3д виртуальная реальность. Что нужно знать о шлемах виртуальной реальности. Какие контроллеры используются для виртуальной реальности

Шаттл "Индевор" совершил посадку на базе ВВС США "Эдвардс" в Калифорнии. Две попытки посадить космический аппарта на космодроме на мысе Канаверал были отменены из-за непогоды.

Спуск космического корабля на землю условно делится на три этапа: сход с орбиты; полет в атмосфере; собственно посадка.

Основная часть огромной кинетической энергии аппарата ‑ от орбитальной скорости 7,9 км/с до небольшой (дозвуковой) скорости ‑ гасится на втором участке - полете в атмосфере. При этом возникают тяжелые температурные и перегрузочные режимы. Оба фактора ‑ и нагрев, и перегрузки ‑ могут оказаться опасными и для аппарата, и для людей, и требуют как конструкторских решений, так и специального управления траекторией спуска.

Если аэродинамическое качество аппарата (отношение подъемной силы к силе лобового сопротивления летательного аппарата) равно нулю, то спуск будет баллистическим , то есть неуправляемым, по крутой траектории. Траектория баллистического спуска для заданных характеристик космического летательного аппарата и известных с определенной точностью параметров атмосферы рассчитывается заранее; исходя из этой траектории, выбирают место и угол входа космического летательного аппарата в атмосферу, обеспечивающие его посадку в заданный район. Величина перегрузки при баллистическом спуске зависит практически только от угла входа в атмосферу (угол наклона траектории к местному горизонту). Если угол входа составляет 0,5-1 градус, пик перегрузок достигнет 8-10 единиц. Чем больше угол входа, тем круче будет траектория и больше перегрузки.

Для первых космических кораблей «Восток» и «Меркурий» баллистический спуск был штатным вариантом. Корабли этого типа возвращались с орбиты по баллистической траектории, поскольку их корпус сферической формы практически не создавал подъемную силу и их аэродинамические качества были близки к нулю. Первому набору космонавтов при медицинском обследовании предъявлялась максимальная перегрузка 12 единиц.

Если аэродинамическое качество аппарата равно 0,3-0,7, спуск называется полубаллистическим или скользящим . Скользящий спуск стал штатным вариантом у следующего поколения космических кораблей. Спускаемый аппарат (СА) корабля «Союз» состоит из лобового щита в виде сферического сегмента и расположенного за ним корпуса в виде усеченного конуса («фара»). При движении в атмосфере аппарат балансируется на определенном (балансировочном) угле атаки. При этом возникает небольшая подъемная сила, что позволяет управлять траекторией спуска. Максимальная перегрузка при торможении ‑ 4 единицы.

Если аэродинамическое качество аппарата больше единицы, то спуск будет планирующим . При таком спуске существует подъемная сила. Планирующий спуск облегчает приземление космонавтов, так как он обеспечивает более медленное торможение, приводящее к уменьшению перегрузки до 3‑4 единиц. Кроме того, при планирующем спуске существует принципиальная возможность управления дальностью и направлением полета в атмосфере, что позволяет либо более точно осуществить посадку, либо выбрать район посадки в процессе спуска.

При осуществлении мягкой посадки на поверхность Луны, не имеющей атмосферы, торможение КА осуществляется реактивными двигателями. Такой тип спуска называется реактивным спуском . Практическую реализацию он получил в проектах "Луна‑9", "Луна‑17" и др.

Наконец, принципиально возможен комбинированный спуск в атмосфере, т.е. такой спуск, при котором торможение осуществляется при совместном действии аэродинамических сил и реактивной силы.

В настоящее время резервным вариантом посадки считается баллистический спуск. В качестве резервного он был введен после аварии 5 апреля 1975 года на участке выведения корабля «Союз‑18» (космонавты Василий Лазарев и Олег Макаров). В этом случае аппарат может приземлиться на расстоянии десятков и даже нескольких сотен километров от запланированного места посадки. Кроме того, при баллистическом спуске космонавты испытывают перегрузки, почти в два раза превышающие обычные.

Материал подготовлен на основе информации открытых источников

Разработка СА, сочетающего в себе функции отсека КК и самостоятельного атмосферного летательного аппарата, одна из самых сложных задач создания пилотируемого КК. Особенностью полета СА является необратимость происходящих событий, так как начатый спуск прервать практически невозможно, и СА неизбежно пройдет сквозь плотные слои атмосферы и будет приближаться к Земле. Это существенно ужесточает требования к системам и конструкции СА в части их надежности, степени резервирования и обеспечения безопасности экипажа.

Задачи спуска и приземления

На этапе возвращения на Землю главные задачи состоят в торможении СА при полете в атмосфере и в обеспечении его посадки. Граница участков спуска и приземления лежит на высотах 5 - 10 км, ниже которых движение близко к установившемуся и проходит со скоростями 100 - 200 м/с при перегрузках, мало отличающихся от единицы.

Между задачами спуска и приземления существует прямая связь, причем способ посадки выбирается с учетом технических решений по участку спуска. Для КК, форма которых обеспечивает эффективное управление на сверхзвуковых скоростях с выходом в район посадочной полосы, а на дозвуковых режимах - планирование с относительно небольшой вертикальной скоростью, рациональна горизонтальная посадка - самолетный способ посадки, а для СА, имеющих малое аэродинамическое качество (т. е. слабо выраженные несущие способности корпуса) и движущихся на предпосадочном участке почти вертикально, - вертикальная посадка, требующая применения специальных средств торможения (парашюты, двигатели, роторы и т. п.) и дополнительных систем, амортизирующих удар о грунт (воду), что в совокупности обеспечивает допустимые для экипажа условия приземления (приводнения). Вертикальный способ посадки использовался, например, на кораблях «Союз» и «Аполлон».

Аэродинамические характеристики

При движении любого тела в воздухе на него действуют силы давления, зависящие от скорости, плотности воздуха, формы тела и его положения в потоке. Их результирующая (суммарная) сила определяется как интеграл от сил давления по поверхности тела и проходит через точку, называемую центром давления . Интеграл от моментов сил давления относительно точки, называемой центром масс (центром тяжести), дает аэродинамический момент, который может быть представлен как произведение результирующей силы на ее плечо относительно центра масс. При выделенном моменте аэродинамические силы (или их составляющие) рассматриваются как приложение к этому центру. Силы и моменты (рис. 3.10) выражаются через безразмерные аэродинамические коэффициенты:



C и m - безразмерные коэффициенты силы и момента соответственно;

Скоростной напор;

ρ - плотность воздуха;

v - скорость полета;

S - характерная площадь (миделя или крыла);

l - характерный размер (например, длина КА).

Одним из главных параметров СА является аэродинамическое качество - отношение подъемной силы к силе сопротивления


где С Y и С X - коэффициенты подъемной силы Y и силы сопротивления Q соответственно (см. рис. 3.10).

Типичные аэродинамические характеристики осесимметричного СА сегментальной формы показаны на рис. 3.11. В силу влияния аэродинамических возмущений (например, начального угла атаки) возникает движение летательного аппарата вокруг центра масс, что требует решения вопросов статической и динамической устойчивости.

Статическая устойчивость - это свойство летательного аппарата приобретать при выходе из положения равновесия такие аэродинамические моменты, которые вновь возвращают его в это положение. В простейшем случае это возможно, если центр давления находится за центром тяжести (по отношению к передней точке летательного аппарата) и аэродинамическая сила создает восстанавливающий момент. В этом смысле расстояние между центрами давления и тяжести, отнесенное к длине аппарата, обычно называют запасом статической устойчивости , а угол атаки, при котором существует устойчивое равновесие (момент равен нулю, а его производная по углу отрицательна), - балансировочным . Чтобы получить на осесимметричном аппарате сегментальной формы подъемную силу, следует (см. рис. 3.11) придать ему определенный угол атаки, балансировка на котором может быть обеспечена созданием весового эксцентриситета (см. рис. 3.10и3.11).

Динамическая устойчивость - это способность летательного аппарата создавать стабилизирующие моменты в процессе его колебаний вокруг центра масс. При наличии угловой скорости мгновенный угол атаки различен по длине аппарата, что создает некоторый дополнительный момент. Если производная этого момента по угловой скорости отрицательна, то момент демпфирующий, в противном случае - антидемпфирующий. Характеристики динамической устойчивости учитываются при проектировании летательного аппарата и его системы управления.

Траектории спуска и выбор параметров СА

Траектории спуска выбирают с учетом возможностей, создаваемых характеристиками СА, в пределах ограничений по перегрузкам и тепловым режимам, а также требований самой траектории спуска (заданный маневр, точность посадки). Указанные ограничения влияют на характеристики СА и на программы управления его движением. Рассмотрим эти вопросы применительно к задаче спуска с низких околоземных орбит (высоты 200 - 500 км).

Характер траекторий определяется прежде всего параметрами СА, основными из которых являются аэродинамическое качество К (см. формулу (3.3) и баллистический параметр


где m - масса СА.

В расчетах часто используют также параметры:



первый из которых (3.5) является величиной, производной от К и р х, а второй (3.6) характеризует нагрузку на мидель или крыло.

Приведенные параметры определяют соотношение между гравитационными и аэродинамическими силами и являются мерой эффективности или способности последних создавать в полете ускорения, так как



Таким образом, возможности формирования траекторий зависят от выбора аэродинамического качества и баллистического параметра, а управление движением - от их изменения в полете.

На траектории влияют и условия входа в атмосферу, под верхней границей которой (высотой входа) понимают высоту начала заметного влияния аэродинамических сил (100 - 120 км). К этим условиям относят скорость входа (для спуска с орбиты около 7,6 км/с) и угол наклона траектории, или угол входа, определяемые на указанной высоте.

Маневр на участке спуска может быть осуществлен с помощью изменения лобового сопротивления аппарата (коэффициента сопротивления или эффективной поверхности), но только в плоскости траектории, т. е. по дальности. Использование подъемных сил создает возможность маневра как по дальности, так и в боковом направлении.

В зависимости от аэродинамического качества различают следующие характерные виды спуска:

баллистический - без использования подъемных сил, как правило, без управления по дальности и с большим разбросом точек посадки (около ±300 км);

планирующий - с использованием подъемных сил; обычно под ним подразумевают спуск с аэродинамическим качеством (большим 0,7 -1), что создает широкие возможности по маневру и обеспечению точной посадки;

скользящий , или полубаллистический,- это планирующий спуск с малым аэродинамическим качеством (меньшим 0,3 - 0,5), позволяющим снизить перегрузки и обеспечить достаточно точную посадку, хотя и без широкого маневра; этот вид спуска используется на КК «Союз» и «Аполлон».

Перегрузки при с пуске - один из основных траекторных параметров - зависят в основном от аэродинамического качества и угла входа. Для снижения перегрузок, как видно из рис. 3.12, целесообразно увеличение аэродинамического качества до 0,3 - 0,5 (его дальнейшее повышение влияет слабо), а угол входа не должен превышать 2 - 3°.

Тепловые потоки , воздействующие на поверхность С А, зависят от аэродинамического качества и угла входа в атмосферу (рис. 3.13). Для улучшения тепловых режимов важно, чтобы торможение происходило в верхних слоях атмосферы для максимального снижения скорости до наступления пика теплового потока. Это реализуется при баллистическом спуске за счет увеличения аэродинамического сопротивления и снижения нагрузки на мидель, а для СА с большим аэродинамическим качеством - за счет увеличения угла атаки (роста коэффициентов сопротивления и подъемной силы) и снижения нагрузки на несущую поверхность. При скользящем спуске высокий коэффициент сопротивления обеспечивает тупая форма СА, а угол атаки, несколько снижая этот коэффициент, создает подъемную силу.


Во всех случаях в начальной фазе спуска с точки зрения улучшения тепловых режимов важен не режим максимального качества, а максимально возможный рост коэффициентов сопротивления и подъемной силы или снижение нагрузки на характерную площадь.

Переносимость перегрузок при оптимальной позе человека обеспечивается вплоть до значений 25 - 27 ед. (максимальная по траектории спуска величина со временем действия до 5 - 10 с), а работоспособность до 15 ед. Для обеспечения относительного комфорта экипажа и уверенного контроля им полета перегрузки не должны превышать 4 - 6 ед.

Выбор параметров СА определяется прежде всего требованиями по обеспечению переносимости перегрузок, но маневру и точности посадки и по разработке тепловой защиты.

Задача надежного возвращения экипажа на Землю наиболее просто решается путем баллистического спуска с орбиты, при котором перегрузки не превышают 10 ед., а при спасении на участке выведения - 25 ед., т. е. лежат в пределах переносимых значений. Если исходить из обеспечения работоспособности экипажа, аэродинамическое качество должно соответствовать 0,15 - 0,2 при штатном спуске и 0,3 при аварийном с уровнем перегрузок 4 - 5 и 15 ед. соответственно. При этом в случае управляемого спуска с орбиты при располагаемом аэродинамическом качестве 0,3 (с запасом на управление) обеспечивается посадка с достаточной точностью (отклонение в пределах десятков километров). Из условий теплообмена в двух названных видах спуска целесообразно снижение баллистического параметра. Увеличение в этих целях поверхности СА (уменьшение нагрузки на мидель) ведет к неоправданным затратам массы. Более рационально повышение коэффициента сопротивления, что прослеживается в проектах всех разработанных кораблей.

В случаях когда задан специальный маневр на участке спуска, необходимо повышение аэродинамического качества, которое при требовании межвиткового маневра (боковое отклонение 2000 - 2500 км, например, для посадки в одной точке с трех смежных витков) должно быть около 1,5. В то же время повышение аэродинамического качества, способствуя улучшению переносимости перегрузок и точности посадки, ведет к росту массы тепловой защиты, а при развитых несущих поверхностях и к росту массы конструкции. Это сдерживает выбор аэродинамического качества выше значения, необходимого для решения задач спуска.

Способ управления движением определяется принятым методом регулирования подъемной силы в полете. Балансировочный угол атаки и аэродинамическое качество можно изменять (см. рис. 3.11) поперечным смещением центра тяжести за счет передвижения больших масс внутри СА (для «Союза» около 150 кг), что нерационально. При использовании в тех же целях реактивных двигателей непомерно возрастают расходы топлива, а создание аэродинамических рулей эффективно только для крылатых схем.

Широкое распространение получил способ управления путем разворотов СА по крену при постоянном балансировочном угле атаки, не требующий больших управляющих моментов. При нулевом угле крена подъемная сила направлена вверх в плоскости траектории, а при повороте отклоняется в сторону, изменяя вертикальную составляющую, что обеспечивает управление по дальности. Изменение горизонтальной составляющей, включая перевод аппарата с правого на левый крен и наоборот, используется для управления в боковом направлении. Этот способ применяется и в нештатных ситуациях. Так, при отказе системы управления подъемная сила может оказаться направленной вниз, что приведет к недопустимому возрастанию перегрузок, исключить которое можно вращением аппарата по крену (режим закрутки). В этом случае среднее значение подъемной силы равно нулю, т. е. идет баллистический спуск.

Управление при спуске необходимо для того, чтобы движение шло по принятой траектории с заданной точностью. Источниками отклонения траектории от расчетной могут быть ошибки в условиях входа (угол, скорость, координаты), случайные изменения плотности атмосферы и ветровые воздействия, ошибки в определении аэродинамических характеристик и другие факторы. Система управления опирается на измерения текущих траекторных параметров и определяет по ним управляющие воздействия, реализуемые через принятый способ управления (развороты по крену); на точность ее работы влияют инструментальные и методические погрешности.

Схема спуска с малым аэродинамическим качеством, используемая на КК «Союз», который всегда приземляется на территории СССР, начинается с ориентации КК для торможения. В расчетной точке над Атлантическим океаном двигательная установка сообщает КК тормозной импульс 100-120 м/с, после чего дальнейшее движение происходит по переходному эллипсу с углом входа около 1,5° с сохранением ориентации. После разделения КК его СА разворачивается так, чтобы в прогнозируемой точке входа в атмосферу угол атаки соответствовал балансировочному, а угол крена (около 45°) обеспечивал бы расчетное эффективное качество. При появлении аэродинамических сил (перегрузка около 0,04 ед.) начинается управление движением, при этом развороты по крену и демпфирование колебаний по тангажу и рысканью осуществляются с помощью микрореактивных двигателей. Максимальные перегрузки при спуске лежат в диапазоне 3 - 4 ед., а время полета от входа до высоты 9,5 км (ввод парашюта) составляет около 10 мин.

В нештатных ситуациях предусмотрен переход на баллистический спуск"(перегрузки до 9 ед.) путем закрутки СА по крену с угловой скоростью 12,5 град/с. Спускаемый аппарат статически устойчив в круговом смысле и способен прийти к расчетному углу атаки даже при нарушении начальной ориентации.

Спуск при входе в атмосферу со второй космической скоростью

Скорость подлета к Земле при возвращении от Луны близка ко второй космической, а в межпланетных полетах превышает ее. При этих условиях возможен переход на низкую околоземную орбиту с последующим спуском, что невыгодно в энергетическом смысле, поэтому более практична схема прямого входа в атмосферу со второй космической скоростью. Такая схема была принята для КК-станций «Зонд» и КК «Аполлон».

Коридор входа (рис. 3.14) представляет собой зону между двумя предельно допустимыми траекториями входа, из которых верхняя определяется по условию захвата СА атмосферой с исключением полета по промежуточной орбите (первое погружение должно привести к скорости, меньшей первой космической), а нижняя - по перегрузкам, принятым как предельно допустимые. Границы коридора входа выражаются через высоты условного перигея или углы входа.

Аэродинамическое качество при управляемом спуске позволяет расширить коридор входа и повысить точность посадки. Схема движения строится так, что при верхних отклонениях по высоте подъемная сила прижимает СА к Земле, вводя его в нужный коридор траекторий, а в случае крутого входа поднимает траекторию вверх, предотвращая чрезмерный рост перегрузок. Кроме того, аэродинамическое качество может быть направлено на выполнение маневров по дальности и в боковом направлении. Так, при разработке КК-станций «Зонд» задача посадки на территорию СССР при трассах, проходящих через Индийский океан с юга на север, решалась практически только с использованием аэродинамического качества для достижения нужной дальности полета и приемлемой точности посадки.

При входе в атмосферу со второй космической скоростью достаточно аэродинамическое качество в пределах 0,3 - 0,5; для СА КК-станции «Зонд» оно было принято равным 0,3, а коридор входа - равным 20 км по высоте условного перигея (средння высота 45 км) с учетом ограничений по резервному баллистическому спуску.

Траектории спуска при входе в атмосферу в пределах принятого коридора входа имеют два характерных участка: первое погружение, когда скорость снижается до значения, меньшего чем первая космическая, и второе погружение, мало отличающееся от спуска с орбиты, причем при крутых траекториях участки сливаются. Кривые перегрузок по времени имеют два пика, соотношение между которыми изменяется в зависимости от начальных условий. Средний уровень перегрузок 5 - 7 ед., а при резервном баллистическом спуске - 15 - 16 ед. При управлении дальностью полета принципиальное значение имеет формирование траектории при выходе из первого погружения (или на этапе снижения скорости до первой космической); например, для СА станции «Зонд» повышение угла выхода нам давало увеличение дальности на 2500 км. Управление на втором погружении малоэффективно, и при К = 0,3 обеспечивается в пределах ±350 км.

Тепловая защита работает в существенно более напряженных условиях, чем при спуске с орбиты (см. раздел 3.3), что вызывает повышение к ней требований и увеличение ее массы на 20-30%. При разработке тепловой защиты необходимо учитывать наличие двух пиков нагрева и фактор частичного охлаждения конструкции в интервале времени между ними.

Форма СА

Для КК «Восток» были приняты сферическая форма и баллистический спуск. Особенностью сферической формы является то, что суммарная аэродинамическая сила всегда проходит через геометрический центр, и на всех режимах полета уверенно обеспечивается статическая устойчивость СА. Для КК «Меркурий», также снижавшихся по баллистической траектории, была принята форма с передним сферическим сегментом, боковой конической поверхностью (полуугол конуса 20°) и цилиндром в хвостовой части (см. рис. 3.7, а). Аналогичную форму имела и возвращаемая капсула КК «Джемини», но путем смещения центра тяжести она была сбалансирована на угле атаки, соответствовавшем аэродинамическому качеству около 0,2.

В процессе подготовки к работам по кораблю «Союз» в нашей стране были проведены проектно-теоретические исследования СА различных форм и их возможностей, направленные на поиск наиболее рациональных методов спуска и приземления. Рассматривались СА баллистического спуска и с аэродинамическим качеством в широком диапазоне, включая крылатые схемы, а также изучались особенности вертикального и горизонтального (самолетного) способов посадки. Исследования показали необходимость управления движением в атмосфере, достаточность аэродинамического качества около 0,3 как для спуска с орбиты, так и для входа в атмосферу со второй космической скоростью, нерациональность использования в целях возвращения экипажа на Землю крылатых схем в силу больших потерь масс на их реализацию. В результате исследований для КК «Союз» был принят управляемый спуск с малым аэродинамическим качеством и вертикальный способ посадки. Анализ вариантов аэродинамической компоновки завершился выбором формы спускаемого аппарата типа «фара» (рис. 3.15,а), передняя поверхность которой представляла собой сферический сегмент, а коническая боковая плавно переходила в донную полусферу. При этом было решено балансировочный угол атаки обеспечивать весовым эксцентриситетом, а управление движением - разворотами по крену. Одновременно был работай способ перехода в баллистический спуск путем крутки СА.

Аналогичные принципы были независимо разработаны американскими специалистами и положены в основу решений по спуску КК «Аполлон». Форма его командного отсека (рис. 3.15,6) также имела переднюю сегментальную поверхность и боковой конус, но с увеличенным углом полураствора, и обеспечивала аэродинамическое качество около 0,45. Спускаемые аппараты КК «Союз» и «Аполлон» относятся к аппаратам малого аэродинамического качества.

Осесимметричные формы с передним сферическим сегментом получили название сегментальных. Наиболее характерным примером их применения является СА кораблей «Союз» и «Аполлон». У них радиус кривизны переднего сегмента (см. рис. 3.15) примерно равен диаметру миделя, что обеспечивает при сверхзвуковых скоростях высокий коэффициент сопротивления и хорошую статическую устойчивость при балансировочных углах атаки, но существенно отличаются формы боковой и донной поверхности. Малый угол полураствора конуса СА корабля «Союз» в сочетании с развитой верхней сферической поверхностью дает высокий коэффициент объемного заполнения (отношение объема в степени 2/3 к площади миделя) и позволяет получить круговую статическую устойчивость. Форма СА корабля «Аполлон», проигрывая в этом плане, имеет затененную боковую поверхность, что повышает аэродинамическое качество и улучшает условия защиты от нагрева. Обе формы СА проверены при спусках с первой и второй космическими скоростями и подтвердили рациональность их применения.

Основные варианты аппаратов для спуска в атмосфере, типы их форм и особенности приведены в табл. 3.1.

Тепловая защита

Для защиты СА от аэродинамического нагрева применяются твердые материалы, достаточно стойкие к тепловому и механическому воздействию потока и образующие вместе с тепловой изоляцией внешний слой конструкции СА; этот слой называют тепловой защитой , а материалы - теплозащитными .

Среди возможных вариантов тепловой защиты следует назвать излучательные системы, системы с теплопоглощением и абляционные системы. Излучательные системы основаны на применении внешней тонкой оболочки из высокотемпературного материала, которая, будучи нагретой, излучает в пространство тепло, уравновешивающее поток тепла от аэродинамического нагрева. Максимальная допустимая рабочая температура материала оболочки ограничивает условия применения тепловой защиты по поступающему потоку тепла. Защита такого типа была использована на КК «Меркурий», боковая коническая поверхность которого была покрыта черепицей из никель-кобальтового сплава толщиной 0,4 - 0,8 мм со слоем теплоизоляции под ней.

Системы с теплопоглощением не только излучают тепло, но и накапливают его в материале, теплоемкость которого должна быть высокой, а слой толстым. Такая система применялась на КК «Меркурий» в более теплонапряженной зоне на боковой цилиндрической поверхности с использованием пластин из бериллия толщиной около 5,5 мм.

Абляционные системы (абляция - потеря массы при нагреве) допускают разрушение внешнего слоя и частичный унос массы тепловой защиты. Происходящие при этом процессы сложны и зависят от применяемого материала. При использовании органического пластика его внешний слой под воздействием тепла подвергается пиролизу, в результате чего появляется коксовый остаток и выделяются газообразные продукты. С течением времени коксовый слой увеличивается и зона разложения опускается в глубину материала. При разложении пластика поглощается значительная часть поступающего тепла, образующиеся газы вдуваются через пористый остаток в пограничный слой, деформируя его. и снижая конвективный поток, а высокотемпературный коксовый слой, кроме того, излучает тепло. Процесс сопровождается уносом части коксового слоя из-за механического воздействия со стороны потока и догоранием газообразных продуктов. Теплоизоляция корпуса СА обеспечивается непрококсованным слоем абляционного материала и слоем легкого теплоизолятора, если он установлен под первым.

Применяют комбинированные и сублимирующие абляционные материалы. В первом случае в материал вводится наполнитель (например, стеклянный), который усиливает коксовый слой, а на поверхности плавится и частично испаряется. Материалы такого рода имеют повышенную плотность и прочность. Сублимирующие материалы (например, типа фторопласта) не образуют коксового остатка, при нагреве переходят из твердой фазы в газообразную и имеют относительно низкую температуру сублимации и малый теплоотвод излучением.

Абляционные материалы применялись для лобовых теплозащитных экранов всех СА, а также на боковой поверхности СА всех отечественных КК и американского КК «Аполлон». В частности, на спускаемом аппарате КК «Союз» лобовой щит выполнен из абляционного материала с наполнителем в виде асбестовой ткани, а боковая теплозащита представляет собой трехслойный пакет из сублимирующего материала типа фторопласта, плотного абляционного материала типа стеклотекстолита, создающего прочную оболочку, и теплоизолятора в виде волокнистого материала с легкой связующей пропиткой. При этом поперечные срезы теплозащиты (люки, стыки и т. д.) закрыты окантовками из плотного абляционного материала. Такая теплозащита проста по конструкции и технологична.

На КК «Аполлон» использовался абляционный материал, которым заполнялась сотовая конструкция на основе стеклоткани, приклеенная к корпусу СА.

Толщина тепловой защиты по поверхности СА, как правило, неравномерна и выбирается с учетом распределения тепловых потоков и заданной температуры корпуса СА. Так, на КК «Аполлон» толщина защиты лежит в диапазоне от 8 до 44 мм.

В конструкции теплозащиты должны учитываться свойства материалов в части линейных расширений при нагреве.

Компоновочная схема

Целью разработки компоновочной схемы является рациональное размещение экипажа, оборудования и основных элементов конструкции в рамках выбранной для СА формы при условии выполнения требований по его центровке и минимизации массы, функциональных требований и ограничений, а также решения вопросов технологичности и эксплуатации (агрегатирование, доступ к оборудованию и т. п.). В процессе поиска компоновочной схемы определяются или уточняются геометрические размеры СА и детали его аэродинамической компоновки.

В качестве примера рассмотрим основы построения компоновочной схемы спускаемого аппарата КК «Союз». Как известно, наилучшая переносимость перегрузок обеспечивается при их воздействии в направлении «грудь - спина» при угле 78° между линией спины и вектором силы. Поэтому с учетом отклонения суммарной аэродинамической силы (см. рис. 3.10) кресла по линии спины установлены под углом 70° к оси СА. Они имеют индивидуальные ложементы, привязную систему и амортизатор, снижающий перегрузки при приземлении, движение вдоль которого (рабочий ход 250 мм) сопровождается поворотом кресла вокруг шарнира, расположенного в районе ног космонавта (рис. 3.16). Перед посадкой амортизатор «взводится» (поднимая кресло в верхнее положение), чем подготавливается к работе. При выбранной позе космонавта обеспечивается переносимость и всех других перегрузок в полете (работа РН, ввод в поток парашютов и т. д.).

При наличии двух обитаемых отсеков СА должен иметь минимальные размеры (см. раздел 3.4), причем определяющим в этом отношении является диаметр корпуса в зоне установки кресел. КК «Союз» проектировался как трехместный, и наиболее компактной оказалась схема размещения кресел «веером» (см. рис. 3.16). Между креслами вдоль образующей конической поверхности по соображениям центровки были установлены два контейнера парашютных систем; при высокой плотности укладки (0,5 - 0,6 кг/л) и большой массе они способствуют созданию нужного бокового смещения центра тяжести СА. На основе такой схемы и с учетом возможностей размещения оборудования в подкресельной зоне и на стенках кабины был определен (как минимально допустимый) и принят диаметр металлического корпуса СА, равный 2 м.

В спускаемом аппарате КК-«Союз» перед космонавтами, находящимися в креслах, установлена центральная приборная доска (см. рис. 3.16), по краям которой размещены командно-сигнальные устройства, ниже приборной доски - оптический прибор для наблюдения при стыковке и для ручной ориентации КК, а справа и слева от кресел - обзорные иллюминаторы; ручки управления установлены на центральном кресле. Основная часть оборудования размещена на приборных рамах переднего днища, на котором также установлены двигатели мягкой посадки, закрытые при спуске лобовым щитом, сбрасываемым на участке парашютирования. Парашютные системы уложены в герметичных контейнерах и вводятся в поток при сбросе их крышек. Спускаемый аппарат имеет быстрооткрывающийся люк, в тепловой защите которого смонтирована щелевая антенна. Реактивные двигатели малых тяг и питающие их баки с однокомпонентным топливом установлены снаружи гермоконтура.

В двухместном КК «Союз» на месте левого кресла устанавливается рама с баллонами и арматурой для подачи воздуха в скафандры в случае разгерметизации КК.

В орбитальном полете СА и орбитальный отсек соединены между собой, а их стык уплотнен так, что образуется единый гер-моконтур. Перед спуском они разделяются с помощью пироуст-ройств. С переходным отсеком (см. рис. 3.8) СА связан металлическими стяжками, проходящими через лобовой щит, внешние концы которых при разделении КК освобождаются пирозамками переходного отсека.

Выбор компоновочной схемы и размеров СА космического корабля «Союз» был подчинен требованию максимальной компактности, что делало инженерный поиск особенно сложным. Опыт эксплуатации КК подтвердил рациональность принятых решений и соответствие технических характеристик СА задачам полетов.

Лаборатория интерактивной графики United 3D Labs разрабатывает решения виртуальной реальности (virtual reality), в том числе:

  • промышленные VR тренажеры;
  • симуляторы в виртуальной реальности;
  • музейные экспозиции и интерактивные VR инсталляции;
  • виртуальные туры;
  • игры.
Мы работаем со всеми распространенными очками виртуальной реальности – HTC Vive, HTC Focus, Oculus Rift, Samsung Odyssey, Windows Mixed Reality. Применяем системы трекинга VIVE Tracking, контроллеры Leap Motion, Myo и Kinect. Используем программное обеспечение Unreal Engine, Unity и Unigine.

×

Виртуальная реальность, разработанная United 3D Labs для Филиала МИРЭА в г.Фрязино.

Загадка виртуальной реальности

Виртуальная реальность (Virtual Reality, VR) – пожалуй, наиболее загадочная и популярная часть компьютерной графики. Множество фантастических книг и фильмов превозносят ее преимущества и пугают возможными последствиями использования. Виртуальная реальность переносит пользователя в искусственный мир, созданный разработчиками. В отличие от дополненной реальности , где основой является реальное изображение, передаваемое видеокамерой, в виртуальной реальности все объекты созданы в программах разработки компьютерной графики.

Различные применения технологий виртуальной реальности известны уже несколько десятков лет, они активно используются в военной сфере, космической индустрии, медицине. Обычные же пользователи реально столкнулись с виртуальной реальностью совсем недавно – с появлением в широкой продаже в 2016 году очков виртуальной реальности Oculus Rift и HTC Vive, а также всевозможных VR шлемов для мобильных телефонов.

Не только VR очки

Надо заметить, что виртуальная реальность – это далеко не только очки и шлемы. Многоэкранные конфигурации, комнаты CAVE (CAVE Automatic Virtual Environment), Virtual Reality Video Wall с углом обзора боле 180 градусов и т. д., все эти решения так же призваны перенести пользователя в виртуальный мир. Эти системы весьма недешевы и крайне сложны с технической точки зрения, но в то же время, у них есть ряд преимуществ, начиная с основного – отсутствие необходимости надевать достаточно неудобные очки виртуальной реальности.

Применение виртуальной реальности

Разумеется, в первую очередь, за возможности, открываемые доступными VR очками, ухватились создатели компьютерных игр – перенести пользователя в виртуальный мир игры конечно же гораздо интереснее (и сулит гораздо большие прибыли), чем показывать этот самый мир на экране монитора. Но у относительно дешевых потребительских очков виртуальной реальности есть и более серьезное применение. То, что раньше было доступно только военным, покупавшим за 50 тысяч долларов пару очков, теперь доступно музеям , школам и институтам. Всевозможные реалистичные виртуальные туры, реконструкции объектов и событий , виртуальные эксперименты, возможность увидеть своими глазами то, что невозможно увидеть в реальной жизни – вот только малая часть возможностей, открываемых очками виртуальной реальности. И разумеется, за уникальные возможности виртуальной реальности по созданию реалистичных тренажеров и симуляторов ухватились промышленные предприятия .

Standalone virtual reality headset

Стоит обратить отдельное внимание на сегмент беспроводных virtual reality очков, таких как HTC Focus или Oculus Go. Они, конечно, проигрывают своим старшим собратьям Oculus Rift и HTC Vive по сложности и качеству графики, но у них есть огромное преимущество – мобильность. Они не привязаны проводом к стационарному компьютеру. А вычислительной мощности для показа проектов той же самой архитектурной визуализации или небольшого тренажера у них вполне достаточно.

Лаборатория интерактивной графики United 3D Labs приглашает Вас в наш демозал. Мы будем рады показать разработанные нами решения виртуальной реальности и продемонстрировать основные модели VR очков, существующие на рынке, рассказать об их сильных и слабых сторонах.

Виртуальная реальность (VR) меняет визуализацию архитектуры навсегда. 3D-модели теперь можно смотреть и крутить со всех сторон.

VR даёт возможность предоставить намного больше информации для заказчика. Несколько ракурсов не дадут прочувствовать и походить по зданию и рассмотреть детали. Конечно, и визуализатору прибавится работы в плане моделирования объектов, но результат стоит того.
Итак, 5 причин добавить VR в ваш рабочий процесс.

1. Cистема виртуальной реальности — это конкурентное преимущество

Что означает конкурентное преимущество? Это когда клиент может «пощупать» и наглядно оценить проект. В одной статье дизайнер и визуализатор Olivier Demangel описывал свой шок, который он испытывал при использовании VR впервые. Он едва мог поверить, что его проект ещё не воплощен в жизнь.
Так что, откровенно говоря, если вы или ваша фирма предлагает простые компьютерные визуализации в то время, как конкурент предлагает VR, выбор клиента будет очевидным.

2. Быть в тренде

Этот пункт из того же разряда, что и предыдущий. Если вы раньше остальных будете применять новейшие технологии, то это, безусловно, сделает вас более заметными среди других компаний, которые также занимаются визуализацией. Кроме того, virtual reality сейчас на пике своей популярности, а трендовые вещи всегда лучше работают для привлечения внимания.

3. Погружение в виртуальную реальность может позволить себе практически каждый

VR не является дорогостоящей, её могут позволить себе многие. Система виртуальной реальности обойдется вам где-то в $1000 (3d очки виртуальной реальности и/или шлем). Эта технология окупится во многократном размере благодаря новым клиентам.

4. Меньше правок от заказчика

Потрясающая детализация сразу показывает весь проект и дает полную информацию об объекте. Таким образом, вы меньше переделываете на протяжении всей работы над проектом.

Например, вы можете сделать освещение в реальном времени. Заказчик сможет переключать свет между дневным и ночным. Такая интерактивность позволяет быстро и эффективно оценить дизайн.

5. Проработка реальных сценариев из жизни

Моделирование может включать в себя что-то простое, как освещение, которое было описано ранее. Но можно подойти к использованию виртуальной реальности и более глобально. Например, создать аэропорт и посмотреть, как здания и машины будут реагировать на разные погодные условия.

Ещё один вариант: вы можете проверить свои системы аварийного выхода; человек находит выход из здания при помощи системы вывесок и указателей в очках virtual reality. Компьютерные сценарии в состоянии показать нам, как люди могут вести себя в аварийной ситуации, но они исключают человеческий фактор. Эти идеи сделают будущие здания более безопасными и удобными ещё на ранних стадиях.

И это ещё не полный список преимуществ.

Как сделать виртуальную реальность в 3ds Max? В последних версиях Vray для 3ds Max можно найти все необходимые инструменты для создания виртуальной реальности. И вот один из способов, как это можно сделать:

Лучшие VR- шлемы: Oculus Rift, Project Morpheus, Gear VR, HTC Vive и другие.

Еще в девяностые в США начался бум виртуальной реальности. До нашей отчизны он, по понятным причинам, не докатился, но и в США спал относительно быстро, позабавив любителей видеоигр.

Кадр из м/ф Daria, 1998 г.

Несомненно, сегодня виртуальная реальность вернулась, шлемы стали легче, удобнее, картинки ярче и четче. К тому же теперь уже личный шлем виртуальной реальности может позволить себе каждый.

Некоторые шлемы еще в стадии разработки, некоторые вот-вот выйдут на рынок, какие-то готовы к предзаказу или уже лежат на полках магазинов.

Шлем виртуальной реальности – это носимый перед глазами дисплей в сочетании с отслеживанием поворотов головы, так что картинка на экране всегда соответствует тому, в какую сторону человек смотрит. Все это делает шлем пригодным для игр с погружением или панорамного видео – кино, которое идет вокруг вас, а вы можете оглядываться по сторонам как в жизни.

Самый дешевый вариант получить шлем виртуальной реальности – использовать смартфон. Каких только вариантов тут не предлагают производители: от стильного корпуса с дополнительной электроникой до картонной коробочки с пластиковыми линзами: вставьте смартфон и готово.

Для скачивания доступно множество бесплатных и платных приложений для Google Cardboard (той самой картонной коробочки) – это игры, видео, виртуальные экскурсии и тому подобное – легко оценить, что можно делать в виртуальной реальности сегодня.

Но вернемся к самим шлемам: какой вариант выбрать из всего многообразия? Вот обзор десяти самых привлекательных девайсов.

Sony Project Morpheus

Шлем виртуальной реальности от Sony, работающий с PlayStation 4, планируется к выпуску в первой половине 2016. Новая версия устройства была анонсирована на Game Developers Conference 2015, она имеет дисплей 5.7 дюймов, частота обновления кадров 120 fps, угол обзора 90+. По оценкам протестировавших девайс весьма комфортен для глаз.

Цена устройства пока что не сообщается, доступен Dev Kit для разработчиков под PlayStation 4.

HTC представила свой HMD, созданный в сотрудничестве с создателем игр Valve. HTC Vive был представлен на Mobile World Congress 2015 и должен появиться на полках магазинов до конца года.

Vive подсоединяется к ПК и работает с собственной игровой экосистемой. Частота обновления 360-градусного трекинга 90 Гц, всего трекинг обеспечивают 70 специальных сенсоров. Такая частота обеспечивает хорошую работу без задержек. Помимо этого у системы есть отдельный контроллер, позволяющий стрелять, перемещаться и всячески взаимодействовать с объектами виртуального мира. Цена устройства также пока не известна.

Samsung тоже приложил руку к виртуальной реальности – и разработал один из лучших и дружелюбных шлемов.

Gear VR работает от смартфона Samsung (можно приобрести шлем для Note 4 или Galaxy S6). Телефон вставляется в корпус шлема с линзами и соединяется с ним по micro USB.

Для шлема виртуальной реальности уже есть рынок приложений и VR-видео, он называется Milk VR и доступен в США.

Цена устройства – 200$/ но не забудьте учесть еще и цену смартфона.

Oculus Rift


Oculus Rift – конечно самый известный шлем виртуальной реальности, давший начало текущему буму VR-технологий и HMD. Начало разработке положил 21-летний инженер Palmer Luckey, получивший деньги на разработку с помощью Kickstarter и затем продавший проект компании Facebook за 2$ млрд. Oculus Rift соединяется с компьютером по DVI или USB и также осуществляет трекинг головы пользователя.

Последняя версия устройства обеспечивает разрешение 1080p и имеет невероятно точную трекинговую систему, отслеживая малейшие движения. Для шлема уже есть множество игр. Цена – 350$

Microsoft HoloLens


Тоже получившая много внимания новинка от Microsoft – это очки виртуальной и дополненной реальности. Устройство смешивает реальный мир с наложенными виртуальными «голографическими» изображениями, а значит, вы сможете видеть свой Minecraft на кухонном столе или покружиться по орбите Марса в своей собственной комнате.

Очки виртуальной реальности HoloLens управляются распознаваемыми жестами наподобие Kinect, имеют угол обзора 120 градусов по обеим осям и выдают графику высокого разрешения. Из плюсов можно отметить, что они не нуждаются в подсоединении к ПК, полноценная Windows 10 уже на борту и работает все устройство от аккумулятора. Как долго – посмотрим.

О дате релиза и цене на данный момент нет информации, маловероятно, что шлем виртуальной реальности от Microsoft выйдет в свет до конца 2016

Carl Zeiss VR One


Как и Samsung Gear VR, шлем от Цейсса использует дисплей и вычислительные ресурсы смартфона. При чем подойдет любой смартфон с iOS или Android размером от 4.7 до 5.2 дюйма.

К устройству прилагается медиа-плеер для YouTube и приложения для дополненной реальности, SDK к распространенному движку Unity 3D, так что вы сможете сами разрабатывать для шлема 3D-игры.

Цена – 99$

Avegant Glyph

Большинство шлемов виртуальной реальности относительно крупные и не очень легкие (хотя, если сравнить с устройствами из 90-х, то, конечно, все они легки и компактны). Однако Avegant Glyph – совсем тонкий и легкий. Все это благодаря совершенно другой технологии дисплея: вместо того, чтобы использовать большие экраны на подобие экрана смартфона, этот шлем виртуальной реальности использует микроматрицы зеркал, направляющие свет прямо на вашу сетчатку.

Шлем можно носить как наушники, а когда нужен экран – перевернуть на 90 градусов, поставив экран перед глазами – как будто опустить забрало. Разрешение 1280 х 720 на каждый глаз. Хотя поле зрения составляет всего 45 градусов, считается, что микроматрицы зеркал снижают основной дефект HMD – тошноту и усталость глаз.

Цена здесь чуть выше – 499$

Razer OSVR

Гораздо менее известный шлем, ориентированный в основном на разработчиков VR-контента – это open-source система виртуальной реальности. OSVR поддерживает множество популярных игровых движков, таких как Unity 3D и Unreal Engine. Также шлем совместим с дополнительными комплектующими от сторонних производителей.

Потребительская версия появится не раньше 2016, а стоимость составит порядка 200$

Google Cardboard

Для тех, кто хочет побаловаться с виртуальной реальностью и не тратить на это кучу денег – картонная реальность. Принцип тот же, что и во множестве дешевых VR-устройств – вставьте смартфон и готово!

Смартфон содержит все необходимое: гироскопы, экран, динамик и прочее, что позволит отслеживать движения головы и выдавать соответствующую картинку.

Рынок приложений уже довольно богат и содержит как бесплатные развлечения, так и платные игры. Цена – 25$.

Archos VR Headset



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: