Режимы работы электрической цепи. Эдс. закон ома для полной цепи. напряжение источника

§ 16. Закон Ома

Соотношение между э. д. с., сопротивлением и силой тока в замкнутой цепи выражается законом Ома, который может быть сформулирован так: сила тока в замкнутой цепи прямо пропорциональна электродвижущей силе и обратно пропорциональна сопротивлению всей цепи .
Ток в цепи протекает под действием э. д. с.; чем больше э. д. с. источника энергии, тем больше и сила тока в замкнутой цепи. Сопротивление цепи препятствует прохождению тока, следовательно, чем больше сопротивление цепи, тем меньше сила тока. При постоянном сопротивлении цепи сила тока в ней прямо пропорциональна э. д. с.
Закон Ома можно выразить следующей формулой:

(22)

E = I (r + r 0), (23)

где r - сопротивление внешней части цепи;
r 0 - сопротивление внутренней части цепи. Для выражения малых токов вместо ампера применяют миллиампер (ма ); 1 а = 1000 ма .
Из формулы (23) можно определить сопротивление всей цепи:

Если под действием э. д. с. в один вольт в замкнутой цепи протекает сила тока величиной в один ампер, то сопротивление такой цепи равно одному ому, т. е.

Закон Ома справедлив не только для всей цепи, но и для любого ее участка.
Мы будем иметь в виду такой участок цепи, который не содержит источника энергии. В пределах этого участка положительные заряды перемещаются из точек более высокого потенциала к точкам более низкого потенциала.
Генератор затрачивает известную энергию, поддерживая разность потенциалов между началом и концом этого участка. Эта разность потенциалов является напряжением между началом и концом рассматриваемого участка.
Таким образом, применяя закон Ома для участка цепи, заменим в формулах (22) и (23) э. д. с. напряжением между началом и концом этого участка U , а сопротивление всей цепи (r + r 0) - сопротивлением рассматриваемого участка r .
Следовательно, для участка электрической цепи формула, выражающая закон Ома, примет следующий вид:

Другими словами, закон Ома можно сформулировать так: сила тока на участке электрической цепи равна напряжению между концами этого участка, деленному на его сопротивление .
Из формулы (24) следует, что

U = I r ,

т. е. напряжение на участке цепи равно произведению силы тока на сопротивление этого участка.
Возвращаясь к формуле (23) и раскрывая скобки, получим:

E = I r + I r 0 , (25)

где I r - падение напряжения в сопротивлении r , т. е. во внешней части цепи, или, иначе, напряжение на зажимах источника энергии (генератора) U ;
i r 0 - падение напряжения в сопротивлении r 0 , т. е. внутри источника энергии (генератора); оно определяет часть э. д. с., которая расходуется на прохождение тока через внутреннее сопротивление источника энергии.
Формулу (25) перепишем в следующем виде:

E = U + I r 0 . (26)

Из формулы (26) следует, что напряжение на зажимах источника энергии (генератора) равно разности между э. д. с. и падением напряжения во внутреннем сопротивлении этого источника:

U = E - I r , (27)

При холостом ходе внешняя цепь разомкнута и тока в цепи нет, вследствие чего напряжение на зажимах источника энергии равно его э. д. с. При замкнутой цепи напряжение не равно э. д. с., причем чем больше сила тока в цепи, тем больше напряжение отличается от э. д. с.
Если уменьшать сопротивление внешней цепи r , то сопротивление всей цепи r + r 0 также понизится, а сила тока в цепи, как это видно из формулы (22), увеличится. С повышением силы тока падение напряжения внутри источника энергии (I r 0) возрастет, так как внутреннее сопротивление r 0 источника энергии остается неизменным. Следовательно, из формулы (27) вытекает, что с уменьшением сопротивления внешней цепи напряжение на зажимах источника энергии также уменьшается. Если зажимы источника энергии соединить проводником с сопротивлением, практически равным нулю, то формула (22) для этого случая примет следующий вид:

Это выражение определяет наибольший ток, который может быть получен в цепи данного источника.
Если сопротивление внешней цепи практически равно нулю, то такой режим называется коротким замыканием источника энергии.
Для источников энергии с малым внутренним сопротивлением, например для электрических генераторов (электромашин) и кислотных аккумуляторов, короткое замыкание весьма опасно - оно может вывести из строя эти источники. Так, например, батарея кислотных аккумуляторов (типа С-1) с э. д. с. 220 в имеет внутреннее сопротивление 0,5 ом . При коротком замыкании такой батареи сила тока

Так как для приведенного типа аккумулятора при нормальном (десятичасовом) разряде сила тока составляет 3,6 а , то сила тока в 440 а является безусловно опасной для целости батареи.
Короткое замыкание возникает относительно часто, например вследствие порчи изоляции проводов, соединяющих приемник с источником энергии. Не имея изолирующего покрова, металлические (обычно медные или алюминиевые) линейные провода при взаимном соприкосновении образуют весьма малое сопротивление, которое по сравнению с сопротивлением приемника может быть принято равным нулю.
Для защиты электротехнической аппаратуры от токов коротких замыканий применяют различные предохранительные устройства.
Для измерения силы тока в цепи используется прибор, называемый амперметром (миллиамперметром). Напряжение, как указывалось выше, измеряется вольтметром. Условное обозначение амперметра и вольтметра показано на рис. 15, а.

Для включения амперметра цепь тока разрывают и в месте разрыва концы проводов присоединяют к зажимам амперметра (рис. 15, б). Таким образом через прибор проходит весь измеряемый ток; такое включение называется последовательным . Вольтметр подключают к началу и концу участка цепи; такое включение вольтметра называется параллельным . Вольтметр показывает падение напряжения на данном участке. Если вольтметр подключить к началу внешней цепи - положительному полюсу источника энергии и к концу внешней цепи - отрицательному полюсу источника энергии, то он покажет падение напряжения во всей внешней цепи, которое является в то же время напряжением на зажимах источника энергии.

Элемент электрической цепи, предназначенный для получения электроэнергии, принято называть источни­ком электрической энергии. В источнике проис­ходит преобразование в электрическую энергию других: видов энергии.

На практике применяют следующие основ­ные источники: электромеханические генераторы (элект­рические машины для преобразования механической энер­гии в электрическую), электрохимические источники (гальванические элементы, аккумуляторы), термоэлектро­генераторы (устройства прямого преобразования тепловой энергии в электрическую), фотоэлектрогенераторы (преобразователи лучистой энергии в электрическую).

Принципы преобразования тепловой, лучистой и хими­ческой энергии в электрическую изучаются в курсе фи­зики.

Общим свойством всех источников является
то, что в них происходит разделение положительного
и отрицательного зарядов и образуется электродвижу­щая сила (ЭДС). Что такое ЭДС?

В простейшей электрической цепи на перемещение заряда q по контуру замкнутой цепи (рис. 2.8) затрачи­вается работа источника А и.

Источник затрачивает одинаковую работу на переме­щение каждой единицы заряда. Поэтому с увеличением q прямо пропорционально растет А и, а их отношение A и /q, называемое электродвижущей силой , оста­ется неизменным:

E = A и /q. (2.12)

ЭДС численно равна работе, которую совершает источ­ник, проводя заряд 1 Кл по замкнутому контуру цепи (1).

Единица ЭДС, как и напряжения,- вольт (В).

Благодаря ЭДС в электрической цепи поддерживает­ся определенное значение тока.

Так как ЭДС не зависит от q, а ток I = q/t , то ЭДС источника не зависит от тока (2).

При изменении тока изменяется мощность источника Р и. Используя выражения P и =A и /t , A и = qE и q = It,

получаем формулу для расчета мощности источника:

Р и = EI. (2.13)

Таким образом, при изменении сопротивления прием­ника изменяется ток цепи, мощность источника и мощ­ность приемника. При этом соблюдается положение (5) и непрерывно действует постоянная ЭДС, создаю­щая ток.

В соответствии с балансом мощности

P и =P+P в,

где Р - мощность приемника; Р в - потери на внутрен­нем сопротивлении R B источника (потерями в соедини­тельных проводах пренебрегаем).

Подставляя в это уравнение значение мощности из формул (2.10), (2.13), используя положение (3) получаем:

EI=UI+UJ;

E=U+U в (2.14)

(действие равно сумме противодействий).

В замкнутой цепи ЭДС встречает противодействие суммы падений напряжений на участках цепи.

Используя выражение (2.14) и закон Ома, получаем

E = IR + IR B . (2.15)

В этом уравнении Е и R B как параметры источника по­стоянные. При изменении сопротивления приемника R изменяет свое значение ток. Ток в цепи имеет строго определенное значение, необходимое для создания паде­ний напряжений на участках цепи, уравновешивающих ЭДС (3). Аналогично в механике скорость движения тел такая, при которой вызванное этой скоростью про­тиводействие сил трения уравновешивается действием сил, двигающих тело.

Из уравнения (2.15) ток

I = E/(R + R B). (2.16)

Эта формула отражает закон Ома для всей цепи: сила тока в цепи прямо пропорциональна ЭДС источ­ника.

Следует отметить, что уравнение (2.14) является частным случаем второго закона Кирхгофа, ко­торый формулируется так: алгебраическая сумма ЭДС любого замкнутого контура электрической цепи равна алгебраической сумме падений напряжений на сопро­тивлениях контура:

ΣΕ=ΣIR (2.17)

В паспортах устройств (источников, приемников, аппаратов, приборов), в каталогах приводятся значения токов, напряжений, мощностей, на которые устройство рассчитано заводом-изготовителем для нормального, называемого номинальным, режима работы. Источники характеризуются номинальными мощностью P H 0 M , током I ном и напряжением U H 0 M .

Для рис. 2.8 напряжение на зажимах источника и приемника одно и то же (так как они подключены к общим зажимам). Это напряжение определим из форму­лы (2.14):

U = E - IR B , (2.18)

где R в - внутреннее сопротивление источника.

Напряжение на зажимах источника, работающего ге­нератором, меньше ЭДС на величину падения напряже­ния на внутреннем сопротивлении источника (4).

При номинальном токе напряжение источника номи­нальное. При изменении режима цепи (изменении тока), в соответствии с формулой (2.18), изменяется напряже­ние. Если отклонения напряжения, тока, мощности нахо­дятся в допустимых пределах, такой режим называют рабочим.

Если же цепь разомкнута, ток равен нулю. Такой режим цепи или ее элементов называется режимом холостого хода (XX).

Из формулы (2.18) следует, что в режиме холостого хода U = Е.

ЭДС источника можно измерить вольтметром (рис. 2.9) как напряжение на его зажимах в режиме холостого хода (5).

Режим электрической цепи, при котором накоротко замкнут участок с одним или несколькими элементами, называется режимом короткого замыкания (КЗ).

При КЗ R = 0, поэтому U = I K R=0 и действию ЭДС противодействует только падение напряжения внутри источника E= I к R в (рис. 2.10).

Внутреннее сопротивление источников, как правило, мало. Поэтому ток КЗ I К = Е/R В большой, опасный для источника и проводов тепловым действием. Для защиты от КЗ источников и проводов тепловым действием. Для защиты от КЗ источников и других элементов цепи нередко при­меняют плавкие предохранители, вставки которых пере­горают от тока КЗ и обрывают цепь.

На практике иногда пренебрегают внутренним сопро­тивлением источника, считая его равным нулю. В этом случае напряжение источника по формуле (2.18) равно ЭДС при любом токе и на схемах показывают не ЭДС источника (как на рис. 2.8), а напряжение на его зажи­мах .


Для электрической цепи наиболее характерными являются режимы нагрузочный, холостого хода и короткого замыкания.

Нагрузочный режим . Рассмотрим работу электрической цепи при подключении к источнику какого-либо приемника с сопротивлением R (резистора, электрической лампы и т. п.).

На основании э. д. с. источника равна сумме напряжений IR на внешнем участке цепи и IR0 на :

Учитывая, что напряжение Uи и на зажимах источника равно падению напряжения IR во внешней цепи, получим:

Эта формула показывает, что э. д. с. источника больше напряжения на его зажимах на значение падения напряжения внутри источника . Падение напряжения IR0 внутри источника зависит от тока в цепи I (тока нагрузки), который определяется сопротивлением R приемника. Чем больше будет ток нагрузки, тем меньше напряжение на зажимах источника:

Падение напряжения в источнике зависит также и от внутреннего сопротивления R0. Зависимость напряжения Uи от тока I изображается прямой линией (рис. 1). Эту зависимость называют внешней характеристикой источника.

Пример 1. Определить напряжение на зажимах генератора при токе нагрузки 1200 А, если его э. д. с. равна 640 В, а внутреннее сопротивление 0,1 Ом.

Решение. Падение напряжения во внутреннем сопротивлении генератора

Напряжение на зажимах генератора


Из всех возможных нагрузочных режимов наиболее важным является номинальный. Номинальным называется режим работы, установленный заводом-изготовителем для данного электротехнического устройства в соответствии с предъявляемыми к нему техническими требованиями. Он характеризуется номинальными напряжением, током (точка Н на рис. 1) и мощностью. Эти величины обычно указывают в паспорте данного устройства.

От номинального напряжения зависит качество электрической изоляции электротехнических установок, а от номинального тока - , которая определяет площадь поперечного сечения проводников, теплостойкость применяемой изоляции и интенсивность охлаждения установки. Превышение номинального тока в течение длительного времени может привести к выходу из строя установки.

Рис. 1. Внешняя характеристика источника

Режим холостого хода . При этом режиме присоединенная к источнику электрическая цепь разомкнута, т. е. тока в цепи нет. В этом случае внутреннее падение напряжения IR0 будет равно нулю

Таким образом, в режиме холостого хода напряжение на зажимах источника электрической энергии равно его э. д. с. (точка X на рис. 1). Это обстоятельство можно использовать для измерения э. д. с. источников электроэнергии.

Режим короткого замыкания . называют такой режим работы источника, когда его зажимы замкнуты проводником, сопротивление которого можно считать равным нулю. Практически к. з. возникает при соединении друг с другом проводов, связывающих источник с приемником, так как эти провода имеют обычно незначительное сопротивление и его можно принять равным нулю.

Короткое замыкание может происходить в результате неправильных действий персонала, обслуживающего электротехнические установки, или при повреждении изоляции проводов. В последнем случае эти провода могут соединяться через землю, имеющую весьма малое сопротивление, или через окружающие металлические детали (корпуса электрических машин и аппаратов, элементы кузова локомотива и пр.).

При коротком замыкании ток

Ввиду того что внутреннее сопротивление источника R0 обычно очень мало, проходящий через него ток возрастает до весьма больших значений. Напряжение же в месте короткого замыкания становится равным нулю (точка K на рис. 1), т. е. электрическая энергия на участок электрической цепи, расположенный за местом короткого замыкания, поступать не будет.

Пример 2. Определить ток короткого замыкания генератора, если его э. д. с. равна 640 В и внутреннее сопротивление 0,1 Ом.

Решение.

По формуле

Короткое замыкание является аварийным режимом, так как возникающий при этом большой ток может привести в негодность как сам источник, так и включенные в цепь приборы, аппараты и провода. Лишь для некоторых специальных генераторов, например сварочных, короткое замыкание не представляет опасности и является рабочим режимом.

В электрической цепи ток проходит всегда от точек цепи, находящихся под большим потенциалом, к точкам, находящимся под меньшим потенциалом. Если какая-либо точка цепи соединена с землей, то потенциал ее принимается равным нулю. В этом случае потенциалы всех других точек цепи будут равны напряжениям, действующим между этими точками и землей.

По мере приближения к заземленной точке уменьшаются потенциалы различных точек цепи, т. е. напряжения, действующие между этими точками и землей. По этой причине обмотки возбуждения тяговых двигателей и вспомогательных машин, в которых при резких изменениях тока могут возникать большие перенапряжения, стараются включать в силовую цепь ближе к “земле” (за обмоткой якоря).

В этом случае на изоляцию этих обмоток будет действовать меньшее напряжение, чем если бы они были включены ближе к контактной сети на электровозах постоянного тока или к незаземленному полюсу выпрямительной установки на электровозах переменного тока (т. е. находились бы под более высоким потенциалом). Точно также точки электрической цепи, находящиеся под более высоким потенциалом, являются более опасными для человека, соприкасающегося с токоведущими частями электрических установок. При этом он попадает под более высокое напряжение по отношению к земле.

Следует отметить, что при заземлении одной точки электрической цепи распределение токов в ней не изменяется, так как при этом не образуется никаких новых ветвей, по которым могли бы протекать токи. Если заземлить две (или больше) точки цепи, имеющие разные потенциалы, то через землю образуются дополнительная токопроводящая ветвь (или ветви) и распределение тока в цепи меняется.

Следовательно, нарушение или пробой изоляции электрической установки, одна из точек которой заземлена, создает контур, по которому проходит ток, представляющий собой, по сути дела, ток короткого замыкания. То же происходит в незаземленной электрической установке при замыкании на землю двух ее точек. При разрыве электрической цепи все ее точки до места разрыва оказываются под одним и тем же потенциалом.

Измерения показывают, что напряжение на зажимах источника тока, замкнутого на внешнюю цепь, зависит от силы отбираемого тока (от «нагрузки») и изменяется с изменением последнего. Пользуясь законом Ома, мы можем сейчас разобрать этот вопрос точнее.

Из формулы (80.1) имеем

где – сопротивление внешней цепи, а – внутреннее сопротивление источника. Но к внешней цепи мы вправе применить закон Ома для участка цепи:

Здесь – напряжение во внешней цепи, т. е. разность потенциалов на зажимах источника. Оно может быть выражено на основании (81.1), (81.2) следующей формулой:

Мы видим, что при замкнутой цепи напряжение на зажимах источника тока всегда меньше э. д. с. . Напряжение зависит от силы тока и только в предельном случае разомкнутой цепи, когда сила тока , напряжение на зажимах равно э. д. с.

Уменьшение напряжения на зажимах источника при наличии тока легко наблюдать на опыте. Для этого нужно замкнуть какой-либо гальванический элемент на реостат и подключить к зажимам элемента вольтметр (рис. 127). Перемещая движок реостата, можно видеть, что чем меньше сопротивление внешней цепи, т. е. чем больше ток, тем меньше напряжение на зажимах источника. Если сопротивление внешней цепи сделать очень малым по сравнению с внутренним сопротивлением источника («вывести» реостат), т. е. сделать «короткое замыкание», то напряжение на зажимах делается равным нулю.

Рис. 127. С уменьшением сопротивления внешней цепи напряжение на зажимах источника тока уменьшается: а) схема опыта; б) общий вид экспериментальной установки, 1 – источник тока, 2 – реостат, 3 – амперметр, 4 – вольтметр

Что же касается тока, то он при коротком замыкании достигает своего максимального значения . Сила этого «тока короткого замыкания» получается из закона Ома (80.1), если в нем положить (т. е. пренебречь сопротивлением по сравнению с ):

Отсюда видно, что ток короткого замыкания зависит не только от э. д. с., но также и от внутреннего сопротивления источника. Поэтому короткое замыкание представляет различную опасность для разных источников тока.

Короткие замыкания гальванического элемента сравнительно безвредны, так как при небольшой э. д. с. элементов их внутреннее сопротивление велико, и поэтому токи короткого замыкания малы. Такие токи не могут вызвать серьезные разрушения, и поэтому к изоляции проводов в целях, питаемых элементами (звонки, телефоны и т. п.), не предъявляют особо высоких требований. Иное дело силовые или осветительные цепи, питаемые мощными генераторами. При значительной э. д. с. (100 и более вольт) внутреннее сопротивление этих источников ничтожно мало, и поэтому ток короткого замыкания может достигнуть огромной силы. В этом случае короткое замыкание может привести к расплавлению проводов, вызвать пожар и т. д. Поэтому к устройству и изоляции таких цепей предъявляют строгие технические требования, которые ни в коем случае нельзя нарушать без риска вызвать опасные последствия. Такие цепи всегда снабжаются предохранителями (§ 63) и притом нередко в различных местах: общий предохранитель (при главном вводе), групповые и штепсельные предохранители.

81.1. Внутреннее сопротивление элемента Даниеля с э. д.с. 1,1 В равно 0,5 Ом. Вычислите ток короткого замыкания этого элемента.

81.2. Элемент из предыдущей задачи замкнут на сопротивление 0,6 Ом. Чему равно напряжение на зажимах элемента?

81.3. Э. д. с. генератора постоянного тока равна 220 В, а внутреннее сопротивление равно 0,02 Ом. Какой ток возникает при коротком замыкании?

81.4. При измерении э. д. с. источников при помощи вольтметра мы всегда допускаем некоторую погрешность, так как через вольтметр течет некоторый, хотя и очень малый, ток, и поэтому источник, строго говоря, не разомкнут, а замкнут на вольтметр. Пусть внутреннее сопротивление элемента равно 1 Ом, его э. д. с. равна 1,8 В, а сопротивление вольтметра равно 179 Ом. Какую погрешность при измерении э. д. с. мы допускаем?

81.5. Можно ли точно измерить э. д. с. при помощи электрометра? Как нужно присоединить электрометр к элементу для измерения его э. д. с.?

81.6. Изменяется ли показание электрометра, соединенного с гальваническим элементом, если параллельно с ним включить конденсатор, как показано на рис. 128? Будет ли иметь значение емкость конденсатора?

Рис. 128. К упражнению 81.6

81.7. Э. д. с. некоторого элемента измеряют при помощи электрометра с конденсатором (рис. 129,а). Электрометр, отсоединенный от элемента, после снятия диска показывает 500 В (рис. 129,б). При этом известно, что емкость конденсатора при удалении диска уменьшается в 250 раз. Чему равно напряжение элемента?

Рис. 129. К упражнению 81.7

Внешняя характеристика источника ЭДСВнешняя характеристика отражает зависимость напряжения на зажимах источника от величины нагрузки - тока источника, заданного нагрузкой. Напряжение на зажимах источника меньше ЭДС на величину падения напряжения на внутреннем сопротивлении источника (1):Этому уравнению соответствует внешняя характеристика источника ЭДС (рис. 1). построенная по двум точкам:1) при I=0 E=U;2) при U=0 E=R0I .Очевидно, что напряжение на зажимах источника ЭДС тем больше, чем меньше его внутреннее сопротивление.В идеальном источнике ЭДС R0=0, U=E (напряжение не зависит от величины нагрузки). Однако не всегда при анализе и расчете цепи источник электрической энергии удобно представлять в качестве источника ЭДС. Если внутреннее сопротивление источника значительно превышает внешнее сопротивление цепи, что, например, имеет место в электронике, то получим, что ток в цепи I=U/(R+R0) и при R0>>R практически не зависит от сопротивления нагрузки. В этом случае источник энергии представляют в качестве источника тока.
Рис.1.Разделим уравнение (1) на R0 (2):Уравнению (2) соответствует схема замещения, приведенная на рис. 2. Здесь Iв=U/R0 и Ik=E/R0, I= Ik - Iв тогда (3)Для идеального источника тока Rс = ∞. Вольтамперные характеристики реального и идеального источников тока показаны на рис. 3.
Рис. 2
Рис. 3Когда нет четкого разграничения величин R и R0 , в качестве расчетного эквивалента источника энергии можно использовать либо источник ЭДС, либо источник тока. В последнем, случае для определения падения напряжения используют выражение (3).Режимы работы источникаИсточник может работать в следующих режимах:1. Номинальный режим - это режим работы, на который рассчитан источник заводом-изготовителем. Для данного режима в паспорте источника указывают номинальные ток Iном и номинальное напряжение Uном или мощность Pном.2. Режим холостого хода. В этом режиме внешняя цепь отключена от источника, ток источника I = 0 и, следовательно, напряжение на зажимах источника - напряжение холостого хода Uхх = Е - см. уравнение (1).3. Режим короткого замыкания. Сопротивление внешней по отношению к источнику цепи равно нулю. Ток источника ограничивается только его внутренним сопротивлением. Из уравнения (1) при U=0 получаем I = Iкз = U / R0. Для уменьшения потерь энергии в источнике ЭДС R0 должно быть возможно меньшим, а в идеальном источнике R0 = 0. С учетом этого Iкз >> Iном и является недопустимым для источника.4. Согласованный режим - это режим, при котором от источника к потребителю передается максимальная мощность. Определить эту мощность можно через параметры источника. Так, мощность, переданная в нагрузку, Р = I2R. P = Pmax при R = R0. Тогда максимальная мощность, переданная потребителю, Pmax=E2/4R0. КПД источника в согласованном режиме не превышает 50 %. что исключает его применение в промышленной электротехнике. Согласованный режим используется в слаботочных цепях электронных устройств.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: