но его выводах в цепи активной нагрузки, в частности паяльника, которая позволяет существенно сократить объем вычислений,сведя их до минимума, что упрощает расчеты и сокращает время , необходимое для выбора гасящего конденсатора требуемой емкости и соответствующего номинального напряжения.

В приведенном материале предлагается методика расчета емкости конденсатора и напряжения на нем при его последовательном включении с паяльником, причем рассматриваются два варианта. В первом варианте необходимо уменьшить мощность паяльника на требуемую величину с помощью гасящего конденсатора, а во втором - включить низковольтный паяльник в сеть 220 В, погасив излишек напряжения конденсатором.

Осуществление первого варианта (рис.1) предполагает два вычисления с исходными данными (ток, потребляемый паяльником из сети I и сопротивление паяльника R1), затем два промежуточных вычисления (ток, потребляемый паяльником при меньшей его мощности на требуемую величину II и емкостное сопротивление конденсатора Rc) и, наконец, два последних вычисления, которые дают искомые

рис.1


величины емкость конденсатора С на частоте 50 Гц и напряжение на выводах конденсатора Uc). Таким образом, для решения задачи по первому варианту необходимо осуществить 6 вычислений.

По второму варианту (рис.2), чтобы решить задачу, необходимо произвести с исходными данными два вычисления, как и в первом варианте, а именно: найти ток

I, потребляемый паяльником из сети, и сопротивление паяльника R, затем следует одно промежуточное вычисление, из которого, как и в первом варианте, находится емкостное сопротивление конденсатора Rc и, наконец, два последних вычисления, из которых определяют емкость конденсатора С при частоте 50 Гц и на-

рис.2

пряжение на выводах конденсатора Uc. Таким образом, для решения задачи по второму варианту необходимо осуществить пять вычислений.

Решение задач по обоим вариантам требует определенных затрат во времени. Методика не позволяет сразу в одно действие, минуя исходные и промежуточные расчеты, определить емкость гасящего конденсатора и соответственно напряжение на его выводах.

Удалось найти выражения, которые позволяют сразу в одно действие вычислить емкость гасящего конденсатора, а затем напряжение на его выводах для первого варианта. Подобным образом получено выражение для определения емкости гасящего конденсатора для второго варианта.

Вариант 1. Располагаем паяльником 100 Вт 220 В и желаем эксплуатировать его при мощности 60 Вт, используя при этом последовательно включенный с ним гасящий конденсатор. Исходные данные: номинальная мощность паяльника Р = 100 Вт; номинальное напряжение сети U = 220 В; требуемая мощность паяльника Р1 = 60 Вт. Требуется вычислить емкость конденсатора и напряжение на его выводах согласно рис.1. Формула для расчета емкости гасящего конденсатора имеет вид:

С = Р∙10 6 /2πf 1 U 2 (P/P 1 - 1) 0,5 (мкФ).

При частоте питающей сети = 50 Гц формула принимает вид:

С =3184,71 Р/U 2 (Р/Р 1 - 1) 0,5 =

3184,71-100 /220 2 (100/60-1)=8,06 мкФ.

В контрольном примере емкость конденсатора равняется 8,1 мкФ, т.е. имеем полное совпадение результата. Напряжение на выводах конденсатора равно

Uс = (РР 1) 0,5 ∙10 6 /2πf 1 СU (В).

При частоте сети f 1 = 50 Гц формула упрощается:

Uc = 3184,71 (PP 1) 0,5 /CU =

3184,71(60∙100) 0,5 /8,06 220 =

139,1 В.

В контрольном примере Uc = 138 В, т.е. практическое совпадение результата. Таким образом, для решения задачи по первому варианту вместо шести вычислений нужно сделать всего два (без промежуточных расчетов). При необходимости емкостное сопротивление конденсатора можно сразу вычислить по формуле:

Rc = U 2 (P/P, - 1) 0,5 /Р =

220 2 (100/60 - 1) 0,5 /100 = 395,2 Ом.

В контрольном примере Rc = 394 Ом, т.е. практическое совпадение.

Вариант 2. Располагаем паяльником мощностью 25 Вт, напряжением 42 В и хотим включить его в сеть 220 В. Необходимо рассчитать емкость гасящего конденсатора, последовательно включенного в цепь паяльника, и напряжение на его выводах согласно рис.2. Исходные данные: номинальная емкость паяльника Р = 25 Вт; номинальное напряжение Ur = 42 В; напряжение сети U = 220 В. Формула для расчета емкости конденсатора имеет вид:

С = Р∙10 6 /2πf 1 Ur(U 2 - Ur 2) 0,5 мкФ.

При частоте сети f 1 = 50 Гц формула принимает вид:

С = 3184,71 P/Ur(U 2 - Ur 2) 0,5 =

3184,71 -25/42(220 2 - 42 2) =

8,77 мкФ.

Напряжение на выводах конденсатора легко определить, пользуясь исходными данными, по теореме Пифагора:

Uc = (U 2 - Ur 2) 0,5 = (220 2 - 42 2) =

216 В.

Таким образом, для решения задачи по второму варианту вместо пяти вычислений необходимо осуществить только два. При необходимости величину емкостного сопротивления конденсатора, для данного варианта, можно определить по формуле:

Rc = Ur(U 2 - Ur 2) 0,5 /P =

42(220 2 - 42 2)/25 = 362,88 Ом.

По контрольному примеру Rc = 363 Ом. Гасящий конденсатор С на приведенных рисунках желательно зашунтировать разрядным резистором МЛТ-0,5 номиналом 300...500 кОм.

Выводы. Предлагаемая методика расчета емкости гасящего конденсатора и напряжения на его выводах позволяет существенно сократить объем вычислений, сведя их до минимума.

К. В. Коломойцев.

Впринципе то, что я здесь опишу, много раз уже цитировалось в разных местах.

  • Конденсаторный балласт использует реактивное сопротивление емкости для питания относительно низковольтной нагрузки непосредственно от сети переменного тока. То есть, если бы вместо конденсатора использовался подходящий резистор, то все было бы почти также, только на нем выделялось бы много тепла.
  • Специализированный драйвер представляет собой электронный AC-AC/DC преобразователь с гальванической развязкой от сети. Обычно он мало чем отличается от импульсного блока питания.
  • Конденсатор - максимально простое, дешевое и эффективное решение . Но оно означает гальваническую связь нагрузки с сетью, наличие низкочастотных сетевых пульсаций, наличие бросков тока, отсутствие стабилизации напряжения/тока. Есть явные ограничения по мощности и току. Так же конденсатор сдвигает фазу в сети переменного тока, увеличивая потери в проводах.
  • Драйвер - более дорогое и сложное решение. Работает на высокой частоте, легко обеспечивает стабилизация напряжения/тока, обеспечивает гальваническую развязку нагрузки от сети. КПД драйверов обычно высок, но все же не настолько, чтобы его не учитывать.

Схема балласта и доработка

В качестве примера у меня была китайская лампа "кукуруза" E27 42 х 5630 LED 10Вт. Проблема этой лампы (кроме типичных) заключалась в том светодиоды оказались склонны перегорать при включении. Рассмотрим схему

Синим обозначены мои изменения.

Работа балластного конденсатора в нормальном режиме похожа на работу ограничивающего резистора. Но в момент включения ситуация может быть иная - незаряженный конденсатор моментально представляет собой резистор с сопротивлением равным ESR конденсатора. Это сопротивление для пленочного конденсатора C1 такой емкости может быть порядка 0.15 Ом, в то же время ESR сглаживающего электролитического конденсатора C2 может быть более 1 Ом. Это автоматически означает, что большая часть сетевого напряжения (в коротком промежутке времени конечно) уходит на цепочку светодиодов и создает бросок тока. Этот бросок тем выше, чем ближе к амплитудному значению переменное напряжение сети в момент включения.

Для борьбы с этим пагубным явлением я предлагаю дополнить выходной фильтр резистором Rf и конденсатором Cf, получив П-фильтр CRC. Выбор деталей очень прост - емкость конденсатора Cf не менее ёмкости балластного C1, сопротивление резистора Rf - больше ESR добавленного конденсатора Cf, но такой, чтобы мощность на нем не была велика. Так мы получим своеобразный делитель импульсного напряжения Rf - ESR Cf. Так же я добавил небольшой резистор Rx на вход для улучшения его импульсных свойств. Таким образом входной импульс амплитудой до 310в пройдёт 2 делителя: (провода, Rx, диоды, C1) - C2 и далее Rf - Cf. В итоге его амплитуда не должна существенно превышать рабочего напряжения светодиодов. Следует отметить, что резисторы, в особенности, Rx, работают в режиме высоких пиковых токов - некоторые экземпляры на 0.25Вт легко перегорают при включении схемы в "неудачный" момент.

Желающие могут попробовать уменьшить мерцание на основе этой схемы. Для этого предлагаю увеличить емкость Cf до C2,а резистор заменить индуктивностью, получив гораздо более эффективный фильтр CLC. Но учитывая малую частоту, индуктивность, всего скорее, должна быть не менее 10мГн и быть рассчитана на рабочий ток. Я, учитывать тесный корпус решил не заниматься этим.

При желании повысить надежность в момент включения, можно увеличить Rx до 5-15 Ом, используя резистор мощностью от 0.5 Вт, либо, что еще лучше, использовать NTC термистор подобного сопротивления. Также можно установить стабилитрон ZD1 (лучше TVS) с напряжение чуть выше рабочего для гирлянды - так можно защитить "особо нежные" светодиоды от перегрузок. Кроме того, при установке TVS, напряжение на конденсаторе Cf будет ограничено и можно будет несколько снизить его рабочее напряжение.

В моем случае светодиоды были соединены в последовательную гирлянду из 21 групп по 2 диода параллельно. На 7ми гетинаксовых платах размещено по 3 группы (6 светодиодов). Рабочее напряжение гирлянды около 60 - 65 в, ток - 100 ма (50 ма на диод). Соответственно мощность - чуть более 6 вт. Светодиоды, соответственно, выгорали парами.

Необходимость подключить светодиод к сети – частая ситуация. Это и индикатор включения приборов, и выключатель с подсветкой, и даже диодная лампа.

Существует множество схем подключения маломощных индикаторных LED через резисторный ограничитель тока, но такая схема подключения имеет определённые недостатки. При необходимости подключить диод, с номинальным током 100-150мА, потребуется очень мощный резистор, размеры которого будут значительно больше самого диода.

Вот так бы выглядела схема подключения настольной светодиодной лампы. А мощные десяти ваттные резисторы при низкой температуре в помещении можно было бы использовать в качестве дополнительного источника отопления.

Применение в качестве ограничителя тока конде-ров позволяет значительно уменьшить габариты такой схемы. Так выглядит блок питания диодной лампы мощностью 10-15 Вт.

Принцип работы схем на балластном конденсаторе

В этой схеме конде-р является фильтром тока. Напряжение на нагрузку поступает только до момента полного заряда конде-ра, время которого зависит от его ёмкости. При этом никакого тепловыделения не происходит, что снимает ограничения с мощности нагрузки.

Чтобы понять, как работает эта схема и принцип подбора балластного элемента для LED, напомню, что напряжение – скорость движения электронов по проводнику, сила тока – плотность электронов.

Для диода абсолютно безразлично, с какой скоростью через него будут «пролетать» электроны. Расчет конде-ра основан на ограничении тока в цепи. Мы можем подать хоть десять киловольт, но если сила тока составит несколько микр оампер, количества электронов, проходящих через светоизлучающий кристалл, хватит для возбуждения лишь крохотной части светоизлучателя и свечения мы не увидим.

В то же время при напряжении несколько вольт и силе тока десятки ампер плотность потока электронов значительно превысит пропускную способность матрицы диода, преобразовав излишки в тепловую энергию, и наш LED элемент попросту испарится в облачке дыма.

Расчет гасящего конденсатора для светодиода

Разберем подробный расчет, ниже сможете найти форму онлайн калькулятора.

Расчет емкости конденсатора для светодиода:

С(мкФ) = 3200 * Iсд) / √(Uвх² — Uвых²)

С мкФ – ёмкость конде-ра. Он должен быть рассчитан на 400-500В;
Iсд – номинальный ток диода (смотрим в паспортных данных);
Uвх – амплитудное напряжение сети — 320В;
Uвых – номинальное напряжение питания LED.

Можно встретить еще такую формулу:

C = (4,45 * I) / (U — Uд)

Она используется для маломощных нагрузок до 100 мА и до 5В.

Расчет конденсатора для светодиода (калькулятор онлайн):

Входные данные:

Ток, потребляемый нагрузкой (A);
Входное напряжение Uвх (V);
Выходное напряжение Uвых (V);

Ёмкость конденсатора (мкФ).

Для наглядности проведём расчёт нескольких схем подключения.

Для расчета емкости конде-ра нам понадобится:

  • Максимальный ток диода – 0,15А;
  • напряжение питания диода – 3,5В;
  • амплитудное напряжение сети — 320В.

Для таких условий параметры конде-ра: 1,5мкФ, 400В.

При расчете конденсатора для светодиодной лампы необходимо учитывать, что диоды в ней соединены группами.

  • Напряжение питания для последовательной цепочки – Uсд * количество LED в цепи;
  • сила тока – Iсд * количество параллельных цепочек.

Для примера возьмём модель с шестью параллельными линиями из четырёх последовательных диодов.

Напряжение питания – 4 * 3,5В = 14В;
Сила тока цепи – 0,15А * 6 = 0,9А;

Для этой схемы параметры конде-ра: 9мкФ, 400В.

Простая схема блока питания светодиодов с конденсатором

Разберём устройство без трансформаторного блока питания для светодиодов на примере фабричного драйвера LED ламы.

  • R1 – резистор на 1Вт, который уменьшает значимость перепадов напряжения в сети;
  • R2,C2 – конде-р служит в качестве токоограничителя, а резистор для его разрядки после отключения от сети;
  • C3 – сглаживающий конде-р, для уменьшения пульсации света;
  • R3 – служит для ограничения перепадов напряжения после преобразования, но более целесообразно вместо него установить стабилитрон.

Какой конденсатор можно использовать для балласта?

В качестве гасящих конденсаторов для светодиодов используются керамические элементы рассчитанные на 400-500В. Использование электролитических (полярных) конденсаторов недопустимо.

Меры предосторожности

Безтрансформаторные схемы не имеют гальванической развязки. Сила тока цепи при появлении дополнительного сопротивления, например прикосновение рукой с оголённому контакту в цепи, может значительно увеличится, став причиной электротравмы.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: