Сигналы с амплитудной модуляцией. Что такое модуляция и разновидности модулированных сигналов

Сигналы, поступающие из источника сообщений (микрофон, передающая телевизионная камера, датчик телеметрической системы), как правило, не могут быть непосредственно переданы по радиоканалу. Дело не только в том, что эти сигналы недостаточно велики по амплитуде. Гораздо существеннее их Относительная низкочастотностъ. Чтобы осуществить эффективную передачу сигналов в какой-либо среде, необходимо перемести спектр этих сигналов из низкочастотной области в область достаточно высоких частот. Данная процедура получила в радиотехнике название модуляции.

4.1. Сигналы с амплитудной модуляцией

Прежде чем изучать этот простейший вид модулированных сигналов, рассмотрим кратко некоторые вопросы, касающиеся принципов модуляции любого вида.

Понятие несущего колебания. Идея способа, позволяющего переносить спектр сигнала в область высоких частот, заключается в следующем. Прежде всего в передатчике формируется вспомогательный высокочастотный сигнал, называемый несущим колебанием. Его математическая модель такова, что имеется некоторая совокупность параметров определяющих форму этого колебания. Пусть - низкочастотное сообщение, подлежащее передаче по радиоканалу. Если, по крайней мере, один из указанных параметров изменяется во времени пропорционально передаваемому сообщению, то несущее колебание приобретает новое свойство - оно несет в себе: информацию, которая первоначально была заключена в сигнале

Физический процесс управления параметрами несущего колебания и является модуляцией.

В радиотехнике широкое распространение получили системы модуляции, использующие в качестве несущего простое гармоническое колебание

имеющее три свободных параметра

Изменяя во времени тот или иной параметр, можно получать различные виды модуляции.

Принцип амплитудной модуляции.

Если переменной оказывается амплитуда сигнала причем остальные два параметра и неизменны, то имеется амплитудная модуляция несущего колебания. Форма записи амплитудно-модулированного, или АМ-сигнала, такова:

Осциллограмма АМ-сигнала имеет характерный вид (см. рис. 4.1). Обращает на себя внимание симметрия графика относительно оси времени. В соответствии с формулой (4.2) AM-сигнал есть произведение огибающей и гармонического заполнения . В большинстве практически интересных случаев огибающая изменяется во времени гораздо медленнее, чем высокочастотное заполнение.

Рис. 4.1. АМ-сигналы при различных глубинах модуляции: а - неглубокая модуляция: б - глубокая модуляция; в - перемодуляция

При амплитудной модуляции связь между огибающей и модулирующим полезным сигналом принято определять следующим образом:

Здесь - постоянный коэффициент, равный амплитуде несущего колебания в отсутствие модуляции; М - коэффициент амплитудной модуляции.

Величина М характеризует глубину амплитудной модуляции. Смысл этого термина поясняется осциллограммами АМ-сигналов, изображенными на рис. 4.1, а-в.

При малой глубине модуляции относительное изменение огибающей невелико, т. е. во все моменты времени независимо от формы сигнала

Если же в моменты времени, когда сигнал достигает экстремальных значений, имеются приближенные равенства

то говорят о глубокой амплитудной модуляции. Иногда вводят дополнительно относительный коэффициент модуляции вверх

и относительный коэффициент модуляции вниз

AM-сигналы с малой глубиной модуляции в радиоканалах нецелесообразны ввиду неполного использования мощности передатчика.

В то же время 100%-ная модуляция вверх в два раза повышает амплитуду колебаний при пиковых значениях модулирующего сообщения. Дальнейший рост этой амплитуды, как правило, приводит к нежелательным искажениям из-за перегрузки выходных каскадов передатчика.

Не менее опасна слишком глубокая амплитудная модуляция вниз. На рис. 4.1, в изображена так называемая перемодуляция Здесь форма огибающей перестает повторять форму модулирующего сигнала.

Однотональная амплитудная модуляция.

Простейший АМ-сигнал может быть получен в случае, когда модулирующим низкочастотным сигналом является гармоническое колебание с частотой . Такой сигнал

называется однотоншьным АМ-сигналом.

Выясним, можно ли такой сигнал представить как сумму простых гармонических колебаний с различными частотами. Используя известную тригонометрическую формулу произведения косинусов, из выражения (4.4) сразу получаем

Формула (4.5) устанавливает спектральный состав однотонального АМ-сигнала. Принята следующая терминология: - несущая частота, - верхняя боковая частота, - нижняя боковая частота.

Строя по формуле (4.5) спектральную диаграмму однотонального АМ-сигнала, следует прежде всего обратить внимание на равенство амплитуд верхнего и нижнего боковых колебаний, а также на симметрию расположения этих спектральных составляющих относительно несущего колебания.

Энергетические характеристики АМ-сигнала.

Рассмотрим вопрос о соотношении мощностей несущего и боковых колебаний. Источник однотонального АМ-сигнала эквивалентен трем последовательно включенным источникам гармонических колебаний:

Положим для определенности, что это источники ЭДС, соединенные последовательно и нагруженные на единичный резистор. Тогда мгновенная мощность АМ-сигнала будет численно равна квадрату суммарного напряжения:

Чтобы найти среднюю мощность сигнала, величину необходимо усреднить по достаточно большому отрезку времени Т:

Легко убедиться в том, что при усреднении все взаимные мощности дадут нулевой результат, - поэтому средняя мощность АМ-сигнала окажется равной сумме средних мощностей несущего и боковых колебаний:

Отсюда следует, что

Так, даже при 100%-ной модуляции (М = 1) доля мощности обоих боковых колебаний составляет всего лишь 50% от мощности смодулированного несущего колебания. Поскольку информация о сообщении заключена в боковых колебаниях, можно отметить неэффективность использования мощности при передаче АМ-сигнала.

Амплитудная модуляция при сложном модулирующем сигнале.

На практике однотональные AM-сигналы используются редко. Гораздо более реален случай, когда модулирующий низкочастотный сигнал имеет сложный спектральный состав. Математической моделью такого сигнала может быть, например, тригонометрическая сумма

Здесь частоты , образуют упорядоченную возрастающую последовательность в то время как амплитуды и начальные фазы Ф, - произвольны.

Подставив формулу (4.9) в (4.3), получим

Введем совокупность парциальных (частичных) коэффициентов модуляции

и запишем аналитическое выражение сложномодудированного (многотонального) АМ-сигнала в форме, которая обобщает выражение (4.4):

Спектральное разложение проводится так же, как и для однотонального АМ-сигнала:

На рис. 4.2, а изображена спектральная диаграмма модулирующего сигнала построенная в соответствии с формулой (4.9). Рис. 4.2,б воспроизводит спектральную диаграмму многотонального АМ-сигнала, отвечающего этому модулирующему колебанию.

Рис. 4.2. Спектральные диаграммы а - модулирующего сигнала; б - АМ-сигнала при многотональной модуляции

Итак, в спектре сложномодулированного АМ-сигнала, помимо несущего колебания, содержатся группы верхних и нижних боковых колебаний. Спектр верхних боковых колебаний является масштабной копией спектра модулирующего сигнала, сдвинутой в область высоких частот на величину Спектр нижних боковых колебаний также повторяет спектральную диаграмму сигнала располагается зеркально относительно несущей частоты

Из сказанного следует важный вывод: ширина спектра АМ-сигнала равна удвоенному значению наивысшей частоты в спектре модулирующего низкочастотного сигнала.

Пример 4.1. Оценить число вещательных радиоканалов, которые можно разместить в диапазоне частот от 0.5 до 1.5 МГц (примерные границы средневолнового вещательного диапазона).

Для удовлетворительного воспроизведения сигналов радиовещания необходимо воспроизводить звуковые частоты от 100 Гц до 12 кГц. Таким образом, полоса частот, отводимая одному АМ-каналу, равна 24 кГц. Чтобы избежать перекрестных помех между каналами, следует предусмотреть защитный интервал шириной в 1 кГц. Поэтому допустимое число каналов

Амплитудно-манипулированные сигналы.

Важным классом многотональных АМ-сигналов являются так называемые манипулированные сигналы. В простейшем случае это - последовательности радиоимпульсов, отделенных друг от друга паузами. Такие сигналы используются в радиотелеграфии и в системах передачи дискретной информации по радиоканалам.

Если s(t) - функция, в каждый момент времени принимающая значение либо 0, либо 1, то амплитудио-манипулированный сигнал представляется в виде

Пусть, например, функция отображает периодическую последовательность видеоимпульсов, рассмотренную в примере 2.1 (см. гл. 2). Считая, что амплитуда этих импульсов на основании (4.14) имеем при

где q - скважность последовательности.

Векторная диаграмма АМ-сигнала.

Иногда полезным может оказаться графическое изображение АМ-сигнала посредством суммы векторов, вращающихся в комплексной плоскости.

Для простоты рассмотрим одиотональную модуляцию. Мгновенное значение несущего колебания есть проекция неподаижного во времени вектора на ось отсчета углов, которая вращается вокруг начала координат с угловой скоростью в направлении часовой стрелки (рис. 4.3).

Верхнее боковое колебание отображается на диаграмме вектором длиной причем его фазовый угол при равен сумме начальных фаз несущего и модулирующего сигналов [см. формулу (4.5).

Рис. 4.3. Векторные диаграммы однотонального АМ-сигнала: а - при ; б - при

Такой же вектор для нижнего бокового колебания отличается лишь знаком в выражении для его фазового угла. Итак, на комплексной плоскости необходимо построить сумму трех векторов

Легко видеть, что эта сумма будет ориентирована вдоль вектора йнес. Мгновенное значение АМ-сигнала при окажется равным проекции конца результирующего вектора на горизонтальную ось (рис. 4.3,а).

С течением времени, помимо отмеченного вращения оси отсчета углов, будут наблюдаться следующие трансформации чертежа (рис. 4.3,6): 1) вектор будет вращаться вокруг точки своего приложения с угловой скоростью в направлении против часовой стрелки, поскольку фаза верхнего бокового колебания возрастает быстрее фазы несущего сигнала; 2) вектор будет вращаться также с угловой скоростью , но в противоположном направлении.

Строя суммарный вектор и проецируя его на ось отсчета углов, можно найти мгновенные значения и в любой момент времени.

Балансная амплитудная модуляция.

Как было показано, значительная доля мощности обычного АМ-сигнала сосредоточена в несущем колебании. Для более эффективного использования мощности передатчика можно формировать АМ-сигналы с подавленным несущим колебанием, реализуя так называемую балайсную амплитудную модуляцию. На основании формулы (4.4) представление однотонального АМ-сигнала с балансной модуляцией таково:

Имеет место перемножение двух сигналов - модулирующего и несущего. Колебания вида (4.16) с физической точки зрения являются биениями двух гармонических сигналов с одинаковыми амплитудами и частотами, равными верхней и нижней боковым частотам.

При многотональной балансной модуляции аналитическое выражение сигнала принимает вид

Как и при обычной амплитудной модуляции, здесь наблюдаются две симметричные группы верхних и ннжних боковых колебаний.

Если рассмотреть осциллограмму биений, может показаться неясным, почему в спектре этого сигнала нет несущей частоты, хотя налицо присутствие высокочастотного заполнения, изменяющегося во времени именно с этой частотой.

Дело в том, что при переходе огибающей биений через нуль фаза высокочастотного заполнения скачком изменяется на 180°, поскольку функция имеет разные знаки слева и справа от нуля. Если такой сигнал подать на высокодобротную колебательную систему (например, -контур), настроенную на частоту то выходной эффект будет очень мал, стремясь к нулю при возрастании добротности. Колебания в системе, возбужденные одним периодом биений, будут гаситься последующим периодом. Именно так с физических позиций принято рассматривать вопрос о реальном смысле спектрального разложения сигнала. К этой проблеме вернемся вновь в гл. 9.

Однополосная амплитудная модуляция.

Еще более интересное усовершенствование принципа обычной амплитудной модуляции заключается в формировании сигнала с подавленной верхней или нижней боковой полосой частот.

Сигналы с одной боковой полосой (ОБП или SSB-сигналы - от англ. single sideband) по внешним характеристикам напоминают обычные AM-сигналы. Например, однотональный ОБП-сигнал с подавленной нижней боковой частотой записывается в виде

Проводя тригонометрические преобразования, получаем

Два последних слагаемых представляют собой произведение двух функций, одна из которых изменяется во времени медленно, а другая - быстро. Принимая во внимание, что «быстрые» сомножители находятся по отношению друг к другу во временной квадратуре, вычисляем медленно изменяющуюся огибающую ОБП-сигнала:

Рис. 4.4. Огибающие однотональных модулированных сигналов при - ОБП-сигнала; 2 - обычного АМ-сигнала

График огибающей ОБП-сигнала, рассчитанный по формуле (4.18) при изображен на рис. 4.4. Здесь же для сравнения построена огибаюшая обычного однотонального АМ-сигнала с тем же коэффициентом модуляции.

Сравнение приведенных кривых показывает, что непосредственная демодуляция ОБП-сигнала по его огибающей будет сопровождаться значительными искажениями.

Дальнейшим усовершенствованием систем ОБП является частичное или полное подавление несущего колебания. При этом мощность передатчика используется еще более эффективно.

Амплитудная модуляция (AM) - наиболее распространенный тип модуляции. В системе с AM амплитуда несущей изменяется в соответствии с изменением сигнала или информации (рис. 14.1). В отсутствие сигнала амплитуда несущей имеет постоянный уровень, как показано на рис. 14.1(б). При модуляции синусоидальным сигналом амплитуда несущей увеличивается или уменьшается относительно своего немодулированного уровня по синусоидальному закону в соответствии с нарастанием или спаданием модулирующего сигнала. Чем больше амплитуда модулирующего сигнала, тем сильнее изменяется амплитуда несущей. Амплитудно-модулированная несущая (рис. 14.1(в)) имеет огибающую, в точности повторяющую форму модулирующего сигнала, и при демодуляции именно эта огибающая выделяется как полезный сигнал.

Глубина модуляции

Отношение амплитуды модулирующего сигнала к амплитуде несущей называется глубиной или коэффициентом модуляции. Она определяет меру изменения уровня несущей при модуляции. Глубина модуляции всегда выражается в процентах, и поэтому о ней говорят как о «процентной» модуляции.
Амплитуда сигнала
Глубина модуляции = ----------- 100%
Амплитуда несущей

(см. рис. 14.1). Например, если амплитуда сигнала равна 1 В, а амплитуда несущей - 2 В, то глубина модуляции составляет (1 В)/(2 В) 100% = 50%. Такую глубину модуляции имеет АМ-несущая, показанная на рис. 14.1.

Рис. 14.1. Амплитудная модуляция (глубина модуляции 50%);
(а) сигнал; (б) несущая; (в) модулированная несущая.

Перемодуляция

На рис. 14.2(а) показана АМ-несущая со 100%-ной глубиной модуляции. Глубина модуляции, превышающая 100%, приводит к искажениям (рис. 14.2(б)). По этой причине глубину модуляции ограничивают. Например, при передачах радиостанции Би-би-си она ограничена величиной 80%.


Рис. 14.2. (а) Модуляция 100%; (б) перемодуляция.

Боковые частоты

Можно показать, что амплитудно-модулированная несущая состоит из трех гармонических (синусоидальных) компонент с постоянными амплитудами и разными частотами. Этими тремя компонентами являются: сама несущая и два сигнала боковых частот f1 и f2. Каждый модулирующий гармонический сигнал порождает две боковые частоты. Пусть fs – частота модулирующего сигнала и fc – частота несущей, тогда

f1 = fc – fs, f2 = fc + fs,

где f1 и f2 – так называемые нижняя боковая и верхняя боковая частоты соответственно. Например, если частота несущей равна 100 кГц, а частота сигнала - 1 кГц, то

Нижняя боковая частота f1 = 100 – 1 = 99 кГц,
Верхняя боковая частота f2 = 100 + 1 = 101 кГц.
Амплитудно-модулированная несущая, т. е. несущая вместе с двумя сигналами боковых частот, может быть представлена в виде трех вертикальных стрелок, каждая из которых соответствует одному гармоническому сигналу (рис. 14.3). То, что изображено на этом рисунке, называется частотным спектром сигнала (в данном случае частотным спектром АМ-несущей).


Рис. 14.3. Частотный спектр AM-несущей. Рис. 14.4. Боковые полосы.

Боковые полосы

Информационные сигналы почти всегда имеют сложную форму и состоят из большого числа гармонических сигналов. Поскольку каждый гармонический сигнал порождает пару боковых частот, то сложный негармонический сигнал будет порождать многочисленные боковые частоты, что приведет к образованию двух полос частот по обе стороны от несущей (рис. 14.4). Это так называемые боковые полосы частот. Область частот между наибольшей верхней боковой частотой f2 и наименьшей верхней боковой частотой f4 называют верхней боковой полосой (ВБП). Аналогично область частот между наибольшей нижней боковой частотой f3 и наименьшей нижней боковой частотой f1 называют нижней боковой полосой (НБП).
Эти две боковые полосы расположены симметрично относительно несущей, и каждая из них содержит одну и ту же информацию. Несущая не несет никакой информации. Всю информацию несут боковые частоты.
При модуляции одиночным гармоническим сигналом принимается, что верхняя и нижняя боковые полосы простираются от несущей до верхней и нижней боковых частот соответственно (рис. 14.5).

Пример 1

Несущая с частотой 100 кГц промодулирована по амплитуде сигналом, занимающим полосу частот 400-3400 Гц. Определите ширину боковых полос.

Решение

Частота 3400 Гц, самая высокая в спектре сигнала, порождает две боковые частоты (рис. 14.6):
f1 = 100 000 - 3400 = 96 600 Гц,
f2 = 100 000 + 3400 = 103 400 Гц.


Рис. 14.6.

Частота 400 Гц, самая низкая в спектре сигнала, порождает еще две боковые частоты:

f3 = 100 000 - 400 == 99 600 Гц,
f4 = 100 000 + 400 = 100 400 Гц.

Ширина верхней боковой полосы (ВБП): f2 – f4 = 103400 - 100400 = 3000 Гц.
Ширина нижней боковой полосы (НБП): f3 – f1 = 99 600 - 96 600 = 3000 Гц.

Другими словами, обе боковые полосы имеют одну и ту же ширину, равную разности значений наивысшей и наинизшей частот в спектре модулирующего сигнала: 3400 - 400 = 3000 Гц.
Боковые частоты для любой другой частоты в спектре сигнала будут находиться внутри верхней и нижней боковых полос.

Ширина полосы частот

Так как информацию несут только боковые частоты, то для качественной передачи этой информации ширина полосы частот, занимаемой в эфире АМ-системой, должна быть достаточно велика, чтобы вместить все имеющиеся боковые частоты. При модуляции гармоническим сигналом возникают две боковые частоты. Таким образом, полоса частот простирается от нижней боковой частоты f1 до верхней боковой частоты f2 (как показано на рис. 14.5).
Например, если модулирующий гармонический сигнал имеет частоту 1 кГц, то ВБП = НБП = 1 кГц и ширина полосы составит
НБП + ВБП = 2 1 кГц = 2 кГц.

Другими словами, в данном случае ширина полосы частот, занимаемой амплитудно-модулированной несущей, равна удвоенной частоте модулирующего сигнала.
В случае передачи сложного сигнала ширина полосы частот, занимаемой АМ-системой передачи информации, равна удвоенной наивысшей частоте в спектре модулирующего сигнала и, таким образом, включает в себя все боковые частоты.

Одно- и двухполосная передача

Поскольку одна боковая полоса содержит столько же информации, сколько и другая, передачу можно осуществлять с использованием только одной боковой полосы, и при этом не будет никакой потери информации. При однополосной передаче (SSB - по связной терминологии) одна из боковых полос - или нижняя, или верхняя - подавляется и передается только одна оставшаяся боковая полоса. При двухполосной (DSB) передаче передаются обе боковые полосы.
Однополосная передача занимает лишь половину той полосы частот, которая используется при двухполосной передаче, и по этой причине она применяется в телефонии и радиосвязи. При однополосной передаче в заданном диапазоне частот несущей можно расположить вдвое большее число информационных каналов, чем при двухполосной передаче. В силу простоты двухполосная передача используется всеми радиовещательными системами с AM. Поэтому, когда речь идет о связи с использованием AM, обычно имеется в виду двухполосная передача, если не оговорено обратное.

Пример 2

Несущая промодулирована по амплитуде периодическим сигналом в виде меандра с частотой 100 Гц. Пренебрегая гармониками выше пятой, установите ширину полосы частот, необходимую а) для DSB (двухполосной)-передачи и б) для SSB (однополосной)-передачи.

Решение

Сигнал в виде меандра с частотой 100 Гц содержит следующие гармоники:

основную гармонику =100 Гц,
гармонику 3-го порядка = 3 100 = 300 Гц,
гармонику 5-го порядка = 5 100 = 500 Гц.

Гармониками более высокого порядка пренебрегаем. Таким образом, в обрезанном спектре модулирующего сигнала максимальная частота fмакс = 500 Гц.
Ширина полосы для DSB-передачи = 2 fмакс = 2 500 = 1000 Гц.
Ширина полосы для SSB-передачи = DSB/2 = 1000/2 = 500 Гц.

В этом видео рассказывается об амплитудной модуляции:

Продолжаем серию общеобразовательных статей, под общим названием «Теория радиоволн».
В предыдущих статьях мы познакомились с радиоволнами и антеннами: Давайте ближе познакомимся с модуляцией радиосигнала.

В рамках этой статьи, будет рассмотрена аналоговая модуляция следующих видов:

  • Амплитудная модуляция
  • Амплитудная модуляция c одной боковой полосой
  • Частотная модуляция
  • Линейно-частотная модуляция
  • Фазовая модуляция
  • Дифференциально-фазовая модуляция
Амплитудная модуляция
При амплитудной модуляции, огибающая амплитуд несущего колебания изменяется по закону, совпадающему с законом передаваемого сообщения. Частота и фаза несущего колебания при этом не меняется.

Одним из основных параметров АМ, является коэфициент модуляции(M).
Коэффициент модуляции - это отношение разности между максимальным и минимальным значениями амплитуд модулированного сигнала к сумме этих значений(%).
Проще говоря, этот коэффициент показывает, насколько сильно значение амплитуда несущего колебания в данный момент отклоняется от среднего значения.
При коэффициенте модуляции больше 1, возникает эффект перемодуляции, в результате чего происходит искажение сигнала.

Спектр АМ

Данный спектр свойственен для модулирующего колебания постоянной частоты.

На графике, по оси Х представлена частота, по оси У - амплитуда.
Для АМ, кроме амплитуды основной частоты, находящейся в центре, представлены также значения амплитуд справа и слева от частоты несущей. Это так называемые левая и правая боковые полосы. Они отнесены от частоты несущей на расстояние равное частоте модуляции.
Расстояние от левой до правой боковой полосы называют ширина спектра .
В нормальном случае, при коэффициенте модуляции <=1, амплитуды боковых полос меньше или равны половине амплитуды несущей.
Полезная информация заключена только в верхней или нижней боковых полосах спектра. Основная спектральная составляющая - несущая, не несет полезной информации. Мощность передатчика при амплитудной модуляции в большей части расходуется на «обогрев воздуха», за счет не информативности самого основного элемента спектра.

Амплитудная модуляция с одной боковой полосой

В связи с неэффективностью классической амплитудной модуляции, была придумана амплитудная модуляция с одной боковой полосой.
Суть ее заключается в удалении из спектра несущей и одной из боковых полос, при этом вся необходимая информация передается по оставшейся боковой полосе.

Но в чистом виде в бытовом радиовещании этот вид не прижился, т.к. в приемнике нужно синтезировать несущую с очень высокой точностью. Используется в аппаратуре уплотнения и любительском радио.
В радиовещании чаще используют АМ с одной боковой полосой и частично подавленной несущей:

При такой модуляции соотношение качество/эффективность наилучшим образом достигается.

Частотная модуляция

Вид аналоговой модуляции, при которой, частота несущей изменяется по закону модулирующего низкочастотного сигнала. Амплитуда при этом остается постоянной.

а) - несущая частота, б) модулирующий сигнал, в) результат модуляции

Наибольшее отклонение частоты от среднего значения, называется девиацией .
В идеальном варианте, девиация должна быть прямо пропорционально амплитуде модулирующего колебания.

Спектр при частотной модуляции выглядит следующим образом:

Состоит из несущей и симметрично отстающей от нее вправо и влево гармоник боковых полос, на частоту кратную частоте модулирующего колебания.
Данный спектр представляет гармоническое колебание. В случае реальной модуляции, спектр имеет более сложные очертания.
Различают широкополосную и узкополосную ЧМ модуляцию.
В широкополосной - спектр частот, значительно превосходит частоту модулирующего сигнала. Применяется в ЧМ радиовещании.
В радиостанциях применяют в основном узкополосную ЧМ модуляцию, требующую более точной настройки приемника и соответственно более защищенную от помех.
Спектры широкополосной и узкополосной ЧМ представлены ниже

Спектр узкополосной ЧМ напоминает амплитудную модуляцию, но если учесть фазу боковых полос, то окажется, что эти волны имеют постоянную амплитуду и переменную частоту, а не постоянную частоту и переменную амплитуду (AM). При широкополосной ЧМ амплитуда несущей может быть очень малой, что обусловливает высокую эффективность ЧМ; это значит, что большая часть передаваемой энергии содержится в боковых частотах, несущих информацию.

Основные преимущества ЧМ, перед АМ - энергоэффективность и помехоустойчивость.

Как разновидность ЧМ, выделяют Линейно-частотную модуляцию.
Суть ее заключается в том, что частота несущего сигнала изменяется по линейному закону.

Практическая значимость линейно-частотно-модулированных (ЛЧМ) сигналов заключается в возможности существенного сжатия сигнала при приеме с увеличением его амплитуды над уровнем помех.
ЛЧМ находят применение в радиолокации.

Фазовая модуляция
В реальности, больше применяют термин фазовая манипуляция, т.к. в основном производят модуляцию дискретных сигналов.
Смысл ФМ таков, что фаза несущей, изменяется скачкообразно, при приходе очередного дискретного сигнала, отличного от предыдущего.

Из спектра можно видеть, почти полное отсутствие несущей, что указывают на высокую энергоэффективность.
Недостаток данной модуляции в том, что ошибка в одном символе, может привести к некорректному приему всех последующих.

Дифференциально-фазовая манипуляция
В случае этой модуляции, фаза меняется не при каждом изменении значения модулирующего импульса, а при изменении разности. В данном примере при приходе каждой «1».

Преимущество этого вида модуляции в том, что в случае возникновения случайной ошибки в одном символе, это не влечет дальнейшую цепочку ошибок.

Стоит отметить, что существуют также фазовые манипуляции такие как квадратурная, где используется изменение фазы в пределах 90 градусов и ФМ более высоких порядков, но их рассмотрение выходит за рамки данной статьи.

PS: хочу еще раз отметить, что цель статей не заменить учебник, а рассказать «на пальцах» об основах радио.
Рассмотрены лишь основные виды модуляций для создания у читателя представления о теме.

На панели любого современного радиоприемника есть переключатель AM-FM. Как правило, обычный потребитель не задумывается о том, что означают эти буквы, ему достаточно запомнить, что на FM есть его любимая УКВ-радиостанция, транслирующая сигнал в стереозвучании и с прекрасным качеством, а на АМ можно поймать «Маяк». Если же вникнуть в технические подробности хотя бы на уровне пользовательской инструкции, то выяснится, что АМ - это амплитудная модуляция, а FM - частотная. Чем же они отличаются?

Для того чтобы из громкоговорителя радиоприемника зазвучала музыка, должен претерпеть определенные изменения. В первую очередь его следует сделать пригодным для радиотрансляции. Амплитудная модуляция стала первым способом, которым инженеры-связисты научились передавать речевые и музыкальные программы в эфире. Американец Фессенден в 1906 году с помощью механического генератора получил колебания в 50 килогерц, ставшие первой в истории несущей частотой. Далее он решил техническую проблему самым простым способом, установив микрофон на выходе обмотки. При воздействии на угольный порошок внутри мембранной коробки менялось его сопротивление, и величина сигнала, поступающего от генератора на передающую антенну, уменьшалась или увеличивалась в зависимости от них. Так была изобретена амплитудная модуляция, то есть изменение размаха несущего сигнала таким образом, чтобы форма огибающей линии соответствовала форме передаваемого сигнала. В двадцатые годы механические генераторы были вытеснены электронно-ламповыми. Это значительно уменьшило габариты и вес передатчиков.

Отличается от амплитудной тем, что размах несущей волны остается неизменным, меняется ее частота. По мере развития электронной базы и схемотехники появились другие способы, с помощью которых информационный сигнал «садился» на частоту радиодиапазона. Изменение фазы и широты импульса дали название фазовой и широтно-импульсной модуляциям. Казалось, что амплитудная модуляция как способ радиотрансляции устарела. Но вышло иначе, она сохранила свои позиции, хотя и в несколько измененном виде.

Растущие требования к информационной насыщенности частот побуждали инженеров искать способы увеличить количество каналов, передаваемых на одной волне. Возможности многоканальной трансляции определяются и барьером Найквиста, однако, помимо квантования сигнала, появилась возможность увеличить информационную нагрузку на посредством изменения фазы. Квадратурно-амплитудная модуляция - это такой способ передачи, при котором на одной частоте передаются разные сигналы, сдвинутые по фазе относительно друг друга на 90 градусов. Четырехфазность образует квадратуру или комбинацию двух составляющих, описываемых тригонометрическими функциями sin и cos, отсюда и название.

Квадратурная амплитудная модуляция получила широкое распространение в цифровой связи. По своей сути она представляет собой сочетание фазной и амплитудной модуляции.

Амплитудная модуляция - это процесс формирования амплитудно-моду-лированного сигнала, т.е. сигнала, амплитуда которого изменяется по закону модулирующего сигнала (передаваемого сообщения). Этот процесс реализуется амплитудным модулятором.

Амплитудный модулятор должен формировать высокочастотное колебание, аналитическое выражение для которого в общем случае имеет вид

где - огибающая модулированного колебания, описываемая функцией, которая характеризует закон изменения амплитуды;

Модулирующий сигнал;

И - частота и начальная фаза высокочастотного колебания.

Для получения такого сигнала необходимо осуществить перемножение высокочастотного (несущего) колебания и низкочастотного модулирующего сигнала таким образом, чтобы сформировалась огибающая вида . Наличие постоянной составляющей в структуре огибающей обеспечивает однополярность ее изменения, коэффициент исключает перемодуляцию, т.е. обеспечивает глубину модуляции . Понятно, что такая операция перемножения будет сопровождаться трансформацией спектра, что позволяет рассматривать амплитудную модуляцию как существенно нелинейный или параметрический процесс.

Структура амплитудного модулятора в случае использования нелинейного элемента представлена на рис. 8.4.

Рис. 8.4. Структурная схема амплитудного модулятора

Нелинейный элемент осуществляет преобразование несущего колебания и модулирующего сигнала, в результате чего формируется ток (или напряжение), в спектре которого содержатся составляющие в полосе частот от до , причем - наивысшая частота в спектре модулирующего сигнала. Полосовой фильтр выделяет эти составляющие спектра, формируя амплитудно-модулированный сигнал на выходе.

Перемножение двух сигналов можно осуществить с помощью нелинейного элемента, характеристика которого аппроксимируется полиномом, содержащим квадратичный член. Благодаря этому формируется квадрат суммы двух сигналов, содержащий их произведение.

Суть сказанного и общую идею формирования амплитудно-модулированного колебания иллюстрируют достаточно простые математические преобразования в предположении, что осуществляется тональная (одной частотой) модуляция.

1. В качестве нелинейного элемента используем транзистор , ВАХ которого аппроксимируется полиномом второй степени .

2. На вход нелинейного элемента подается напряжение, равное сумме двух колебаний: несущего и модулирующего, т.е.

3. Спектральный состав тока определяется следующим образом:


В полученном выражении спектральные составляющие расположены в порядке возрастания их частот. Среди них имеются составляющие с частотами , и , которые образуют амплитудно-модулированное колебание, т.е.

В передающих устройствах обычно совмещают процессы модуляции и усиления, что обеспечивает минимальные искажения модулированных сигналов. С этой целью амплитудные модуляторы строят по схеме резонансных усилителей мощности, в которых изменение амплитуды высокочастотных колебаний достигается изменением положения рабочей точки по закону модулирующего сигнала.

Схема и режимы работы амплитудного модулятора

Схема амплитудного модулятора на основе резонансного усилителя представлена на рис. 8.5.

Рис. 8.5. Схема амплитудного модулятора на основе резонансного усилителя

На вход резонансного усилителя, работающего в нелинейном режиме, подаются:

несущее колебание от автогенератора с помощью высокочастотной трансформаторной связи контура входной цепи с базой транзистора;

модулирующий сигнал с помощью низкочастотного трансформатора .

Конденсаторы и - блокировочные, обеспечивают развязку входных цепей по частотам несущего колебания и модулирующего сигнала, т.е. развязку по высокой и низкой частотам. Колебательный контур в цепи коллектора настроен на частоту несущего колебания, добротность контура обеспечивает полосу пропускания , где - наивысшая частота в спектре модулирующего сигнала.

Выбором рабочей точки определяется режим работы модулятора. Возможны два режима: режим малых и режим больших сигналов.

а. Режим малых входных сигналов

Этот режим устанавливается выбором рабочей точки в середине квадратичного участка ВАХ транзистора. Выбором амплитуды несущего колебания обеспечивается работа модулятора в пределах этого участка (рис. 8.6).

Рис. 8.6. Режим малых входных сигналов амплитудного модулятора

Амплитуда напряжения на колебательном контуре, резонансная частота которого равна несущей частоте, определяется амплитудой первой гармоники тока, т.е. , где - резонансное сопротивление контура. Учитывая, что средняя крутизна ВАХ в пределах рабочего участка равна отношению амплитуды первой гармоники к амплитуде несущего колебания, т.е. , можно записать

.

Под воздействием модулирующего напряжения, подаваемого на базу транзистора, будет изменяться положение рабочей точки, а значит, будет изменяться и средняя крутизна ВАХ. Так как амплитуда напряжения на колебательном контуре пропорциональна средней крутизне, то для обеспечения амплитудной модуляции несущего колебания необходимо обеспечить линейную зависимость крутизны от модулирующего сигнала. Покажем, что это возможно при использовании рабочего участка ВАХ, аппроксимируемого полиномом второй степени.

Итак, в пределах квадратичного участка ВАХ, описываемого полиномом , существует входное напряжение, равное сумме двух колебаний: несущего и модулирующего, т.е.

Спектральный состав тока коллектора определяется следующим образом:

Выделяем первую гармонику тока:

Таким образом, амплитуда первой гармоники равна:

Как видно из полученного выражения, амплитуда первой гармоники тока линейно зависит от модулирующего напряжения. Следовательно, средняя крутизна также будет линейно зависеть от модулирующего напряжения.

Тогда напряжение на колебательном контуре будет равно:

Следовательно, на выходе рассматриваемого модулятора формируется амплитудно-модулированный сигнал вида:

Здесь - коэффициент глубины модуляции;

- амплитуда высокочастотного колебания на выходе модулятора в отсутствие модуляции, т.е. при .

При проектировании передающих систем важным требованием является формирование амплитудно-модулированных колебаний большой мощности при достаточном КПД . Очевидно, что рассмотренный режим работы модулятора не может обеспечить эти требования, особенно первое из них. Поэтому наиболее часто используют так называемый режим больших сигналов.

б. Режим больших входных сигналов

Этот режим устанавливается выбором рабочей точки на ВАХ транзистора, при котором усилитель работает с отсечкой тока. В свою очередь, выбором амплитуды несущего колебания обеспечивается изменение амплитуды импульсов тока коллектора по закону модулирующего сигнала (рис. 8.7). Это приводит к аналогичному изменению амплитуды первой гармоники коллекторного тока и, следовательно, изменению амплитуды напряжения на колебательном контуре модулятора, так как

и .

Рис. 8.7. Режим больших входных сигналов амплитудного модулятора

Изменение амплитуды входного высокочастотного напряжения во времени сопровождается изменением угла отсечки, а значит, и коэффициента . Следовательно, форма огибающей напряжения на контуре может отличаться от формы модулирующего сигнала, что является недостатком рассмотренного метода модуляции. Для обеспечения минимальных искажений необходимо устанавливать определенные пределы изменения угла отсечки и работать при не слишком большом коэффициенте модуляции .

В схеме амплитудного модулятора, приведенной на рис. 8.8, модулирующий сигнал подается на базу транзистора генератора стабильного тока. Значение этого тока пропорционально входному напряжению. При малых значениях входных напряжений амплитуда выходного напряжения будет зависеть от модулирующего сигнала следующим образом

где - коэффициенты пропорциональности.

Характеристики амплитудного модулятора

Для выбора режима работы модулятора и оценки качества его работы используют различные характеристики, основными из которых являются: статическая модуляционная характеристика, динамическая модуляционная характеристика и частотная характеристика.

Рис. 8.8. Схема амплитудного модулятора с генератором тока

а. Статическая модуляционная характеристика

Статическая модуляционная характеристика (СМХ) - это зависимость амплитуды выходного напряжения модулятора от напряжения смещения при постоянной амплитуде напряжения несущей частоты на входе, т.е. .

При экспериментальном определении статической модуляционной характеристики на вход модулятора подается только напряжение несущей частоты (модулирующий сигнал не подается), изменяется величина (как бы имитируется изменение модулирующего сигнала в статике) и фиксируется изменение амплитуды несущего колебания на выходе. Вид характеристики (рис. 8.9,а) определяется динамикой изменения средней крутизны ВАХ при изменении напряжения смещения. Линейный возрастающий участок СМХ соответствует квадратичному участку ВАХ, так как на этом участке с ростом напряжения смещения средняя крутизна растет. Горизонтальный участок СМХ соответствует линейному участку ВАХ, т.е. участку с постоянной средней крутизной. При переходе транзистора в режим насыщения появляется горизонтальный участок ВАХ с нулевой крутизной, что и отражается спадом СМХ

Статическая модуляционная характеристика позволяет определить величину напряжения смещения и приемлемый диапазон изменения модулирующего сигнала с целью обеспечения его линейной зависимости от выходного напряжения. Работа модулятора должна происходить в пределах линейного участка СМХ. Величина напряжения смещения должна соответствовать середине линейного участка, а максимальное значение модулирующего сигнала не должна выходить за пределы линейного участка СМХ. Можно также определить максимальный коэффициент модуляции , при котором еще нет искажений. Его величина равна .

Рис. 8.9. Характеристики амплитудного модулятора

б. Динамическая модуляционная характеристика

Динамическая модуляционная характеристика (ДМХ) - это зависимость коэффициента модуляции от амплитуды модулирующего сигнала, т.е. . Получить эту характеристику можно экспериментальным путем, либо по статической модуляционной характеристике. Вид ДМХ представлен на рис. 8.9,б. Линейный участок характеристики соответствует работе модулятора в пределах линейного участка СМХ.

в. Частотная характеристика

Частотная характеристика - это зависимость коэффициента модуляции от частоты модулирующего сигнала, т.е. . Влияние входного трансформатора приводит к завалу характеристики на низких частотах (рис. 8.9,в). С ростом частоты модулирующего сигнала боковые составляющие амплитудно-модулированного колебания удаляются от несущей частоты. Это приводит к их меньшему усилению в силу избирательных свойств колебательного контура, что обусловливает завал характеристики на более высоких частотах . Если полоса частот, занимаемая модулирующим сигналом, находится в пределах горизонтального участка частотной характеристики, то искажения при модуляции будут минимальны.

Балансный амплитудный модулятор

Для эффективного использования мощности передатчика применяют балансную амплитудную модуляцию. При этом формируется амплитудно-модулированный сигнал, в спектре которого отсутствует составляющая на несущей частоте.

Схема балансного модулятора (рис. 8.10) представляет собой сочетание двух типовых схем амплитудных модуляторов с определенными соединениями их входов и выходов. Входы по частоте несущего колебания соединены параллельно, а выходы подключены с инверсией относительно друг друга, образуя разность выходных напряжений. Модулирующий сигнал подается на модуляторы в противофазе. В результате на выходах модуляторов имеем

И , а на выходе балансного модулятора

Рис. 8.10. Схема балансного амплитудного модулятора

Таким образом, в спектре выходного сигнала имеются составляющие с частотами и . Составляющей с частотой несущего колебания нет.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: