Резистивный тачскрин принцип работы. Типы сенсорных экранов. Какой лучше

Статья:

Устройство дисплея мобильного телефона (смартфона) и планшета. Устройство жидкокристаллического экрана. Типы дисплеев, их отличия.

Предисловие

В этой статье мы разберем устройство дисплеев современных мобильных телефонов, смартфонов и планшетов. Экраны крупных устройств (мониторов, телевизоров и т.п.), за исключением небольших нюансов, устроены аналогично.

Разборку будем проводить не только теоретически, но и практически, со вскрытием дисплея "жертвенного" телефона.

Рассматривать, как устроен современный дисплей, мы будем на примере наиболее сложного их них - жидкокристаллического (LCD - liquid crystal display ). Иногда их называют TFT LCD , где сокращение TFT расшифровывается "thin-film transistor" - тонкопленочный транзистор; поскольку управление жидкими кристаллами осуществляется благодаря таким транзисторам, нанесенным на подложку вместе с жидкими кристаллами.

В качестве "жертвенного" телефона, дисплей которого будет вскрыт, выступит дешевенький Nokia 105.

Основные составные части дисплея

Жидкокристаллические дисплеи (TFT LCD , и их модификации - TN, IPS, IGZO и т.д.) состоят укрупненно из трех составных частей: сенсорной поверхности, устройства формирования изображения (матрица) и источника света (лампы подсветки).Между сенсорной поверхностью и матрицей расположен еще один слой, пассивный. Он представляет собой прозрачный оптический клей или просто воздушный промежуток. Существование этого слоя связано с тем, что в ЖК-дисплеях экран и сенсорная поверхность представляют собой совершенно разные устройства, совмещенные чисто механически.

Каждая из "активных" составных частей имеет достаточно сложную структуру.

Начнем с сенсорной поверхности (тачскрин, touchscreen). Она располагается самым верхним слоем в дисплее (если она есть; а в кнопочных телефонах, например, ее нет).
Её наиболее распространенный сейчас тип - ёмкостная. Принцип действия такого тачскрина основан на изменении электрической емкости между вертикальными и горизонтальными проводниками при прикосновении пальца пользователя.
Соответственно, чтобы эти проводники не мешали рассматривать изображение, они делаются прозрачными из специальных материалов (обычно для этого используется оксид индия-олова).

Существуют также и сенсорные поверхности, реагирующие на силу нажатия (т.н. резистивные), но они уже "сходят с арены".
В последнее время появились и комбинированные сенсорные поверхности, реагирующие одновременно и на емкость пальца, и на силу нажатия (3D-touch -дисплеи). Их основу составляет емкостной сенсор, дополненный датчиком силы нажатия на экран.

Тачскрин может быть отделен от экрана воздушным промежутком, а может быть и склеен с ним (так называемое "решение с одним стеклом", OGS - one glass solution).
Такой вариант (OGS) имеет значительное преимущество по качеству, поскольку уменьшает уровень отражения в дисплее от внешних источников света. Это достигается за счет уменьшения количества отражающих поверхностей.
В "обычном" дисплее (с воздушным промежутком) таких поверхностей - три. Это - границы переходов между средами с разным коэффициентом преломления света: "воздух-стекло", затем - "стекло-воздух", и, наконец, снова "воздух-стекло". Наиболее сильные отражения - от первой и последней границ.

В варианте же с OGS отражающая поверхность - только одна (внешняя), "воздух-стекло".

Хотя собственно для пользователя дисплей с OGS очень удобен и имеет хорошие характеристики; есть у него и недостаток, который "всплывает", если дисплей разбить. Если в "обычном" дисплее (без OGS) при ударе разбивается только сам тачскрин (чувствительная поверхность), то при ударе дисплея с OGS может разбиться и весь дисплей целиком. Но происходит это не всегда, поэтому утверждения некоторых порталов о том, что дисплеи с OGS абсолютно не ремонтируемые - не верно. Вероятность того, что разбилась только внешняя поверхность - довольно велика, выше 50%. Но ремонт с отделением слоев и приклейкой нового тачскрина возможен только в сервис-центре; отремонтировать своими руками крайне проблематично.

Экран

Теперь переходим к следующей части - собственно экрану.

Он состоит из матрицы с сопутствующими слоями и лампы подсветки (тоже многослойной!).

Задача матрицы и относящихся к ней слоев - изменить количество проходящего через каждый пиксель света от лампы подсветки, формируя тем самым изображение; то есть в данном случае регулируется прозрачность пикселей.

Немного детальнее об этом процессе.

Регулировка "прозрачности" осуществляется за счет изменения направления поляризации света при прохождении через жидкие кристаллы в пикселе под воздействием на них электрического поля (или наоборот, при отсутствии воздействия). При этом само по себе изменение поляризации еще не меняет яркости проходящего света.

Изменение яркости происходит при прохождении поляризованного света через следующий слой - поляризационную пленку с "фиксированным" направлением поляризации.

Схематично структура и работа матрицы в двух состояниях ("есть свет" и "нет света") изображена на следующем рисунке:


(использовано изображение из нидерландского раздела Википедии с переводом на русский язык)

Поворот поляризации света происходит в слое жидких кристаллов в зависимости от приложенного напряжения.
Чем больше совпадут направления поляризации в пикселе (на выходе из жидких кристаллов) и в пленке с фиксированной поляризацией, тем больше в итоге проходит света через всю систему.

Если направления поляризации получатся перпендикулярными, то свет теоретически вообще проходить не должен - должен быть черный экран.

На практике такое "идеальное" расположение векторов поляризации создать невозможно; причем как из-за "неидеальности" жидких кристаллов, так и не идеальной геометрии сборки дисплея. Поэтому и абсолютно-черного изображения на TFT экране не может быть. На лучших LCD экранах контрастность белое/черное может быть свыше 1000; на средних 500...1000, на остальных - ниже 500.

Только что была описана работа матрицы, изготовленной по технологии LCD TN+film. Жидкокристаллические матрицы по другим технологиям имеют схожие принципы работы, но другую техническую реализацию. Наилучшие результаты по цветопередаче получаются по технологиям IPS, IGZO и *VA (MVA, PVA и т.п.).

Подсветка

Теперь переходим к самому "дну" дисплея - лампе подсветки. Хотя современная подсветка собственно ламп и не содержит.

Несмотря на простое название, лампа подсветки имеет сложную многослойную структуру.

Связано это с тем, что лампа подсветки должна быть плоским источником света с равномерной яркостью всей поверхности, а таких источников света в природе крайне мало. Да и те, что есть, не очень подходят для этих целей из-за низкого КПД, "плохого" спектра излучения, или же требуют "неподходящего" типа и величины напряжения свечения (например, электролюминесцентные поверхности, см. Википедию ).

В связи с этим сейчас наиболее распространены не чисто "плоские" источники света, а "точечная" светодиодная подсветка с применением дополнительных рассеивающих и отражающих слоев.

Рассмотрим такой тип подсветки, проведя "вскрытие" дисплея телефона Nokia 105.

Разобрав систему подсветки дисплея до её среднего слоя, мы увидим в левом нижнем углу единственный светодиод белого свечения, который направляет свое излучение внутрь почти прозрачной пластины через плоскую грань на внутреннем "срезе" угла:

Пояснения к снимку. В центре кадра - разделенный по слоям дисплей мобильного телефона. В середине на переднем плане снизу - покрытая трещинами матрица (повреждена при разборке). На переднем плане вверху - срединная часть системы подсветки (остальные слои временно удалены для обеспечения видимости излучающего белого светодиода и полупрозрачной "световодной" пластины).
Сзади дисплея видна материнская плата телефона (зеленого цвета) и клавиатура (снизу с круглыми отверстиями для передачи нажатия от кнопок).

Эта полупрозрачная пластина является одновременно и световодом (за счет внутренних переотражений), и первым рассеивающим элементом (за счет "пупырышков", создающих препятствия для прохождения света). В увеличенном виде они выглядят так:


В нижней части изображения левее середины виден яркий излучающий белый светодиод подсветки.

Форма белого светодиода подсветки лучше различима на снимке с пониженной яркостью его свечения:

Снизу и сверху этой пластины подкладывают обыкновенные белые матовые пластиковые листы, равномерно распределяющие световой поток по площади:

Его условно можно назвать "лист с полупрозрачным зеркалом и двойным лучепреломлением". Помните, на уроках физики нам рассказывали про исландский шпат, при прохождении через который свет раздваивался? Вот это похоже на него, только еще и немного с зеркальными свойствами.

Вот так выглядят обычные наручные часы, если часть их прикрыть этим листом:

Вероятное назначение этого листа - предварительная фильтрация света по поляризации (сохранить нужную, отбросить ненужную). Но не исключено, что и в плане направления светового потока в сторону матрицы эта пленка тоже имеет какую-то роль.

Вот так устроена "простенькая" лампа подсветки в жидкокристаллических дисплеях и мониторах.

Что касается "больших" экранов, то их устройство - аналогично, но светодиодов в устройстве подсветки там больше.

В более старых жидкокристаллических мониторах вместо светодиодной подсветки использовали газосветные лампы с холодным катодом (CCFL, Cold Cathode Fluorescent Lamp) .

Структура дисплеев AMOLED

Теперь - несколько слов об устройстве нового и прогрессивного типа дисплеев - AMOLED (Active Matrix Organic Light-Emitting Diode ).

Устройство таких дисплеев значительно проще, так как там нет лампы подсветки.

Эти дисплеи образованы массивом светодиодов и светится там каждый пиксель в отдельности. Достоинствами дисплеев AMOLED являются "бесконечная" контрастность, отличные углы обзора и высокая энергоэффективность; а недостатками - уменьшенный срок "жизни" синих пикселей и технологические сложности изготовления больших экранов.

Также надо отметить, что, несмотря на более простую структуру, стоимость производства дисплеев AMOLED пока что выше, чем дисплеев TFT LCD.

Сенсорный экран - это устройство ввода информации, представляющее собой экран, реагирующий на прикосновения к нему.

Основные сравнительные характеристики сенсорных экранов.

МультитачПрозрачность, %ТочностьИзмерение силы нажатияНажатия рукой в перчаткеНажатия проводящим предметомНажатия непроводящим предметомЗащита от грязи
Резистивные Ёмкостные Проекционно-емкостные ПАВ ИК
- + + - +
75-85 90 90 95 100
Выс. Выс. Выс. Выс. Выс.
- - + + -
+ - + + +
+ + + - +
+ - - - +
+ + + - -

Первым наиболее очевидным преимуществом сенсорных технологий является интуитивность и естественность самого действия - прикосновения рукой к экрану.

Второе несомненное преимущество устройств на основе сенсорных экранов, компактность. Установка сенсорных мониторов качественно повысить эффективность обслуживания в кинотеатрах, ресторанах, гостиницах, аэропортах, административных заведениях, где каждый сантиметр рабочего места представляет ценность. Сенсорный монитор (особенно если это жидкокристаллический монитор) позволяет экономить максимум места на рабочей поверхности.

Скорость работы может быть не только вопросом престижа, но и жизненно важным вопросом, в самом прямом смысле этого слова. Представьте, что может означать выигранная секунда, когда требуется максимально быстрая реакция, например, диспетчера охранного центра. Таким образом, быстрый доступ - это третье преимущество сенсорных экранов.

Четвертым преимуществом сенсоров является снижение затрат. Установка сенсорного монитора может существенно повысить скорость и точность действий сотрудника, работающего за компьютером, снизить время, необходимое на обучение сотрудника.

Сенсорный экран - виды:

Резистивный сенсорный экран.

В этой конструкции экран представляет собой стеклянную либо акриловую пластину, покрытую двумя токопроводящими слоями. Слои разделены незаметными глазу прокладками, которые предохраняют сеть вертикальных и горизонтальных проводников от соприкосновения. В момент нажатия слои контактируют и контроллер регистрирует электрический сигнал. Координаты нажатия определяются, исходя из того, на пересечении каких проводников было зарегистрировано воздействие.

Применение

  • Коммуникаторы
  • Сотовые телефоны
  • POS-терминалы
  • Tablet PC
  • Промышленность (устройства управления)
  • Медицинское оборудование

Емкостный (электростатический) сенсорный экран.

В работе емкостного экрана человек участвует не только механическим, но и электрическим образом. До прикосновения экран обладает некоторым электрическим зарядом. Прикосновение пальца меняет картину заряженности, «оттягивая» часть заряда к точке нажатия. Датчики экрана, расположенные по всем четырем углам, следят за течением заряда в экране, определяя, таким образом, координаты «утечки» электронов.

Емкостные экраны также отличаются высокой надежностью (в них отсутствуют гибкие мембраны) и высокой степенью прозрачности. Правда они не годятся для работы стилусом или перчаткой - нажимать на экран необходимо «голым пальцем». Зато впечатляет надежность емкостного экрана - до миллиарда нажатий в одно и то же место.

Применение

  • В охраняемых помещениях
  • Информационные киоски
  • Некоторые банкоматы

Акустический сенсорный экран.

Такие экраны построены с использованием миниатюрных пьезоэлектрических излучателей звука, не слышимого человеком. Стекло такого экрана постоянно незаметно вибрирует под воздействием излучателей, установленных в трех углах экрана. Специальные отражатели особым образом распространяют акустическую волну по всей поверхности экрана. Прикосновение к экрану меняет картину распространения акустических колебаний, что и регистрируется датчиками. По изменению характера колебаний можно вычислить координаты возмущений, внесенных нажатием на экран. Кроме этого, анализируя степень изменения колебаний, можно вычислить силу нажатия на экран. Это полезно при проектировании систем управления промышленным оборудованием, например, для плавного изменения скорости вращения двигателей и других параметров. Среди плюсов акустических экранов - отсутствие покрытий, что повышает надежность и прозрачность экрана.

Данные акустические сенсорные экраны применяются в основном в игровых автоматах, в охраняемых справочных системах и образовательных учреждениях. Как правило экраны различают на обычные - толщиной 3 мм, и вандалстойкие - 6 мм. Последние выдерживают удар кулаком среднего мужчины или падение металлического шара весом 0.5 кг с высоты 1.3.

Главным недостатком экрана являются сбои в работе при наличии вибрации или при воздействии акустическими шумами, а также при загрязнении экрана. Любой посторонний предмет, размещённый на экране (например, жевательная резинка), полностью блокирует его работу. Кроме того, данная технология требует касания предметом, который обязательно поглощает акустические волны.

Инфракрасный сенсорный экран.

Инфракрасные сенсорные экраны представляют собой рамку вокруг монитора, в которой установлены излучатели и приёмники инфракрасного излучения. Минусы этой конструкции - низкое разрешение датчиков и возможность ложного срабатывания в результате посторонней засветки. Зато при больших диагоналях экранов эта технология пока незаменима. К тому же, все вышеперечисленные разновидности сенсорных дисплеев подвержены так называемому «дрейфу активной точки».

Инфракрасные сенсорные экраны боятся загрязнений и поэтому применяются там, где важно качество изображения. Из-за простоты и ремонтопригодности схема популярна у военных. Данный тип экрана применяется и в мобильных телефонах.

Мультитач ,

не является типом сенсорного экрана. По своей сути, технология множественного нажатия – что является вольным переводом словосочетания multi-touch – это дополнение к сенсорному экрану (чаще всего построенному по проекционно-ёмкостному принципу), позволяющее экрану распознавать несколько точек прикосновения к нему. В результате мультитач-экран становится способным к распознаванию жестов.

Сенсорный экран - виды.

Предназначен, в первую очередь, для вывода и ввода информации за счёт жестикуляции или нажатия на дисплей. Сейчас существует множество разновидностей, позволяющих напрямую взаимодействовать с устройством. Встроенные сенсоры можно увидеть во многих устройствах: смартфонах, планшетах, плеерах, видеокамерах и фотоаппаратах. Существующие типы сенсорных экранов обладают своими достоинствами и недостатками. Для того чтобы решить, какой из них лучше, необходимо более детально изучить особенности каждого. В нашем случае мы остановимся на сенсорных дисплеях, встроенных в планшеты.

Отметим, что типы сенсорных разделяются на четыре основных типа:

  • Ёмкостные.
  • Проекционно-ёмкостные.
  • Дисплеи с поверхностно-акустическими волнами (ПАВ).
  • Резистивные.

Наиболее распространены ёмкостные и резистивные. Их главное отличие заключается в том, что первые распознают касание, а вторые нажатие (стилусом или пальцем). По правде сказать, резистивные сенсоры устанавливаются в более дешёвых моделях планшетов и считаются пережитками. Ёмкостные широко используются в новых моделях мобильных устройств.

Почему, собственно говоря, они так называются? Объект большой ёмкости проводит по устройства электрический переменный ток. Поверхность представляет собой не что иное, как стеклянную панель, покрытую резистивным прозрачным сплавом. Проводящий слой обладает большим уровнем напряжения и при соприкосновении с каким-либо предметом или пальцем совершается утечка тока. В результате этого датчиками фиксируется утечка тока, вследствие чего происходит мгновенное вычисление координат точки нажатия.

Преимущества дисплея

Существуют проекционно-ёмкостные типы экранов . Они считаются более продвинутыми и отличаются повышенной чувствительностью, быстрой реакцией, а главное, позволяют взаимодействовать с устройством через перчатки. Очень важным фактором является поддержка технологии мультитач. Благодаря ей можно нажимать на поверхность двумя или даже тремя пальцами. Это обусловлено тем, что одновременно находятся координаты нескольких точек, на которых направлено действие.

Главными достоинствами передовых сенсорных экранов является устойчивость к любым загрязнениям, прочность и надёжность. Кроме того, можно спокойно осуществлять работу на проекционно-ёмкостных экранах в холодную погоду. Они отличаются стойкостью к низким температурам. Быстрая реакция является безусловным преимуществом перед ёмкостным дисплеем. Достаточно одного лёгкого касания для вывода информации.

Применение в жизни

Следует сказать о том, что ёмкостные дисплеи устанавливают не только в планшеты, но также и в информационные киоски, банкоматы и охраняемые здания. Круг использования проекционно-ёмкостных дисплеев намного шире. Их можно встретить в платёжных терминалах, ноутбуках, электронных киосках и любых устройствах, которые поддерживают технологию мультитач. Для взаимодействия с проекционно-ёмкостными экранами можно использовать специальный токопроводящий стилус, однако его мало кто применяет. Гораздо удобнее совершать все действия в ручном режиме.

Говорить о недостатках ёмкостных и проекционно-ёмкостных экранов не приходится. Единственным минусом, пожалуй, является их высокая стоимость, однако она в полной мере себя оправдывает. Если хотите приобрести устройство с качественным сенсорным типом экрана, придётся заплатить соответствующую сумму.

Характеристики резистивных экранов

Устройство и применение

Более простой и дешёвой технологией является резистивный сенсор, состоящий из пластиковой мембраны и проводящей подложки. При нажатии на мембранную часть происходит лёгкое замыкание с подложкой. Электроника управления при этом вычисляет сопротивление, которое возникает между краями двух частей. В результате происходит вычисление координат точки нажатия.

Зачастую резистивные сенсорные экраны используются в недорогих моделях планшетов и других мобильных устройствах, коммуникаторах, КПК, медицинском оборудовании и промышленных управленческих устройствах. К гаджетам со встроенным резистивным дисплеем в комплекте идёт специальный стилус. Несмотря на это, с таким можно работать и любым другим тупым предметом. Реагируют резистивные дисплеи и на пальцы, даже в перчатках. Правда, есть один небольшой нюанс - воздействие на поверхность не должно быть очень сильным , в противном случае можно повредить экран.

Особенности использования

Если говорить о недостатках дисплеев резистивного типа, то они очень чувствительны к любым механическим повреждениям . Устройство с таким экраном ни в коем случае нельзя носить в кармане с ключами или использовать вместо стилуса другой предмет. Иначе на дисплее останутся некрасивые царапины, а это может привести к снижению чувствительности. Для того чтобы обезопасить себя от подобных рисков, необходимо наклеить защитную плёнку на резистивную поверхность. Кроме того, при низких температурах он всё равно будет работать плохо. Если говорить о прозрачности, пропускается всего 84% света, исходящего от экрана - это очень низкий показатель.

Многие пользователи задаются вопросом: какой тип сенсорного экрана лучше? Однозначного ответа нет. Если по цене, то самыми недорогими являются дисплеи резистивного типа. По качеству, естественно, опережают проекционно-ёмкостные. Однако есть ещё одни тип сенсорного экрана, о котором стоит рассказать.

Такие дисплеи работают следующим образом: пьезоэлементы, расположенные по углам устройства, преобразуют приходящий электросигнал в ультразвуковые волны. Они тут же поступают на поверхность дисплея. Вдоль краёв дисплея распространены отражающие элементы, а на противоположной стороне присутствуют сенсоры, которые фиксируют и передают волны ультразвука. Преобразователь трансформирует их в электросигнал. При касании он ослабляется, и вычисляются координаты касания. Следует отметить, что вычисляется и интенсивность касания, чего нет у других типов экранов. Однако, в отличие от своих конкурентов, этот вариант не в полной мере определяет координаты, следовательно, вы не сможете рисовать на таких экранах .

обладают высокой прозрачностью и долговечностью . Экран практически не имеет проводящих поверхностей и может выдержать до 50 миллионов касаний. Существенным недостатком является то, что загрязнители блокируют работу устройства, а корректная работа дисплея осуществляется только во взаимодействии с поглощающими акустическими волнами. Дисплеи ПАВ встраивают не только в планшеты, но и в игровые автоматы, охраняемые киоски и прочие устройства.

Благодаря сенсорным экранам значительно упростился графический интерфейс и управление . Доступ к функциям стал более простым. Сенсорные дисплеи позволяют делать минимум движений и получать информацию в полном объёме. Несмотря на то, что видов существует несколько, все они имеют свои преимущества. Какое устройство выбирать, решать только пользователю, отталкиваясь от собственных финансовых возможностей и предпочтений.

Наверняка все из вас пользуются компьютерами и мобильными устройствами, и лишь единицы в общем способны рассказать, как работают их процессоры, операционные системы и прочие компоненты.

В эру мобильных гаджетов у всех есть с сенсорным (ещё его называют интеллектуальным) экраном, и почти никто не знает, что такое этот сенсорный дисплей, как он работает и какие его виды существуют.

Что это такое

Сенсорный дисплей (экран) – это устройство для визуализации цифровой информации с возможностью оказывать управленческое воздействие посредством прикосновений к поверхности дисплея.

Основываясь на различных технологиях, разные дисплеи реагируют только на определенные факторы.

Одни считывают изменение ёмкости или сопротивления в области соприкосновения, другие на перепады температуры , некоторые сенсоры реагируют только на специальное перо , чтобы избежать случайных нажатий.

Мы рассмотрим принцип действия всех распространённых видов дисплеев, области их применения, сильные и слабые стороны.

Среди всех существующих принципов управления устройством посредством чувствительной к каким-либо факторам матрицы, обратим внимание на следующие технологии:

  • резистивная (4-5-ти проводная);
  • матричная;
  • ёмкостная и её варианты;
  • поверхностно-акустическая;
  • оптическая и иные менее распространённые и практичные.

В общем схема работы следующая: пользователь прикасается к области экрана, датчики передают контроллеру данные об изменении какой-либо переменной (сопротивления, ёмкости), тот рассчитывает точные координаты места соприкосновения и отправляет их .

Последний, основываясь на программе, соответствующим образом реагирует на нажатие.

Резистивные

Самый простой сенсорный экран – резистивный. Он реагирует на изменение сопротивления в области касания постороннего предмета и экрана.

Это самая примитивная и распространённая технология. Устройство состоит из двух основных элементов:

  • токопроводящая прозрачная подложка (панель) из полиэстера или иного полимера толщиной в несколько десятков молекул;
  • светопроводящая мембрана из полимерного материала (как правило, используется тонкий слой пластика).

На оба слоя напылен резистивный материал. Между ними расположены микроизоляторы в виде шариков.

Во время этапа эластичная мембрана деформируется (прогибается), соприкасается со слоем подложки и замыкает её.

Контроллер посредством аналого-цифрового преобразователя реагирует на замыкание. Он высчитывает разницу между исходным и текущим сопротивлением (или проводимостью) и координаты точки или области, где это осуществляется.

Практика быстро выявила недостатки таких устройств, и инженеры приступили к поиску решений, которые вскоре были найдены путём добавления 5-го провода.

Четырёхпроводной

Верхний электрод находится под напряжением 5В, а нижний заземлён.

Левый с правым соединены напрямую, они и являются индикатором изменения напряжения по оси Y.

Затем верхний с нижним закорачиваются, а на левый с правым подается 5В, чтобы считать X-координату.

Пятипроводной

Надёжность обусловлена заменой резистивного покрытия мембраны на токопроводящее.

Панель же изготавливается из стекла и остается покрытой резистивным материалом , а на её углах размещаются электроды.

Сначала все электроды заземляются, а мембрана находится под напряжением, которое постоянно мониторится тем же аналого-цифровым преобразователем.

Во время прикосновения контроллер (микропроцессор) улавливает изменение параметра и проводит расчёты точки/области, где напряжение изменилось по схеме с четырьмя проводами.

Важное преимущество – возможность наносить на выпуклые и вогнутые поверхности.

На рынке встречаются и 8-ми проводные экраны. Их точность выше, чем рассмотренные, но на надёжность это ни коим образом не влияет, а цена заметно отличается.

Заключение

Рассмотренные сенсоры используются повсеместно ввиду низкой себестоимости и стойкости к влиянию факторов внешней среды, таких как загрязнение и пониженные температуры (но не ниже нуля).

Они отлично откликаются на прикосновение практически любым предметом, но не острым.

Площади карандаша или спички, как правило, недостаточно для вызова реакции контроллера.

Ставятся такие дисплеи на , используются в сфере обслуживания (офисы, банки, магазины), медицине и образовании.

Везде, где устройства изолированы от внешней среды, а вероятность быть повреждённым минимальна.

Невысокая надёжность (экран легко повредить) частично компенсируется защитной плёнкой.

Плохое функционирование на морозе, низкое светопропускание (0,75 и 0,85 соответственно), ресурс (не более 35 миллионов нажатий для терминала, которым постоянно пользуются, совсем немного) – слабые стороны технологии.

Матричные

Более упрощенная резистивная технология, возникшая ещё до неё.

Мембрана покрыта рядами вертикальных проводников , а подложка – горизонтальными.

При нажатии происходит вычисление области, где сомкнулись проводники и полученные данные передаются в процессор.

Он уже вырабатывает управляющий сигнал и устройство определённым образом реагирует, например, выполняет закреплённое за кнопкой действие).

Особенности:

  • очень низкая точность (количество проводников весьма ограничено);
  • самая низкая цена среди всех;
  • реализации функции мультитач из-за опроса экрана по строчкам.

Используются только в устаревшей электронике и почти вышли из обихода ввиду наличия прогрессивных решений.

Ёмкостные

Принцип основан на способности объектов большой ёмкости становиться проводниками переменного электрического тока.

Экран изготовлен в виде стеклянной панели с тонким слоем напыленного резистивного вещества.

Электроды по углам дисплея подают небольшое напряжение переменного тока на проводящий слой.

В момент соприкосновения осуществляется утечка тока , если предмет имеет большую электрическую ёмкость, чем экран.

По углам экрана регистрируется ток, а сведения с датчиков отправляются контроллеру на обработку. На их основании происходит вычисление области контакта.

В первых прототипах использовалось напряжение постоянного тока. Решение делало конструкцию проще, но часто возникали сбои, когда пользователь не соприкасался с землёй.

Данные девайсы очень надёжны, их ресурс превышает резистивные ~ в 60 раз (порядка 200 млн. нажатий), влагостойкие и отлично терпят загрязнения, не проводящие электрический ток.

Прозрачность находится на уровне 0,9, что немного выше, резистивных, и работают при температуре до - 15 0 С.

Недостатки:

  • не реагирует на перчатку и большинство посторонних предметов;
  • проводящее покрытие находится в верхнем слое и очень уязвимо к механическим повреждениям.

Используются в тех же банкоматах и терминалах под закрытым небом.

Проекционно-ёмкостные

На внутреннюю поверхность наносится электродная сетка, образующая с телом человека ёмкость (конденсатор). Электроника (микроконтроллер и датчики) работают над расчётом координат при и отправляет расчёты центральному процессору.

Обладают всеми особенностями ёмкостных.

Вдобавок могут оснащаться толстой пленкой до 1,8 см, что повышает защиту от механических воздействий.

Токопроводящие загрязнения, где их тяжело или невозможно устранить, без проблем убираются программным методом.

Чаще всех иных устанавливаются в персональные электронные устройства, банкоматы и различную технику, установленную фактически под открытым небом (под накрытием). Apple также отдают предпочтение проекционно-ёмкостным дисплеям.

Поверхностно-акустическая волна

Изготавливается в виде стеклянной панели, оснащённой пьезоэлектрическими преобразователями ПЭП, расположенными на противоположных углах, и приёмниками.

Их тоже пара и находятся на противоположных углах.

Генератор отправляет электрический сигнал ВЧ на ПЭП, тот превращает череду импульсов в ПАВ, а отражатели распространяют её.

Отраженные волны улавливаются датчиками и поступают на ПЭП, который преобразовывает их обратно в электричество.

Сигнал отправляется на контроллер, который анализирует его.

При касании параметры волны изменяются, в частности поглощается часть её энергии в определённом месте. На основании этой информации производится расчёт области касания и его силы.

Весьма высокая прозрачность (выше 95%) обусловлена отсутствием проводящих/резистивных поверхностей.

Порой для устранения бликов отражатели света вместе с приёмниками монтируются непосредственно на экран.

Сложность конструкции никоим образом не отражается на эксплуатации девайса с таким экраном, а число прикосновений в одной точке равняется 50 млн раз, что немного превышает ресурс резистивной технологии (65 млн. раз в общем).

Выпускаются с тонкой плёнкой порядка 3 мм и утолщенной – 6 мм. Благодаря такой защите дисплей выдерживает несильный удар кулаком.

Слабые стороны:

  • плохая работа в условиях вибрации и тряски (в транспорте, при ходьбе);
  • отсутствие стойкости к загрязнениям – любой посторонний предмет влияет на функционирование дисплея;
  • помехи при наличии акустических шумов определённой конфигурации;
  • точность немногим ниже, чем в ёмкостных, из-за чего непригодны для рисования.

Перед тем как рассмотреть емкостной или резистивный экран, требуется определиться с тем, что собой представляет сенсорная технология вообще. Тут все понятно: это экран, который определяет координаты нажатия. Если выражаться научно, то тут подразумевается метод управления интерфейсом, с помощью которого пользователь может нажимать непосредственно на интересующее место. На данный момент существует несколько методов реализации сенсорных экранов. Стоит рассмотреть каждый по отдельности.

Резистивная технология

Чтобы определиться, какой тип экрана, емкостный или резистивный, вам больше подходит, необходимо рассмотреть их. Второй вариант предполагает использование определенной производственной технологии. Снизу размещена панель из стекла, поверх которой находится прозрачная гибкая мембрана. На панели и мембране присутствует токопроводящее покрытие, то есть резистивное. При нажатии на экран происходит замыкание в определенной точке. Если знать напряжение на электродах с одной стороны и измерить его же на мембране, то получается отследить одну координату. Две координаты потребуют отключить одну группу электродов, чтобы включить другую. Это все в автоматическом режиме делает микропроцессор, как только происходит изменение напряжения на мембране. Резистивные экраны не позволяют реализовать мультитач.

Особенности резистивной технологии

Как и у любого другого типа реализованных устройств, тут имеются определенные черты, которые являются положительными или отрицательными в зависимости от ситуации. В качестве преимуществ обычно отмечается дешевое производство, а также возможность нажимать чем угодно, так как требуется только продавить мембрану. Точность позиционирования повышается за счет применения стилусов.

Негативные моменты

Основными недостатками можно назвать низкую степень пропускания света, высокую скорость появления царапин на поверхности, возможность нажатий в одну точку не более 35 миллионов раз, невозможность реализовать мультитач. Если вы не можете решить, емкостной или резистивный экран выбрать, то важно отметить еще и невозможность использования жестов типа скольжения, так как требуется нажать пальцем на экран и вести его не отпуская. В устройствах с такими элементами управления лучше использовать софт, требующий минимального использования «листающих» жестов.

Разбираясь в особенностях этой технологии, стоит отметить, что она может быть реализована несколькими способами, имеющими определенные различия. Емкостный сенсорный экран может быть просто емкостным и проекционно-емкостным. Первый вариант предполагает использование определенных элементов. Поверх стеклянной панели размещается прозрачный резистивный материал, например, сплав оксида олова или индия. По углам размещены электроды, которые подают небольшое переменное напряжение на проводящий слой. Если к экрану прикасаются токопроводящим предметом, то возникает утечка, и чем этот предмет ближе к электроду, тем ниже сопротивление экрана, то есть сила тока заметно увеличивается. А называется это все емкостной экран, так как переменный ток проводится предметом большей емкости. Чаще всего речь идет о пальце.

Особенности емкостных экранов

Как и прочие виды технологий, в данном случае речь идет о совокупности достоинств и недостатков. В качестве преимуществ перед остальными можно назвать высокую светопропускающую способность, значительный ресурс нажатий, простоту и удобство работы методом «листания». Недостатки здесь тоже имеются: требуется использовать только пальцы либо специализированные стилусы. Обычный емкостной экран не поддерживает технологию мультитач. Часто бывают случайные нажатия. К примеру, система может распознавать жест как «листание» даже в том случае, когда он не предполагается, так как сложно удержать палец строго на одном месте после нажатия.

Проекционно-емкостной сенсорный экран

В данном случае устройство отличается от предыдущих довольно сильно. Внутренняя сторона экрана представляет собой сетку электродов. Если происходит прикосновение предметом большей емкости к электроду, то образуется конденсатор, обладающий постоянной емкостью. Такие экраны используются на улице, так как позволяют устанавливать стекло, толщина которого достигает 18 мм, при этом удается получить не только максимально твердую поверхность, но и обеспечить вандалоустойчивость.

Особенности проекционно-емкостных сенсоров

В данном случае, как и во всех остальных, имеются определенные преимущества и недостатки, о которых следует знать. В качестве достоинств можно назвать возможность реализации мультитач, реагирование на нажатие в перчатке, высокую степень пропускания света, а также долговечность самого экрана. Такие экраны способны реагировать на приближение пальцев без факта нажатия. Порог, когда происходит завершение касания, обычно настраивается программно. Крайняя точка - это обычно сам экран, так как продавливать его совершенно бесполезно.

Если рассматривать проекционно-емкостной экран, то он обладает и определенными недостатками, в качестве которых принято называть сложную и довольно дорогую электронику, невозможность использования обычного стилуса, вероятность случайных нажатий.

Мультитач технология

Невозможно определить подходящий тип сенсорного экрана, емкостный или резистивный, не решив вопрос, касающийся реализации данной технологии. Мультитач - это возможность множественных касаний. Настоящая реализация предполагает отслеживание координат нескольких нажатий одновременно. Если в смартфоне или планшете реализована такая технология, то с его помощью можно имитировать игру на музыкальном инструменте, к примеру, гитаре. Следует разобраться с этим подробнее.

Можно взять обычный емкостный или резистивный экран. Если нажать сначала, например, в левый верхний угол, а потом, не отрывая палец, другим нажать в правый нижний, то электроникой в качестве координат будет определен центр экрана, то есть середина отрезка между парой этих касаний. Это будет видно, если запустить специальное приложение, отслеживающее координаты нажатия. Однако встает вопрос о том, а как же реализовано масштабирование картинок, если все равно распознается только одно нажатие?

Тут все просто. Это самый обычный программный трюк. Вы нажали на емкостной экран - электроника это определила. Это будет точка «А». Теперь, не отпуская пальца, вы нажимаете в другое место, которое будет точкой «В», получается, что в этот момент точка нажатия переместилась мгновенно в сторону, образовав «С». Именно в этот момент, когда фактически отпускания пальца не было, а точка нажатия мгновенно переместилась, программно обрабатывается в качестве мультитача. Далее, если точка «С» становится ближе к «А», то определяется сдвигание пальцев, то есть в случае с изображением, картинку надо уменьшить, и наоборот. Еще один момент: если точка «С» описывает дугу вокруг одной из точек, то программа определяет это как вращение одного пальца вокруг другого, что вызывает необходимость поворота картинки в соответствующую сторону.

Использование резистивного и емкостного экранов

Профессиональными разработчиками традиционно используется первый тип, так как он позволяет управлять любым предметом при различных погодных условиях. При реализации резистивной технологии используется большее количество датчиков на квадратный сантиметр в сравнении с емкостной, поэтому на дисплее можно отображать мельчайшие значки, на которые допускается нажимать иглой. К примеру, операционная система Windows Mobile разрабатывалась с учетом такой особенности, поэтому хорошо работает с резистивными экранами. Такие дисплеи почти нечувствительны к случайным нажатиям. Однако многие разработчики сейчас нацелены создавать приложения, ориентированные на емкостный сенсорный экран. Это уже становится проблемой для устройств, выполненных с применением резистивной технологии.

Степень защищенности

Важно понимать, что для планшетных компьютеров и коммуникаторов дисплей является самой уязвимой частью. Емкостной экран является более предпочтительным вариантом в плане надежности. Его производительность в любых условиях заметно выше, а резистивные модели могут отказать, к примеру, если нести их вниз стеклом. Емкостный экран - это отказоустойчивый вариант. Даже если он сломан, то и дальше будет исполнять свои функции. Если решать, емкостный или резистивный экран выбрать, то стоит отметить, что в полевых условиях первый будет оптимальным вариантом.

Выводы

Если подводить итоги, то можно отметить, что оба варианта реализации дисплеев имеют свои преимущества и недостатки. При том что емкостный экран - это целая совокупность возможностей, резистивный ориентирован на использование в определенных ситуациях. Обычно все зависит от интерфейса, используемого в гаджете. удобен в использовании, площадь его нажатия заметно меньше, чем у пальца, однако при хорошей отзывчивости поверхности удобно обходиться и без этого приспособления. Постоянное совершенствование резистивных дисплеев привело к тому, что появились модели вполне твердые, то есть стойкие к формированию царапин, но при этом и отзывчивые. Такие варианты стали весьма удобны в эксплуатации.

Необходимость использовать специальный стилус для емкостных экранов иногда доставляет немалое неудобство, так как он обычно не идет в комплекте с устройством. А резистивная технология предполагает и сопровождение специальным приспособлением, и возможность нажатия любым твердым предметом. Одна из причин, по которой многие выбирают емкостный сенсорный экран - мультитач, однако стоит отметить, что чаще всего это программная реализация, как уже было описано, и при должном подходе она может быть применена и для резистивного. Проекционно-емкостная технология пока еще не стала настолько доступной, как этого хотелось бы.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: