Vpn подключение: что это такое, и для чего нужен vpn канал? Как работает VPN-соединение


В последнее время в мире телекоммуникаций наблюдается повышенный интерес к так называемым Виртуальным Частным Сетям (Virtual Private Network - VPN). Это обусловлено необходимостью снижения расходов на содержание корпоративных сетей за счет более дешевого подключения удаленных офисов и удаленных пользователей через сеть Internet (см. рис. 1). Действительно, при сравнении стоимости услуг по соединению нескольких сетей через Internet, например, с сетями Frame Relay можно заметить существенную разницу в стоимости. Однако, необходимо отметить, что при объединении сетей через Internet, сразу же возникает вопрос о безопасности передачи данных, поэтому возникла необходимость создания механизмов позволяющих обеспечить конфиденциальность и целостность передаваемой информации. Сети, построенные на базе таких механизмов, и получили название VPN.

Рисунок 1. Виртуальная Частная сеть.

В свое реферате я попробую объяснить, что такое VPN, какими плюсами и минусами обладает данная технология и какие варианты реализации VPN существуют.

Что такое VPN

Что же такое VPN? Существует множество определений, однако главной отличительной чертой данной технологии является использование сети Internet в качестве магистрали для передачи корпоративного IP-трафика. Сети VPN предназначены для решения задач подключения конечного пользователя к удаленной сети и соединения нескольких локальных сетей. Структура VPN включает в себя каналы глобальной сети, защищенные протоколы и маршрутизаторы.

Как же работает Виртуальная Частная Сеть? Для объединения удаленных локальных сетей в виртуальную сеть корпорации используются так называемые виртуальные выделенные каналы. Для создания подобных соединений используется механизм туннелирования. Инициатор туннеля инкапсулирует пакеты локальной сети (в том числе, пакеты немаршрутизируемых протоколов) в новые IP-пакеты, содержащие в своем заголовке адрес этого инициатора туннеля и адрес терминатора туннеля. На противоположном конце терминатором туннеля производится обратный процесс извлечения исходного пакета.

Как уже отмечалось выше, при осуществлении подобной передачи требуется учитывать вопросы конфиденциальности и целостности данных, которые невозможно обеспечить простым туннелированием. Для достижения конфиденциальности передаваемой корпоративной информации необходимо использовать некоторый алгоритм шифрования, причем одинаковый на обоих концах туннеля.

Для того чтобы была возможность создания VPN на базе оборудования и программного обеспечения от различных производителей необходим некоторый стандартный механизм. Таким механизмом построения VPN является протокол Internet Protocol Security (IPSec). IPSec описывает все стандартные методы VPN. Этот протокол определяет методы идентификации при инициализации туннеля, методы шифрования, используемые конечными точками туннеля и механизмы обмена и управления ключами шифрования между этими точками. Из недостатков этого протокола можно отметить то, что он ориентирован на IP.

Другими протоколами построения VPN являются протоколы PPTP (Point-to-Point Tunneling Protocol), разработанный компаниями Ascend Communications и 3Com, L2F (Layer-2 Forwarding) - компании Cisco Systems и L2TP (Layer-2 Tunneling Protocol), объединивший оба вышеназванных протокола. Однако эти протоколы, в отличие от IPSec, не являются полнофункциональными (например, PPTP не определяет метод шифрования), поэтому мы, в основном, будем ориентироваться на IPSec.

Говоря об IPSec, нельзя забывать о протоколе IKE (Internet Key Exchange), позволяющем обеспечить передачу информации по туннелю, исключая вмешательство извне. Этот протокол решает задачи безопасного управления и обмена криптографическими ключами между удаленными устройствами, в то время, как IPSec кодирует и подписывает пакеты. IKE автоматизирует процесс передачи ключей, используя механизм шифрования открытым ключом, для установления безопасного соединения. Помимо этого, IKE позволяет производить изменение ключа для уже установленного соединения, что значительно повышает конфиденциальность передаваемой информации.

Как построить VPN

Существуют различные варианты построения VPN. При выборе решения требуется учитывать факторы производительности средств построения VPN. Например, если маршрутизатор и так работает на пределе мощности своего процессора, то добавление туннелей VPN и применение шифрования/дешифрования информации могут остановить работу всей сети из-за того, что этот маршрутизатор не будет справляться с простым трафиком, не говоря уже о VPN.

Опыт показывает, что для построения VPN лучше всего использовать специализированное оборудование, однако если имеется ограничение в средствах, то можно обратить внимание на чисто программное решение.

Рассмотрим некоторые варианты построения VPN:

· VPN на базе брандмауэров

Брандмауэры большинства производителей поддерживают туннелирование и шифрование данных. Все подобные продукты основаны на том, что если уж трафик проходит через брандмауэр, то почему бы его заодно не зашифровать. К программному обеспечению собственно брандмауэра добавляется модуль шифрования. Недостатком данного метода можно назвать зависимость производительности от аппаратного обеспечения, на котором работает брандмауэр. При использовании брандмауэров на базе ПК надо помнить, что подобное решение можно применять только для небольших сетей с небольшим объемом передаваемой информации.

Рисунок 2. VPN на базе брандмауэра

В качестве примера решения на базе брандмауэров можно назвать FireWall-1 компании Check Point Software Technologies. FairWall-1 использует для построения VPN стандартный подход на базе IPSec. Трафик, приходящий в брандмауэр, дешифруется, после чего к нему применяются стандартные правила управления доступом. FireWall-1 работает под управлением операционных систем Solaris и Windows NT 4.0.

· VPN на базе маршрутизаторов

Другим способом построения VPN является применение для создания защищенных каналов маршрутизаторов. Так как вся информация, исходящая из локальной сети, проходит через маршрутизатор, то целесообразно возложить на этот маршрутизатор и задачи шифрования.

Ярким примером оборудования для построения VPN на маршрутизаторах является оборудование компании Cisco Systems. Начиная с версии программного обеспечения IOS 11.3(3)T маршрутизаторы Cisco поддерживают протоколы L2TP и IPSec. Помимо простого шифрования проходящей информации Cisco поддерживает и другие функции VPN, такие как идентификация при установлении туннельного соединения и обмен ключами.


Рисунок 3. VPN на базе маршрутизаторов

Для построения VPN Cisco использует туннелирование с шифрованием любого IP-потока. При этом туннель может быть установлен, основываясь на адресах источника и приемника, номера порта TCP(UDP) и указанного качества сервиса (QoS).

Для повышения производительности маршрутизатора может быть использован дополнительный модуль шифрования ESA (Encryption Service Adapter).

Кроме того, компания Cisco System выпустила специализированное устройство для VPN, которое так и называется Cisco 1720 VPN Access Router (Маршрутизатор Доступа к VPN), предназначенное для установки в компаниях малого и среднего размера, а также в в отделениях крупных организаций.

· VPN на базе программного обеспечения

Следующим подходом к построению VPN являются чисто программные решения. При реализации такого решения используется специализированное программное обеспечение, которое работает на выделенном компьютере и в большинстве случаев выполняет роль proxy-сервера. Компьютер с таким программным обеспечением может быть расположен за брандмауэром.


Рисунок 4. VPN на базе программного обеспечения

В качестве примера такого решения можно выступает программное обеспечение AltaVista Tunnel 97 компании Digital. При использовании данного ПО клиент подключается к серверу Tunnel 97, аутентифицируется на нем и обменивается ключами. Шифрация производится на базе 56 или 128 битных ключей Rivest-Cipher 4, полученных в процессе установления соединения. Далее, зашифрованные пакеты инкапсулируются в другие IP-пакеты, которые в свою очередь отправляются на сервер. В ходе работы Tunnel 97 осуществляет проверку целостности данных по алгоритму MD5. Кроме того, данное ПО каждые 30 минут генерирует новые ключи, что значительно повышает защищенность соединения.

Положительными качествами AltaVista Tunnel 97 являются простота установки и удобство управления. Минусами данной системы можно считать нестандартную архитектуру (собственный алгоритм обмена ключами) и низкую производительность.

· VPN на базе сетевой ОС

Решения на базе сетевой ОС мы рассмотрим на примере системы Windows NT компании Microsoft. Для создания VPN Microsoft использует протокол PPTP, который интегрирован в систему Windows NT. Данное решение очень привлекательно для организаций использующих Windows в качестве корпоративной операционной системы. Необходимо отметить, что стоимость такого решения значительно ниже стоимости прочих решений. В работе VPN на базе Windows NT используется база пользователей NT, хранящаяся на Primary Domain Controller (PDC). При подключении к PPTP-серверу пользователь аутентифицируется по протоколам PAP, CHAP или MS-CHAP. Передаваемые пакеты инкапсулируются в пакеты GRE/PPTP. Для шифрования пакетов используется нестандартный протокол от Microsoft Point-to-Point Encryption c 40 или 128 битным ключом, получаемым в момент установки соединения. Недостатками данной системы являются отсутствие проверки целостности данных и невозможность смены ключей во время соединения. Положительными моментами являются легкость интеграции с Windows и низкая стоимость.

Kроме своего основного назначения - повышения пропускной способности соединений в сети - коммутатор позволяет локализовать потоки информации, а также контролировать эти потоки и управлять ими с помощью механизма пользовательских фильтров. Однако пользовательский фильтр способен воспрепятствовать передаче кадров лишь по конкретным адресам, тогда как широковещательный трафик он передает всем сегментам сети. Таков принцип действия реализованного в коммутаторе алгоритма работы моста, поэтому сети, созданные на основе мостов и коммутаторов, иногда называют плоскими - из-за отсутствия барьеров на пути широковещательного трафика.

Появившаяся несколько лет тому назад, технология виртуальных локальных сетей (Virtual LAN, VLAN) позволяет преодолеть указанное ограничение. Виртуальной сетью называется группа узлов сети, трафик которой, в том числе и широковещательный, на канальном уровне полностью изолирован от других узлов (см. Рисунок 1). Это означает, что непосредственная передача кадров между разными виртуальными сетями невозможна, независимо от типа адреса - уникального, группового или широковещательного. В то же время внутри виртуальной сети кадры передаются в соответствии с технологией коммутации, т. е. только на тот порт, к которому приписан адрес назначения кадра.

Виртуальные сети могут пересекаться, если один или несколько компьютеров включено в состав более чем одной виртуальной сети. На Рисунке 1 сервер электронной почты входит в состав виртуальных сетей 3 и 4, и поэтому его кадры передаются коммутаторами всем компьютерам, входящим в эти сети. Если же какой-то компьютер отнесен только к виртуальной сети 3, то его кадры до сети 4 доходить не будут, но он может взаимодействовать с компьютерами сети 4 через общий почтовый сервер. Данная схема не полностью изолирует виртуальные сети друг от друга - так, инициированный сервером электронной почты широковещательный шторм захлестнет и сеть 3, и сеть 4.

Говорят, что виртуальная сеть образует широковещательный домен трафика (broadcast domain), по аналогии с доменом коллизий, который образуется повторителями сетей Ethernet.

НАЗНАЧЕНИЕ VLAN

Технология VLAN облегчает процесс создания изолированных сетей, связь между которыми осуществляется с помощью маршрутизаторов с поддержкой протокола сетевого уровня, например IP. Такое решение создает гораздо более мощные барьеры на пути ошибочного трафика из одной сети в другую. Сегодня считается, что любая крупная сеть должна включать маршрутизаторы, иначе потоки ошибочных кадров, в частности широковещательных, через прозрачные для них коммутаторы будут периодически «затапливать» ее целиком, приводя в неработоспособное состояние.

Технология виртуальных сетей предоставляет гибкую основу для построения крупной сети, соединенной маршрутизаторами, так как коммутаторы позволяют создавать полностью изолированные сегменты программным путем, не прибегая к физической коммутации.

До появления технологии VLAN для развертывания отдельной сети использовались либо физически изолированные отрезки коаксиального кабеля, либо не связанные между собой сегменты на базе повторителей и мостов. Затем сети объединялись посредством маршрутизаторов в единую составную сеть (см. Рисунок 2).

Изменение состава сегментов (переход пользователя в другую сеть, дробление крупных участков) при таком подходе подразумевало физическую перекоммутацию разъемов на передних панелях повторителей или в кроссовых панелях, что не очень удобно в крупных сетях - это очень трудоемкая работа, а вероятность ошибки весьма высока. Поэтому для устранения необходимости физической перекоммутации узлов стали применять многосегментные концентраторы, дабы состав разделяемого сегмента можно было перепрограммировать без физической перекоммутации.

Однако изменение состава сегментов с помощью концентраторов накладывает большие ограничения на структуру сети - количество сегментов такого повторителя обычно невелико, и выделить каждому узлу собственный, как это можно сделать с помощью коммутатора, нереально. Кроме того, при подобном подходе вся работа по передаче данных между сегментами ложится на маршрутизаторы, а коммутаторы со своей высокой производительностью остаются «не у дел». Таким образом сети на базе повторителей с конфигурационной коммутацией по-прежнему предполагают совместное использование среды передачи данных большим количеством узлов и, следовательно, обладают гораздо меньшей производительностью по сравнению с сетями на базе коммутаторов.

При использовании в коммутаторах технологии виртуальных сетей одновременно решаются две задачи:

  • повышение производительности в каждой из виртуальных сетей, так как коммутатор передает кадры только узлу назначения;
  • изоляция сетей друг от друга для управления правами доступа пользователей и создания защитных барьеров на пути широковещательных штормов.

Объединение виртуальных сетей в общую сеть выполняется на сетевом уровне, переход на который возможен с помощью отдельного маршрутизатора или программного обеспечения коммутатора. Последний в этом случае становится комбинированным устройством - так называемым коммутатором третьего уровня.

Технология формирования и функционирования виртуальных сетей с помощью коммутаторов долгое время не стандартизировалась, хотя и была реализована в очень широком спектре моделей коммутаторов разных производителей. Ситуация изменилась после принятия в 1998 г. стандарта IEEE 802.1Q, где определяются базовые правила построения виртуальных локальных сетей независимо от того, какой протокол канального уровня поддерживается коммутатором.

Ввиду долгого отсутствия стандарта на VLAN каждая крупная компания, выпускающая коммутаторы, разработала свою технологию виртуальных сетей, причем, как правило, несовместимую с технологиями других производителей. Поэтому, несмотря на появление стандарта, не так уж редко встречается ситуация, когда виртуальные сети, созданные на базе коммутаторов одного вендора, не распознаются и, соответственно, не поддерживаются коммутаторами другого.

СОЗДАНИЕ VLAN НА ОСНОВЕ ОДНОГО КОММУТАТОРА

При создании виртуальных сетей на основе одного коммутатора обычно используется механизм группирования в сети портов коммутатора (см. Рисунок 3). При этом каждый из них приписывается той или иной виртуальной сети. Кадр, поступивший от порта, принадлежащего, например, виртуальной сети 1, никогда не будет передан порту, который не входит в ее состав. Порт можно приписать нескольким виртуальным сетям, хотя на практике так поступают редко - пропадает эффект полной изоляции сетей.

Группирование портов одного коммутатора - наиболее логичный способ образования VLAN, так как в данном случае виртуальных сетей не может быть больше, чем портов. Если к какому-то порту подключен повторитель, то узлы соответствующего сегмента не имеет смысла включать в разные виртуальные сети - все равно их трафик будет общим.

Такой подход не требует от администратора большого объема ручной работы - достаточно каждый порт приписать к одной из нескольких заранее поименованных виртуальных сетей. Обычно эта операция выполняется с помощью специальной программы, прилагаемой к коммутатору. Администратор создает виртуальные сети путем перетаскивания мышью графических символов портов на графические символы сетей.

Другой способ образования виртуальных сетей основан на группировании MAC-адресов. Каждый известный коммутатору MAC-адрес приписывается той или иной виртуальной сети. Если в сети имеется множество узлов, администратору придется выполнять немало операций вручную. Однако при построении виртуальных сетей на основе нескольких коммутаторов подобный способ более гибок, нежели группирование портов.

СОЗДАНИЕ VLAN НА ОСНОВЕ НЕСКОЛЬКИХ КОММУТАТОРОВ

На Рисунке 4 проиллюстрирована ситуация, возникающая при создании виртуальных сетей на основе нескольких коммутаторов посредством группирования портов. Если узлы какой-либо виртуальной сети подключены к разным коммутаторам, то для соединения коммутаторов каждой такой сети должна быть выделена отдельная пара портов. В противном случае информация о принадлежности кадра той или иной виртуальной сети при передаче из коммутатора в коммутатор будет утеряна. Таким образом, при методе группирования портов для соединения коммутаторов требуется столько портов, сколько виртуальных сетей они поддерживают, - в результате порты и кабели используются очень расточительно. Кроме того, для организации взаимодействия виртуальных сетей через маршрутизатор каждой сети необходим отдельный кабель и отдельный порт маршрутизатора, что также ведет к большим накладным расходам.

Группирование MAC-адресов в виртуальную сеть на каждом коммутаторе избавляет от необходимости их соединения через несколько портов, поскольку в этом случае меткой виртуальной сети является MAC-адрес. Однако такой способ требует выполнения большого количества ручных операций по маркировке MAC-адресов вручную на каждом коммутаторе сети.

Два описанные подхода основаны только на добавлении информации к адресным таблицам моста и не предусматривают включение в передаваемый кадр информации о принадлежности кадра к виртуальной сети. Остальные подходы используют имеющиеся или дополнительные поля кадра для записи информации о принадлежности кадра при его перемещениях между коммутаторами сети. Кроме того, нет необходимости запоминать на каждом коммутаторе, каким виртуальным сетям принадлежат MAC-адреса объединенной сети.

Дополнительное поле с пометкой о номере виртуальной сети используется только тогда, когда кадр передается от коммутатора к коммутатору, а при передаче кадра конечному узлу оно обычно удаляется. При этом протокол взаимодействия «коммутатор-коммутатор» модифицируется, тогда как программное и аппаратное обеспечение конечных узлов остается неизменным. Примеров подобных фирменных протоколов много, но общий недостаток у них один - они не поддерживаются другими производителями. Компания Cisco предложила в качестве стандартной добавки к кадрам любых протоколов локальных сетей заголовок протокола 802.10, назначение которого - поддержка функций безопасности вычислительных сетей. Сама компания обращается к такому методу в тех случаях, когда коммутаторы объединяются между собой по протоколу FDDI. Однако эта инициатива не была поддержана другими ведущими производителями коммутаторов.

Для хранения номера виртуальной сети в стандарте IEEE 802.1Q предусмотрен дополнительный заголовок в два байта, который используется совместно с протоколом 802.1p. Помимо трех бит для хранения значения приоритета кадра, как это описывается стандартом 802.1p, в этом заголовке 12 бит служат для хранения номера виртуальной сети, которой принадлежит кадр. Эта дополнительная информация называется тегом виртуальной сети (VLAN TAG) и позволяет коммутаторам разных производителей создавать до 4096 общих виртуальных сетей. Такой кадр называют «отмеченный» (tagged). Длина отмеченного кадра Ethernet увеличивается на 4 байт, так как помимо двух байтов собственно тега добавляются еще два байта. Структура отмеченного кадра Ethernet показана на Рисунке 5. При добавлении заголовка 802.1p/Q поле данных уменьшается на два байта.

Рисунок 5. Структура отмеченного кадра Ethernet.

Появление стандарта 802.1Q позволило преодолеть различия в фирменных реализациях VLAN и добиться совместимости при построении виртуальных локальных сетей. Технику VLAN поддерживают производители как коммутаторов, так и сетевых адаптеров. В последнем случае сетевой адаптер может генерировать и принимать отмеченные кадры Ethernet, содержащие поле VLAN TAG. Если сетевой адаптер генерирует отмеченные кадры, то тем самым он определяет их принадлежность к той или иной виртуальной локальной сети, поэтому коммутатор должен обрабатывать их соответствующим образом, т. е. передавать или не передавать на выходной порт в зависимости от принадлежности порта. Драйвер сетевого адаптера получает номер своей (или своих) виртуальной локальной сети от администратора сети (путем конфигурирования вручную) либо от некоторого приложения, работающего на данном узле. Такое приложение способно функционировать централизованно на одном из серверов сети и управлять структурой всей сети.

При поддержке VLAN сетевыми адаптерами можно обойтись без статического конфигурирования путем приписывания порта определенной виртуальной сети. Тем не менее метод статического конфигурирования VLAN остается популярным, так как позволяет создать структурированную сеть без привлечения программного обеспечения конечных узлов.

Наталья Олифер - обозреватель «Журнала сетевых решений/LAN». С ней можно связаться по адресу:

VLAN (аббр. от англ. Virtual Local Area Network) - логическая ("виртуальная") локальная компьютерная сеть, представляет собой группу хостов с общим набором требований, которые взаимодействуют так, как если бы они были подключены к широковещательному домену, независимо от их физического местонахождения. VLAN имеет те же свойства, что и физическая локальная сеть, но позволяет конечным станциям группироваться вместе, даже если они не находятся в одной физической сети.

VLAN"ы могут быть настроены на коммутаторах, маршрутизаторах, других сетевых устройствах.

Преимущества:

1 - Облегчается перемещение, добавление устройств и изменение их соединений друг с другом.

2 - Достигается большая степень административного контроля вследствие наличия устройства, осуществляющего между сетями VLAN маршрутизацию на 3-м уровне.

3 - Уменьшается потребление полосы пропускания по сравнению с ситуацией одного широковещательного домена.

4 - Сокращается непроизводственное использование CPU за счет сокращения пересылки широковещательных сообщений.

5 - Предотвращение широковещательных штормов и предотвращение петель.

Лабораторная работа № 10. Настройка VLAN на одном коммутаторе Cisco.

В данной работе рассматривается настройка VLAN на коммутаторе фирмы Сisco на его портах доступа. Создайте сеть, логическая топология которой представлена на рис.9.1. Компьютеры соединены коммутатором Cisco 2960-24ТТ. В таблице 9.1 приведены адреса компьютеров.

Задача данной работы – сделать две независимые группы компьютеров: ПК0, ПК1 и ПК2 должны быть доступны только друг для друга, вторая независимая группа - компьютеры ПК3 и ПК4. Для этого создадим два отдельных VLAN (рис.8.1)

Рис. 8.1. Схема сети с одним коммутатором.

Таблица 8.1.

Компьютер

Порт коммутатора

Для проверки конфигурации хоста ПК0 выполним команду ipconfig. Результат выполнения команды на рисунке 8.2. При желании можно выполнить аналогичную проверку на остальных хостах.

Рис.8.2. Проверка конфигурации хоста

Используя команду PING проверим связь между всеми компьютерами. Сейчас они в одной сети и все доступны друг для друга

Теперь займемся настройкой VLAN 2 и VLAN3, чтобы структурировать сети на коммутаторе и навести в них порядок.

В открывшемся окне перейдите на вкладку CLI. Вы увидите окно консоли. Нажмите Enter, чтобы приступить к вводу команд. Информация, которая в данный момент отражена на консоли, свидетельствует о том что интерфейсы FasteEthernet0/1 – FasteEthernet0/5 находятся в рабочем состоянии.

Перейдем в привилегированный режим выполнив команду enable :

Switch>en

Просмотрим информацию о существующих на коммутаторе VLAN-ах (рис.8.3). Для этого выполним следующую команду:

Switch#sh vl br

Рис.8.3. Просмотр информации о VLAN на коммутаторе.

В результате выполнения команды на экране появится: номера VLAN – первый столбец, название VLAN - второй столбец, состояние VLAN (работает он в данный момент или нет) – третий столбец, порты принадлежащие к данному VLAN – четвертый столбец. Как мы видим по умолчанию на коммутаторе существует пятьVLAN-ов. Все порты коммутатора по умолчанию принадлежат VLAN 1. Остальные четыре VLAN являются служебными и используются не очень часто.

Для реализации сети, которую мы запланировали сделать, создадим на коммутаторе еще два VLAN. Для этого в привилегированном режиме выполните следующую команду:

Switch#conf t

Enter configuration commands, one per line. End with CNTL/Z.

для перехода в режим конфигурации. Вводим команду VLAN 2. Данной командой вы создадите на коммутаторе VLAN с номером 2. Указатель ввода Switch(config)# изменится на Switch(config-vlan)# это свидетельствует о том, что вы конфигурируете уже не весь коммутатор в целом, а только отдельный VLAN, в данном случае VLAN номер 2. Если вы используете команду «vlan x», где x номер VLAN, когда VLAN x еще не создан на коммутаторе, то он будет автоматически создан и вы перейдете к его конфигурированию. Когда вы находитесь в режиме конфигурирования VLAN, возможно изменение параметров выбранной виртуальной сети, например можно изменить ее имя с помощью команды name.

Для достижения поставленной в данном посте задачи, сконфигурируем VLAN 2 следующим образом:

Switch(config)#vlan 2

Switch(config-vlan)#name subnet_10

Switch(config)#

Switch(config-if-range)#switchport mode access

Switch(config-if-range)#switchport access vlan 2

Разберем данную конфигурацию. Как уже говорилось ранее командой VLAN 2, мы создаем на коммутаторе новый VLAN с номером 2. Команда name subnet_10 присваивает имя subnet_10 виртуальной сети номер 2. Выполняя команду interface range fastEthernet 0/1-3 мы переходим к конфигурированию интерфейсов fastEthernet0/1, fastEthernet0/2 и fastEthernet0/3 коммутатора. Ключевое слово range в данной команде, указывает на то, что мы будем конфигурировать не один единственный порт, а целый диапазон портов, в принципе ее можно не использовать, но тогда последние три строки придется заменить на:

Switch(config)#interface fastEthernet 0/1

Switch(config-if)#switchport mode access

Switch(config-if)#switchport access vlan 2

Switch(config)#interface fastEthernet 0/2

Switch(config-if)#switchport mode access

Switch(config-if)#switchport access vlan 2

Switch(config)#interface fastEthernet 0/3

Switch(config-if)#switchport mode access

Switch(config-if)#switchport access vlan 2

Команда switchport mode access конфигурирует выбранный порт коммутатора, как порт доступа (аксесс порт).

Команда switchport access vlan 2 указывает, что данный порт является портом доступа для VLAN номер 2.

Выйдите из режима конфигурирования, дважды набрав команду exit и просмотрите результат конфигурирования (рис.8.4), выполнив уже знакомую нам команду sh vl br еще раз:

Рис.8.4. Распределение портов на VLAN.

На коммутаторе появился еще один VLAN с номером 2 и именем subnet_10, портами доступа которого являются fastEthernet0/1, fastEthernet0/2 и fastEthernet0/3.

Рис.8.5. Распределение портов на VLAN.

В принципе уже все готово и наша сеть настроена. Осталось лишь ее немного протестировать. Перейдите в консоль компьютера ПК0. Пропингуйте с него остальные компьютеры сети. Компьютеры ПК1 и ПК2 доступны, а компьютеры ПК3 и ПК4 не доступны. Все пять компьютеров теоретически должны находится в одной подсети 10.0.0.0/8 и видеть друг друга, на практике они находятся в разных виртуальных локальных сетях и поэтому не могут взаимодействовать между собой.

Лабораторная работа № 11. Настройка VLAN на двух коммутаторах Cisco.

Создайте сеть, логическая топология которой представлена на рис.8.6. Компьютеры соединены коммутатором Cisco 2950-24. В таблице 8.2 приведены адреса компьютеров.

Рис.8.6. Схема сети.

Таблица 8.2.

Компьютер

Коммутатор

Порт коммутатора

Проверим связность получившейся сети. Для этого пропингуемс 2_1 все остальные компьютеры. Поскольку пока в сети нет разделения наVLAN, то все компьютеры должны быть доступны.

Теперь займемся настройкой VLAN 20 и VLAN30, чтобы структурировать сети на коммутаторах.

Перейдите к настройке коммутатора Switch1. Откройте его консоль. В открывшемся окне перейдите на вкладку CLI, войдите в привилегированный режим и настройте VLAN 20 и VLAN30 согласно таблице 2.

Создайте на коммутаторе VLAN 20. Для этого в привилегированном режиме выполните следующую команду:

Switch1#conf t

Enter configuration commands, one per line. End with CNTL/Z.

для перехода в режим конфигурации и настройте VLAN 20 и VLAN 30 следующим образом:

Switch1(config)#vlan 20

Switch1(config)#interface fastEthernet 0/1

Switch1(config-if-range)#switchport mode access

Switch1(config-if-range)#switchport access vlan 20

Switch1(config-if-range)#exit

Switch1(config)#vlan 30

Switch1(config)#interface fastEthernet 0/2

Switch1(config-if-range)#switchport mode access

Switch1(config-if-range)#switchport access vlan 30

Просмотрите информацию о существующих на коммутаторе VLAN-ах командой:

Switch1#sh vl br

У вас должен получится результат, показанный на рис.8.7.

Рис. 8.7. Конфигурация Switch1.

Аналогичным образом сконфигурируйте Switch2 (рис. 8.8).

Рис. 8.7. Конфигурация Switch2.

Поскольку в данный момент нет обмена информации о вилланах, то компьютеры будут пинговать только себя.

Теперь организуем магистраль обмена между коммутаторами. Для этого настроим третий порт на каждом коммутаторе как транковый.

Войдите в консоль коммутатора Switch1 и задайте транковый порт:

Switch1>en

Switch1#conf t

Switch1(config)#interface fastEthernet 0/3

Switch1(config)#switchport mode trunk

Switch1(config)#no shutdown

Switch1(config)#exit

Откройте конфигурацию коммутатора на интерфейсе FastEthernet0/3 и убедитесь, что порт транковый (рис.8.8).

Рис.8.8. Конфигурация интерфейса FastEthernet0/3.

На коммутаторе Switch2 интерфейс FastEthernet0/3 автоматически настроится как транковый.

Теперь компьютеры, входящие в один виллан должны пинговаться. У вас должна появиться связь между компьютерами 2_1 и 2_2, а так же между 3_1 и 3_2. Но компьютеры в другом виллане будут недоступны.

Сохраните схему сети.

Теперь объединим две виртуальные сети с помощью маршрутизатора.

Добавьте в схему сети маршрутизатор, как показано на рис.8.9. Маршрутизатор соединен с интерфейсами fastEthernet 0/4 коммутаторов.

Разобьем нашу сеть 10.0.0.0 на две подсети: 10.2.0.0 и 10.3.0.0. Для этого поменяйте IP адреса и маску подсети на 255.255.0.0, как указано в таблице 8.3.

Таблица 8.3.

Компьютер

Коммутатор

Порт коммутатора

Компьютеры должны пинговаться в пределах одного виллана и одной подсети.

Рис. 8.9. Схема сети.

Обозначим на коммутаторах интерфейсы, подсоединенные к маршрутизатору в виртуальные сети.

Войдите в конфигурацию первого коммутатора Switch1 и задайте параметры четвертого порта:

Switch1(config)#interface fastEthernet 0/4

Switch1(config-if)#switchport access vlan 20

Проверьте настройки первого коммутатора Switch1 (рис.8.10):

Рис.8.10. Настройки коммутатора Switch1.

Войдите в конфигурацию второго коммутатора Switch2 и задайте параметры четвертого порта:

Switch2(config)#interface fastEthernet 0/4

Switch2(config-if)#switchport access vlan 30

Проверьте настройки второго коммутатора Switch2 (рис.8.11):

Рис.8.11. Настройки коммутатора Switch2.

Войдите в конфигурацию маршрутизатора и настройте IP адреса на маршрутизаторе:

Router1(config-if)#interface fa0/0

Router1(config-if)#ip address 10.2.0.254 255.255.0.0

Router1(config-if)#no shutdown

Router1(config-if)#interface fa0/1

Router1(config-if)#ip address 10.3.0.254 255.255.0.0

Router1(config-if)#no shutdown

С этого момента мы установили маршрутизацию между двумя подсетями. Осталось установить шлюзы на компьютерах (таблица 8.4).

Таблица 8.4.

Компьютер

Проверьте доступность компьютеров в сети. Теперь все компьютеры должны быть доступны и все адреса должны пинговаться.

Лабораторная работа № 12. Настройка VLAN в корпоративной сети.

Создайте следующую схему сети (рис.8.12):

Рис.8.12. Схема корпоративной сети.

Состав сети:

Три коммутатора второго уровня распределения 2950-24 (Switch1, Switch2, Switch4);

Центральный коммутатор третьего уровня 3560-24PS (Switch3), выполняющий роль роутера;

Сервер (Server1);

Три подсети по два узла в каждой

Для любого вилана могут быть доступны только узлы этого же вилана и сервер Server1.

В таблице 8.5 и 8.6 приведены данные для установки параметров компьютеров и коммутаторов.

Таблица 8.5. Конфигурация компьютеров.

Компьютер

Коммутатор

Порт коммутатора

Таблица 8.6. Связь коммутаторов по портам.

После настройки всех коммутаторов установите самостоятельно шлюзы на всех компьютерах и сервере.

Сконфигурируйте центральный коммутатор:

Перейдите к конфигурации центрального коммутатора Switch3 и создайте на нем базу VLAN.

1. Создайте VLAN 10:

Switch3>en

Switch3#conf t

Switch3(config)#vlan 10

Switch3(config-vlan)#exit

2. Создайте VLAN 11, VLAN 12 и VLAN 13.

3. Настройте протокол VTP в режиме сервера:

Switch3(config)#vtp domain HOME

Switch3(config)#vtp password HOME

Switch3(config)#vtp mode server

4. Просмотрите информацию о конфигурации VTP:

Switch#sh vtp status

5. Настройте все интерфейсы на транк:

Switch3(config)#int fa0/1

Switch3(config-if)#switchport mode trunk

Switch3(config-if)#exit

и повторите эти настройки для второго и третьего интерфейсов.

Перейдите к конфигурации коммутатора Switch4 и переведите его в режим client:

1. Создайте на коммутаторе VLAN 10 и задайте в нем порт 1 как access порт:

Switch4>en

Switch4#conf t

Switch4(config)#vlan 10

Switch4(config-vlan)#exit

Switch4(config)#int fa0/1

Switch4(config-if)#switchport access vlan 10

Switch4(config-if)#switchport mode access

Switch4(config-if)#no shut

2. Создайте на коммутаторе VLAN 11 и задайте в нем порт 4 как access порт.

3. Создайте на коммутаторе VLAN 12 и задайте в нем порт 2 как access порт.

4. Переведите коммутатор в режим clint:

Switch4(config)#vtp domain HOME

Switch4(config)#vtp password HOME

Switch4(config)#vtp mode client

ВАЖНО ! При вводе имени домена и пароля соблюдайте нужный регистр.

Перейдите к конфигурации коммутатора Switch1 и выподните следующие настройки:

1. Создайте на коммутаторе VLAN 11 и задайте в нем порт 1 как access порт.

2. Создайте на коммутаторе VLAN 13 и задайте в нем порт 2 как access порт.

Перейдите к конфигурации коммутатора Switch2.

1. Создайте на коммутаторе VLAN 12 и задайте в нем порт 2 как access порт.

2. Создайте на коммутаторе VLAN 13 и задайте в нем порт 1 как access порт.

3. Переведите коммутатор в режим client.

Проверьте работоспособность сети на канальном уровне модели OSI.

После установки всех настроек таблица VLAN разойдется по коммутаторам с помощью протокола VTP.

В результате компьютеры, расположенные в одном виллане, будут доступны друг для друга, а другие компьютеры недоступны. Проверьте связь командой PING между следующими парами компьютеров:

ПК1 – ПК2;

ПК3 – ПК4;

ПК5 – ПК6.

Если Вы все сделали правильно, то ping между парами пройдет, если нет – проверьте следующие установки:

Транковыми портами являются: на Switch3 все порты, на Switch1, Switch2 и Switch4 – третий порт;

Соединения интерфейсов на коммутаторах;

Названия и пароли доменов на каждом коммутаторе (команда sh vtp status);

Привязку интерфейсов к вилланам на коммутаторах (команда sh vl br).

Настройка маршрутизации на центральном коммутаторе.

Создадим интерфейсы для каждого VLAN.

Настройка интерфейса для vlan 10 (шлюз по умолчанию):

Switch3(config)#int vlan 10

Switch3(config-if)#ip address 10.10.0.1 255.255.0.0

Switch3(config-if)#no shut

Switch3(config-if)#exit

Повторите эти настройки для каждого VLAN, задавая адрес IP: 10..0.1 и маску /16.

После этого зайдите в настройки каждого компьютера и установите нужный шлюз по умолчанию. Например для ПК1 – 10.11.0.1.

Включите маршрутизацию командой:

Switch3(config)#ip routing

Проверьте работоспособность сети на сетевом уровне модели OSI.

После включения маршрутизации все компьютеры будут доступны с любого хоста.

Выполним основную задачу работы: для любого вилана могут быть доступны только узлы этого же вилана и сервер Server1.

Для этого введем следующие ограничения на трафик сети:

1 - Разрешить пакеты от любого хоста к серверу.

2 - Разрешить пакеты от сервера до любого хоста.

3 – Трафик от одной подсети к этой же подсети разрешить.

4 – Правило по умолчанию: запретить всё остальное.

Ограничения на трафик сети задаются с помощью команды фильтрации access - list . Данная команда задает критерии фильтрации в списке опций разрешения и запрета, называемом списком доступа. Списки доступа имеют два правила: permit – разрешить и deny – запретить. Данные правила либо пропускают пакет дальше по сети, либо блокируют его доступ.

Более подробно списки доступа будут рассмотрены в лабораторной работе №14.

Открываем центральный коммутатор (Switch3) и меняем его конфигурацию с помощью команды фильтрации access - list :

Switch3(config)#ip access-list extended 100

(создается расширенный список доступа под номером 100)

Switch3(config-ext-nacl)#permit ip any 10.10.0.0 0.0.0.255

Switch3(config-ext-nacl)#permit ip 10.10.0.0 0.0.0.255 any

(разрешается доступ к сети 10.10.0.0/24)

Switch3(config-ext-nacl)#permit ip 10.11.0.0 0.0.0.255 10.11.0.0 0.0.0.255

Switch3(config-ext-nacl)#permit ip 10.12.0.0 0.0.0.255 10.12.0.0 0.0.0.255

Switch3(config-ext-nacl)#permit ip 10.13.0.0 0.0.0.255 10.13.0.0 0.0.0.255

(разрешается: доступ из сети 10.11.0.0/24 в эту же сеть;

доступ из сети 10.12.0.0/24 в эту же сеть;

доступ из сети 10.13.0.0/24 в эту же сеть).

Switch3(config-ext-nacl)#exit

Теперь этот access-list наложим на конкретный интерфейс и применим ко всем VLAN-ам на входящий трафик (опция in на входящий трафик, out на исходящий трафик):

Switch3(config)#int vlan 10

Switch3(config-if)#ip access-group 100 in

Этот шаг повторяем для каждого из VLAN-ов.

В результате получим:

для любого вилана могут быть доступны только узлы этого же вилана и сервер Server1.

Самостоятельная работа №3.

На предприятии имеется два отдела, схема сетей которых представлена на рис.8.13.

Рис.8.13. Схема сетей отделов предприятия.

Отдел 1 – Switch1, отдел 2 – Switch2.

В каждой сети имеется сервер со службами DHCP, DNS и HTTP (на серверах Server1 и Server2 расположены интернет-сайты отделов).

Компьютеры ПК0 и ПК3 с DHCP серверов своих сетей получают параметры IP адреса и шлюз.

Компьютеры ПК1 и ПК2 находятся в отдельной сети в одном VLAN.

Дополните схему сети маршрутизатором или коммутатором третьего уровня, чтобы обеспечить работу корпоративной сети в следующих режимах:

1 - компьютеры ПК0 и ПК3 должны открывать сайты каждого отдела;

2 – компьютеры ПК1 и ПК2 должны быть доступны только друг для друга.

Контрольные вопросы.

    Для чего создаются виртуальные локальные сети? Каковы их достоинства?

    Как связываются между собой VLAN и порты коммутатора?

    Как обеспечивается общение между узлами разных виртуальных сетей?

    Как обеспечивается управление виртуальными локальными сетями?

    Можно ли построить VLAN на нескольких коммутаторах? Как это сделать?

    Для чего служит идентификатор кадра (tag)? Где он размещается?

    Что такое транк? Как он создается на коммутаторе и маршрутизаторе?

    Какие команды используются для назначения VLAN на интерфейсы?

    Какие команды используются для создания транковых соединений?

    Какие команды используются для верификации VLAN?

Виртуальная сеть представляет собой коммутируемую сеть, в которой выполнено логическое сегментирование по исполняемым функциям, используемым приложениям или по принадлежности пользователей к определенному отделу, вне зависимости от физического расположения их компьютеров. Каждый порт коммутатора может быть включен в виртуальную сеть. Все порты, включенные в одну виртуальную сеть, принимают широковещательные сообщения в ее пределах, в то время как порты, в нее не включенные, этих сообщений не принимают. Различаются три способа реализации виртуальных сетей, которые могут быть использованы для включения портов коммутаторов в виртуальную сеть: с центральным портом, статический и динамический.

Статическая виртуальная сеть (static VLAN) представляет собой совокупность портов коммутатора, статически объединенных в виртуальную сеть. Эти порты поддерживают назначенную конфигурацию до тех пор, пока она не будет изменена администратором. Хотя для внесения изменений статические виртуальные сети требуют вмешательства администратора, к их достоинствам можно отнести высокий уровень безопасности, легкость конфигурирования и возможность непосредственного наблюдения за работой сети.

Динамические виртуальные сети (dynamic VLAN) представляют собой логическое объединение портов коммутатора, которые могут автоматически определять свое расположение в виртуальной сети. Функционирование динамической виртуальной сети основывается на МАС - адресах, на логической адресации или на типе протокола пакетов данных. Основными достоинствами такого подхода является уменьшение объема работ при добавлении нового пользователя или при переезде уже существующего и централизованное извещение всех пользователей при добавлении в сеть неопознанного пользователя. Основная работа в этом случае заключается в установке базы данных в программное обеспечение управления виртуальной сетью и в поддержании ее актуальности.

Виртуальные сети c группировкой портов (port-based VLAN)

В этом случае администратор назначает каждый порт коммутатора принадлежащим VLAN. Например, порты 1-3 могут быть назначены для VLAN отдела продаж, порты 4-6 для VLAN разработчиков и порты 7-9 для VLAN сетевого администрирования. Коммутатор определяет, к какому VLAN принадлежит каждый пакет, учитывая порт, в который он прибыл.

Когда компьютер пользователя подключается к другому порту коммутатора, администратор сети может просто переназначать новый порт для старого VLAN, к которому принадлежал пользователь. В этом случае сетевые изменения полностью прозрачны для пользователя и администратору не нужно изменять топологию сети. Однако, этот метод имеет один существенный недостаток, если концентратор подключен к порту коммутатора, все пользователи, подключенные к нему должны принадлежать тому же VLAN.

Следовательно, такое решение малоприемлемо при использовании концентраторов или в сетях c мощными серверами, к которым обращается много пользователей (сервер не удастся включить в разные VLAN). Кроме того, виртуальные сети на основе портов не позволяют вносить в сеть изменения достаточно простым путем, поскольку при каждом изменении требуется физическое переключение устройств.

В виртуальных сетях с группировкой портов все узлы виртуальной сети подключены к одному и тому же интерфейсу маршрутизатора. На рисунке показано семейство пользователей виртуальной сети, подключенных к порту маршрутизатора. Такое подключение облегчает работу администратора и повышает эффективность работы сети, поскольку:

1) в виртуальной сети легко выполняются административные действия;
2) повышается безопасность при обмене информацией между виртуальными сетями; пакеты не "просачиваются" в другие домены.

В простейшем случае устройство, имеющее только один сетевой интерфейс, может быть включено только в один VLAN. Для включения сетевого устройства в несколько VLAN оно должно иметь несколько сетевых адаптеров.

IEEE 802.1Q стандарт в рамках спецификации port-based VLAN предусматривает взаимодействие с устройствами, не поддерживающими инкапсуляцию 802.1q. Согласно этой спецификации, каждый тип фрэймов назначается разным VLAN. Первоначально все порты коммутатора принадлежат VLAN c идентификатором сети port VLAN ID (PVID).

PVID имеет численное значение, по умолчанию 1. Все фреймы, не имеющие метки VLAN, которые генерируются не поддерживающими VLAN устройствами, идентифицируются как принадлежащие VLAN c PVID. Если фрейм генерируется устройством с поддержкой VLAN, то он содержит соответствующий тег VLAN, в котором прописан VLAN ID (VID). Каждый порт коммутатора может иметь один или несколько VID. Когда фрейм поступает на порт коммутатора, он идентифицируется по его VID. Коммутатор просматривает таблицу VLAN и пересылает фрейм на порты, имеющие тот же VID.

В примере на рисунке фрейм без тега, поступающий от устройства на порту 0, идентифицируется как принадлежащий VLAN c PVID=1 и пересылается на порт 1, имеющий тот же PVID. Если от устройства на порту 1 поступит фрейм с VID=2, он будет передан на порты 0 и 3.

Виртуальные сети на основе MAC адреса (MAC address-based VLAN)

На основе MAC адреса (MAC address-based VLAN) - в этом случае принадлежность пакета к VLAN определяется MAC адресом источника или приемника. Каждый коммутатор поддерживает таблицу MAC адресов и их соотношение с VLAN. Ключевое преимущество этого метода состоит в том, что не требуется переконфигурация коммутатора при переподключении пользователей к различным портам. Однако, присвоение MAC адресов VLAN может потребовать значительных временных затрат, а также присвоение отдельных MAC адресов нескольким VLAN может быть непростой задачей. Это может быть существенным ограничением для совместного использования ресурсов сервера между несколькими VLAN. (Хотя MAC адрес теоретически может быть присвоен множеству VLAN, это может вызывать серьезные проблемы с существующей маршрутизацией и ошибки, связанные с таблицами пересылки пакетов в коммутаторе.)

Как правило, для создания таковой сети производитель оборудования предусматривает наличие управляющего программного обеспечения для управления сетью.

Взаимодействие между VLAN может осуществляться 2-мя способами. В первом в устройство должен быть установлен дополнительный сетевой адаптер и ассоциирован с другой сетью. Данный способ неприемлем при большом количестве устройств, включаемых в несколько VLAN. Во втором случае для объединения сетей используется маршрутизатор. Однако в этом случае имеются ограничения. Маршрутизатор должен иметь отдельный порт для каждой VLAN. При этом нельзя объединить сети в одном сегменте, так как маршрутизатор работает на 3-м уровне модели OSI.

Виртуальные сети сетевого уровня

При использовании другого подхода коммутаторы должны для образования виртуальной сети понимать какой-либо сетевой протокол. Такие коммутаторы называют коммутаторами 3-го уровня, так как они совмещают функции коммутации и маршрутизации. Каждая виртуальная сеть получает определенный сетевой адрес - как правило, IP или IPX.

Тесная интеграция коммутации и маршрутизации очень удобна для построения виртуальных сетей, так как в этом случае не требуется введения дополнительных полей в кадры. К тому же администратор только однократно определяет сети, а не повторяет эту работу на канальном и сетевом уровнях. Принадлежность конечного узла к той или иной виртуальной сети в этом случае задается традиционным способом - с помощью задания сетевого адреса. Порты коммутатора также получают сетевые адреса, причем могут поддерживаться нестандартные для классических маршрутизаторов ситуации, когда один порт может иметь несколько сетевых адресов, если через него проходит трафик нескольких виртуальных сетей, либо несколько портов имеют один и тот же адрес сети, если они обслуживают одну и ту же виртуальную сеть.

При передаче кадров в пределах одной и той же виртуальной сети коммутаторы 3-го уровня работают как классические коммутаторы 2-го уровня, а при необходимости передачи кадра из одной виртуальной сети в другую - как маршрутизаторы. Решение о маршрутизации обычно принимается традиционным способом - его делает конечный узел, когда видит на основании сетевых адресов источника и назначения, что кадр нужно отослать в другую сеть.

Однако, использование сетевого протокола для построения виртуальных сетей ограничивает область их применения только коммутаторами 3-го уровня и узлами, поддерживающими сетевой протокол. Обычные коммутаторы не смогут поддерживать такие виртуальные сети и это является большим недостатком. За бортом также остаются сети на основе не маршрутизируемых протоколов, в первую очередь сети NetBIOS.

В рамках данных VLAN различают сети на базе подсетей, на базе протоколов, и на базе правил.

Виртуальные сети на базе подсетей

В качестве примера такой организации VLAN можно привести сеть, где одна подсеть, скажем класса C с адресацией 198.78.55.0/24 соответствует одной VLAN, вторая подсеть класса C 198.78.42.0/24 соответствует второй VLAN.

Недостаток данного способа состоит в том, что если коммутатор не поддерживает несколько IP подсетей на одном порту, для перемещения в другую VLAN требуется физическое переключение рабочей станции.

Виртуальные сети на базе сетевого протокола

Виртуальные ЛВС сетевого уровня позволяют администратору связать трафик для того или иного протокола в соответствующей виртуальной сети. Точно таким же способом создаются широковещательные домены в сетях на основе маршрутизаторов. Протокол может быть задан в форме IP-подсети или сетевого номера IPX. Можно, к примеру, объединить в виртуальную ЛВС всех пользователей подсети, которая была организована до использования коммутаторов.

В качестве примера можно привести сеть, где устройства, поддерживающие только IP протокол, находятся в одной VLAN, поддерживающие только IPX протокол – во второй VLAN, и тот и другой протокол - находятся в обеих сетях.

Виртуальные сети на базе правил

Для включения устройств в виртуальные ЛВС можно использовать все перечисленные выше способы при условии их поддержки коммутаторами. После того, как правила загружены во все коммутаторы, они обеспечивают организацию VLAN на основе заданных администратором критериев. Поскольку в таких сетях кадры постоянно просматриваются на предмет соответствия заданным критериям, принадлежность пользователей к виртуальным сетям может меняться в зависимости от текущей деятельности пользователей.

Виртуальные ЛВС на основе правил используют широкий набор критериев принадлежности к сети, включая все перечисленные выше варианты: MAC-адреса, адреса сетевого уровня, тип протокола и т.д. Возможно также использовать любые комбинации критериев для создания правил, наиболее точно соответствующих вашим задачам.

Функциональные возможности современных коммутаторов позволяют организовывать виртуальные сети (VLAN-сетей) для создания гибкой сетевой инфраструктуры. В настоящее время VLAN-сети еще не получили широкого распространения, особенно в небольших корпоративных сетях. Во многом это связано с тем, что конфигурирование коммутаторов для организации VLAN-сетей весьма непростое дело, особенно если инфраструктура сети включает несколько коммутаторов. Кроме того, конфигурирование коммутаторов при создании VLAN-сетей, равно как и настройка других функциональных возможностей, может значительно отличаться у коммутаторов от различных фирм, вследствие чего известные производители сетевого оборудования, такие как Cisco, HP, 3Com, Allied Telesyn, Avaya, устраивают специальные курсы по работе с их оборудованием. Понятно, что упрощать конфигурирование своего оборудования, делать этот процесс интуитивно понятным и простым и уж тем более вырабатывать общие соглашения и единый интерфейс по настройке оборудования от разных производителей — явно не в интересах самих производителей, однако пользователи вполне способны самостоятельно разобраться во многих возможностях коммутаторов. Поэтому в данной статье мы рассмотрим возможности современных коммутаторов по организации виртуальных сетей и расскажем о базовых принципах их конфигурирования.

Назначение виртуальных сетей

иртуальной сетью VLAN (Virtual LAN) называют группу узлов сети, образующих домен широковещательного трафика (Broadcast Domain). Такое определение вполне корректно, но малоинформативно, так что попытаемся трактовать понятие виртуальной сети несколько иначе.

При создании локальной сети на основе коммутатора, несмотря на возможность использования пользовательских фильтров по ограничению трафика, все узлы сети представляют собой единый широковещательный домен, то есть широковещательный трафик передается всем узлам сети. Таким образом, коммутатор изначально не ограничивает широковещательный трафик, а сами сети, построенные по указанному принципу, именуются плоскими.

Виртуальные сети образуют группу узлов сети, в которой весь трафик, включая и широковещательный, полностью изолирован на канальном уровне от других узлов сети. Это означает, что передача кадров между узлами сети, относящимися к различным виртуальным сетям, на основании адреса канального уровня невозможна (хотя виртуальные сети могут взаимодействовать друг с другом на сетевом уровне с использованием маршрутизаторов).

Изолирование отдельных узлов сети на канальном уровне с использованием технологии виртуальных сетей позволяет решать одновременно несколько задач. Во-первых, виртуальные сети способствуют повышению производительности сети, локализуя широковещательный трафик в пределах виртуальной сети и создавая барьер на пути широковещательного шторма. Коммутаторы пересылают широковещательные пакеты (а также пакеты с групповыми и неизвестными адресами) внутри виртуальной сети, но не между виртуальными сетями. Во-вторых, изоляция виртуальных сетей друг от друга на канальном уровне позволяет повысить безопасность сети, делая часть ресурсов для определенных категорий пользователей недоступной.

Типы виртуальных сетей

о появления общепризнанного стандарта по организации виртуальных сетей IEEE 802.1Q каждый производитель сетевого оборудования использовал собственную технологию организации VLAN. Такой подход имел существенный недостаток — технологии одного производителя были несовместимы с технологиями других фирм. Поэтому при построении виртуальных сетей на базе нескольких коммутаторов необходимо было использовать только оборудование от одного производителя. Принятие стандарта виртуальных сетей IEEE 802.1Q позволило преодолеть проблему несовместимости, однако до сих пор существуют коммутаторы, которые либо не поддерживают стандарт IEEE 802.1Q, либо, кроме возможности организации виртуальных сетей по стандарту IEEE 802.1Q, предусматривают и иные технологии.

Существует несколько способов построения виртуальных сетей, но сегодня в коммутаторах главным образом реализуется технология группировки портов или используется спецификация IEEE 802.1Q.

Виртуальные сети на основе группировки портов

иртуальные сети на основе группировки портов (Port-based) обычно реализуются в так называемых Smart-коммутаторах или в управляемых коммутаторах — как дополнение к возможности организации VLAN на базе стандарта IEEE 802.1Q.

Данный способ создания виртуальных сетей достаточно прост и, как правило, не вызывает проблем. Каждый порт коммутатора приписывается к той или иной виртуальной сети, то есть порты группируются в виртуальные сети. Решение о продвижении сетевого пакета в этой сети основывается на MAC-адресе получателя и ассоциированного с ним порта. Если к порту, которому назначена принадлежность к определенной виртуальной сети, например к VLAN#1, подключить ПК пользователя, то этот ПК автоматически будет принадлежать сети VLAN#1. Если же к данному порту подключается коммутатор, то все порты этого коммутатора также будут принадлежать VLAN#1 (рис. 1).

Рис. 1. Виртуальные сети, построенные с использованием технологии группировки портов на базе одного коммутатора

При использовании технологии группировки портов один и тот же порт может быть одновременно приписан к нескольким виртуальным сетям, что позволяет реализовывать разделяемые ресурсы между пользователями различных виртуальных сетей. Например, чтобы реализовать совместный доступ к сетевому принтеру или к файл-серверу пользователей виртуальных сетей VLAN#1 и VLAN#2, тот порт коммутатора, к которому подключается сетевой принтер или файл-сервер, нужно приписать одновременно к сетям VLAN#1 и VLAN#2 (рис. 2).

Рис. 2. Создание разделяемого ресурса между несколькими виртуальными сетями с использованием технологии группировки портов

Описываемая технология обладает рядом преимуществ в сравнении с использованием стандарта IEEE 802.1Q, но имеет и свои недостатки.

К достоинствам можно отнести простоту конфигурации виртуальных сетей. Кроме того, при этом не требуется, чтобы конечные узлы сети поддерживали стандарт IEEE 802.1Q, а поскольку большинство сетевых контроллеров Ethernet не поддерживают этот стандарт, то организация сети на основе группировки портов может оказаться проще. К тому же при подобной организации виртуальных сетей они могут пересекаться, что позволяет создавать разделяемые сетевые ресурсы.

Технология создания виртуальных сетей на основе группировки портов находит применение в случаях использования одного коммутатора или использования стека коммутаторов с единым управлением. Однако если сеть достаточно крупная и построена на нескольких коммутаторах, то возможности по организации виртуальных сетей на основе группировки портов имеют существенные ограничения. Прежде всего, эта технология плохо масштабируется и в большинстве случаев ограничивается лишь одним коммутатором.

Рассмотрим для примера ситуацию, когда сеть построена на базе двух коммутаторов, поддерживающих технологию организации виртуальных сетей на основе группировки портов (рис. 3).

Рис. 3. Реализация виртуальных сетей на основе группировки портов при использовании двух коммутаторов

Пусть необходимо, чтобы часть портов первого и второго коммутаторов относилась к VLAN#1, а другая часть — к VLAN#2. Для этого нужно, во-первых, чтобы оба коммутатора позволяли не только организовывать виртуальные сети на основе группировки портов, но и распространять такие сети на несколько коммутаторов (подобная функция реализована далеко не у всех коммутаторов), во-вторых, чтобы между коммутаторами было установлено столько физических соединений, сколько создано виртуальных сетей. Рассмотрим два шестипортовых коммутатора. Пусть в первом коммутаторе порты 1 и 2 относятся к VLAN#1, а порты 3 и 4 — к VLAN#2; во втором коммутаторе порты 1, 2 и 3 относятся к VLAN#1, а порт 4 — к VLAN#2. Чтобы пользователи VLAN#1 первого коммутатора могли общаться с пользователями VLAN#1 второго коммутатора, эти коммутаторы должны быть связаны между собой портами, относящимися к VLAN#1 (например, порт 5 первого и второго коммутаторов необходимо приписать к VLAN#1). Аналогично, для общения пользователей VLAN#2 первого коммутатора с пользователями VLAN#2 второго коммутатора следует связать эти коммутаторы через порты, приписанные к VLAN#2 (это могут быть порты 6 на обоих коммутаторах). Таким образом, проблема масштабируемости виртуальных сетей на основе технологии группировки портов решается (правда, не во всех случаях) за счет установления избыточных связей между коммутаторами.

Виртуальные сети на основе стандарта IEEE 802.1Q

ри наличии развитой сетевой инфраструктуры, насчитывающей множество коммутаторов, более эффективным решением создания виртуальных сетей будет технология IEEE 802.1Q. В виртуальных сетях, основанных на стандарте IEEE 802.1Q, информация о принадлежности передаваемых Ethernet-кадров к той или иной виртуальной сети встраивается в сам передаваемый кадр. Таким образом, стандарт IEEE 802.1Q определяет изменения в структуре кадра Ethernet, позволяющие передавать информацию о VLAN по сети.

К кадру Ethernet добавляется метка (Tag) длиной 4 байта — такие кадры называют кадрами с метками (Tagged frame). Дополнительные биты содержат информацию по принадлежности кадра Ethernet к виртуальной сети и о его приоритете (рис. 4).

Добавляемая метка кадра включает в себя двухбайтовое поле TPID (Tag Protocol Identifier) и двухбайтовое поле TCI (Tag Control Information). Поле TCI, в свою очередь, состоит из полей Priority, CFI и VID. Поле Priotity длиной 3 бита задает восемь возможных уровней приоритета кадра. Поле VID (VLAN ID) длиной 12 бит является идентификатором виртуальной сети. Эти 12 бит позволяют определить 4096 различных виртуальных сетей, однако идентификаторы 0 и 4095 зарезервированы для специального использования, поэтому всего в стандарте 802.1Q возможно определить 4094 виртуальные сети. Поле CFI (Canonical Format Indicator) длиной 1 бит зарезервировано для обозначения кадров сетей других типов (Token Ring, FDDI), передаваемых по магистрали Ethernet, и для кадров Ethernet всегда равно 0.

Изменение формата кадра Ethernet приводит к тому, что сетевые устройства, не поддерживающие стандарт IEEE 802.1Q (такие устройства называют Tag-unaware), не могут работать с кадрами, в которые вставлены метки, а сегодня подавляющее большинство сетевых устройств (в частности, сетевые Ethernet-контроллеры конечных узлов сети) не поддерживают этот стандарт. Поэтому для обеспечения совместимости c устройствами, поддерживающими стандарт IEEE 802.1Q (Tag-aware-устройства), коммутаторы стандарта IEEE 802.1Q должны поддерживать как традиционные Ethernet-кадры, то есть кадры без меток (Untagged), так и кадры с метками (Tagged).

Входящий и исходящий трафики, в зависимости от типа источника и получателя, могут быть образованы и кадрами типа Tagged, и кадрами типа Untagged — только в этом случае можно достигнуть совместимости с внешними по отношению к коммутатору устройствами. Трафик же внутри коммутатора всегда образуется пакетами типа Tagged. Поэтому для поддержки различных типов трафиков и для того, чтобы внутренний трафик коммутатора образовывался из пакетов Tagged, на принимаемом и передающем портах коммутатора кадры должны преобразовываться в соответствии с предопределенными правилами.

Правила входящего порта (Ingress rules)

Рассмотрим более подробно процесс передачи кадра через коммутатор (рис. 5). По отношению к трафику каждый порт коммутатора может быть как входным, так и выходным. После того как кадр принят входным портом коммутатора, решение о его дальнейшей обработке принимается на основании предопределенных правил входного порта (Ingress rules). Поскольку принимаемый кадр может относиться как к типу Tagged, так и к типу Untagged, то правилами входного порта определяется, какие типы кадров должны приниматься портом, а какие отфильтровываться. Возможны следующие варианты: прием только кадров типа Tagged, прием только кадров типа Untagged, прием кадров обоих типов. По умолчанию для всех коммутаторов правилами входного порта устанавливается возможность приема кадров обоих типов.

Рис. 5. Процесс продвижения кадров в коммутаторе, совместимом со стандартом IEEE 802.1Q

Если правилами входного порта определено, что он может принимать кадр Tagged, в котором имеется информация о принадлежности к конкретной виртуальной сети (VID), то этот кадр передается без изменения. А если определена возможность работы с кадрами типа Untagged, в которых не содержится информации о принадлежности к виртуальной сети, то прежде всего такой кадр преобразуется входным портом коммутатора к типу Tagged (напомним, что внутри коммутатора все кадры должны иметь метки о принадлежности к виртуальной сети).

Чтобы такое преобразование стало возможным, каждому порту коммутатора присваивается уникальный PVID (Port VLAN Identifier), определяющий принадлежность порта к конкретной виртуальной сети внутри коммутатора (по умолчанию все порты коммутатора имеют одинаковый идентификатор PVID=1). Кадр типа Untagged преобразуется к типу Tagged, для чего дополняется меткой VID (рис. 6). Значение поля VID входящего Untagged-кадра устанавливается равным значению PVID входящего порта, то есть все входящие Untagged-кадры автоматически приписываются к той виртуальной сети внутри коммутатора, к которой принадлежит входящий порт.

Правила продвижения пакетов (Forwarding Process)

После того как все входящие кадры отфильтрованы, преобразованы или оставлены без изменения в соответствии в правилами входящего порта, решение об их передаче к выходному порту основывается на предопределенных правилах продвижения пакетов. Правило продвижения пакетов внутри коммутатора заключается в том, что пакеты могут передаваться только между портами, ассоциированными с одной виртуальной сетью. Как уже отмечалось, каждому порту присваивается идентификатор PVID, который используется для преобразования принимаемых Untagged-кадров, а также для определения принадлежности порта к виртуальной сети внутри коммутатора с идентификатором VID=PVID. Таким образом, порты с одинаковыми идентификаторами внутри одного коммутатора ассоциируются с одной виртуальной сетью. Если виртуальная сеть строится на базе одного коммутатора, то идентификатора порта PVID, определяющего его принадлежность к виртуальной сети, вполне достаточно. Правда, создаваемые таким образом сети не могут перекрываться, поскольку каждому порту коммутатора соответствует только один идентификатор. В этом смысле создаваемые виртуальные сети не обладали бы такой гибкостью, как виртуальные сети на основе портов. Однако стандарт IEEE 802.1Q с самого начала задумывался для построения масштабируемой инфраструктуры виртуальных сетей, включающей множество коммутаторов, и в этом состоит его главное преимущество по сравнению с технологией образования VLAN на основе портов. Но для того, чтобы расширить сеть за пределы одного коммутатора, одних идентификаторов портов недостаточно, поэтому каждый порт может быть ассоциирован с несколькими виртуальными сетями, имеющими различные идентификаторы VID.

Если адрес назначения пакета соответствует порту коммутатора, который принадлежит к той же виртуальной сети, что и сам пакет (могут совпадать VID пакета и VID порта или VID пакета и PVID порта), то такой пакет может быть передан. Если же передаваемый кадр принадлежит к виртуальной сети, с которой выходной порт никак не связан (VID пакета не соответствует PVID/VID порта), то кадр не может быть передан и отбрасывается.

Правила выходного порта (Egress rules)

После того как кадры внутри коммутатора переданы на выходной порт, их дальнейшее преобразование зависит от правил выходного порта. Как уже говорилось, трафик внутри коммутатора создается только пакетами типа Tagged, а входящий и исходящий трафики могут быть образованы пакетами обоих типов. Соответственно правилами выходного порта (правило контроля метки — Tag Control) определяется, следует ли преобразовывать кадры Tagged к формату Untagged.

Каждый порт коммутатора может быть сконфигурирован как Tagged или Untagged Port. Если выходной порт определен как Tagged Port, то исходящий трафик будет создаваться кадрами типа Tagged с информацией о принадлежности к виртуальной сети. Следовательно, выходной порт не меняет тип кадров, оставляя их такими же, какими они были внутри коммутатора. К указанному порту может быть подсоединено только устройство, совместимое со стандартом IEEE 802.1Q, например коммутатор или сервер с сетевой картой, поддерживающей работу с виртуальными сетями данного стандарта.

Если же выходной порт коммутатора определен как Untagged Port, то все исходящие кадры преобразуются к типу Untagged, то есть из них удаляется дополнительная информация о принадлежности к виртуальной сети. К такому порту можно подключать любое сетевое устройство, в том числе коммутатор, не совместимый со стандартом IEEE 802.1Q, или ПК конечных клиентов, сетевые карты которых не поддерживают работу с виртуальными сетями этого стандарта.

Конфигурирование виртуальных сетей стандарта IEEE 802.1Q

Рассмотрим конкретные примеры конфигурирования виртуальных сетей стандарта IEEE 802.1Q.

Чтобы сформировать VLAN-сеть в соответствии со стандартом IEEE 802.1Q, необходимо проделать следующие действия:

  • задать имя виртуальной сети (например, VLAN#1) и определить ее идентификатор (VID);
  • выбрать порты, которые будут относиться к данной виртуальной сети;
  • задать правила входных портов виртуальной сети (возможность работы с кадрами всех типов, только с кадрами Untagged или только с кадрами Tagged);
  • установить одинаковые идентификаторы PVID портов, входящих в виртуальную сеть;
  • задать для каждого порта виртуальной сети правила выходного порта, сконфигурировав их как Tagged Port или Untagged Port.

Далее необходимо повторить вышеперечисленные действия для следующей виртуальной сети. При этом нужно помнить, что каждому порту можно задать только один идентификатор PVID, но один и тот же порт может входить в состав различных виртуальных сетей, то есть ассоциироваться одновременно с несколькими VID.

Таблица 1. Задание характеристик портов при создании виртуальных сетей на базе одного коммутатора

Примеры построения VLAN-сетей на основе коммутаторов, совместимых со стандартом IEEE 802.1Q

А теперь рассмотрим типичные примеры построения виртуальных сетей на основе коммутаторов, поддерживающих стандарт IEEE 802.1Q.

Если имеется всего один коммутатор, к портам которого подключаются компьютеры конечных пользователей, то для создания полностью изолированных друг от друга виртуальных сетей все порты должны быть объявлены как Untagget Ports для обеспечения совместимости с сетевыми Ethernet-контроллерами клиентов. Принадлежность узлов сети к той или иной VLAN определяется заданием идентификатора порта PVID.

Возьмем восьмипортовый коммутатор, на базе которого создаются три изолированные виртуальные сети VLAN#1, VLAN#2 и VLAN#3 (рис. 7). Первому и второму портам коммутатора присваивается идентификатор PVID=1. Поскольку идентификаторы этих портов совпадают с идентификатором первой виртуальной сети (PVID=VID), то данные порты образуют виртуальную сеть VLAN#1 (табл. 1). Если портам 3, 5 и 6 присвоить PVID=2 (совпадает с идентификатором VID VLAN#2), то вторая виртуальная сеть будет образована портами 3, 4 и 8. Аналогично формируется и VLAN#3 на базе портов 5, 6 и 7. Для обеспечения совместимости с конечным оборудованием (предполагается, что к портам коммутатора подключаются ПК клиентов сети, сетевые карты которых не совместимы со стандартом IEEE 802.1Q) все порты необходимо сконфигурировать как Untagged.

Рис. 7. Организация трех сетей VLAN по стандарту IEEE 802.1Q на основе одного коммутатора

Если инфраструктура сети включает несколько коммутаторов, поддерживающих стандарт IEEE 802.1Q, то для связи коммутаторов друг с другом необходимо использовать несколько иной принцип конфигурирования. Рассмотрим два шестипортовых коммутатора, которые поддерживают стандарт IEEE 802.1Q и на основе которых необходимо сконфигурировать три изолированные друг от друга виртуальные сети VLAN#1, VLAN#2 и VLAN#3.

Пусть к первой виртуальной сети относятся клиенты, подключенные к портам 1 и 2 первого коммутатора и к портам 5 и 6 второго коммутатора. К сети VLAN#2 относятся клиенты, подключенные к порту 3 первого коммутатора и порту 1 второго коммутатора, а к сети VLAN#3 относятся клиенты, подключенные к портам 4 и 5 первого коммутатора и портам 2 и 3 второго коммутатора. Порт 6 первого коммутатора и порт 4 второго коммутатора используются для связи коммутаторов друг с другом (рис. 8).

Рис. 8. Организация трех VLAN-сетей по стандарту IEEE 802.1Q на основе двух коммутаторов

Чтобы сконфигурировать указанные виртуальные сети, необходимо прежде всего определить на каждом из коммутаторов по три виртуальные сети VLAN#1, VLAN#2 и VLAN#3, задав их идентификаторы (VID=1 для VLAN#1, VID=2 для VLAN#2 и VID=3 для VLAN#3).

На первом коммутаторе порты 1 и 2 должны входить в состав VLAN#1, для чего этим портам присваивается PVID=1. Порт 2 первого коммутатора необходимо приписать к VLAN#2, для чего идентификатору порта присваивается значение PVID=2. Аналогично, для портов 5 и 6 первого коммутатора устанавливаются идентификаторы PVID=3, так как эти порты относятся к VLAN#3. Все указанные порты первого коммутатора должны быть сконфигурированы как Untagged Port для обеспечения совместимости с сетевыми картами клиентов.

Порт 4 первого коммутатора используется для связи со вторым коммутатором и должен передавать кадры всех трех виртуальных сетей без изменения второму коммутатору. Поэтому его необходимо сконфигурировать как Tagged Port и включить в состав всех трех виртуальных сетей (ассоциировать с VID=1, VID=2 и VID=3). При этом идентификатор порта не имеет значения и может быть любым (в нашем случае PVID=4).

Аналогичная процедура конфигурации виртуальных сетей осуществляется и на втором коммутаторе. Конфигурации портов двух коммутаторов представлены в табл. 2.

Таблица 2. Задание характеристик портов при создании виртуальных сетей на основе двух коммутаторов

Автоматическая регистрация в виртуальных сетях стандарта IEEE 802.1Q

ассмотренные примеры виртуальных сетей относились к так называемым статическим виртуальным сетям (Static VLAN), в которых все порты настраиваются вручную, что хотя и весьма наглядно, но при развитой сетевой инфраструктуре является довольно рутинным делом. Кроме того, при каждом перемещении пользователей в пределах сети приходится производить перенастройку сети с целью сохранения их членства в заданных виртуальных сетях, а это, конечно, крайне нежелательно.

Существует и альтернативный способ конфигурирования виртуальных сетей, а создаваемые при этом сети называются динамическими виртуальными сетями (Dynamic VLAN). В таких сетях пользователи могут автоматически регистрироваться в сети VLAN, для чего служит специальный протокол регистрации GVRP (GARP VLAN Registration Protocol). Этот протокол определяет способ, посредством которого коммутаторы обмениваются информацией о сети VLAN, чтобы автоматически зарегистрировать членов VLAN на портах во всей сети.

Все коммутаторы, поддерживающие функцию GVRP, могут динамически получать от других коммутаторов (и, следовательно, передавать другим коммутаторам) информацию VLAN о регистрации, включающую данные об элементах текущей VLAN, о порте, через который можно осуществлять доступ к элементам VLAN и т.д. Для связи одного коммутатора с другим в протоколе GVRP используется сообщения GVRP BPDU (GVRP Bridge Protocol Data Units). Любое устройство с поддержкой протокола GVPR, получающее такое сообщение, может динамически подсоединяться к той сети VLAN, о которой оно оповещено.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: