Намагничивание и магнитные материалы

Обратимся теперь к вопросу, почему в ферромагнитных материалах даже малые магнитные поля приводят к такой большой намагниченности. Намагниченность ферромагнитных материалов типа железа или никеля образуется благодаря магнитным моментам электронов одной из внутренних оболочек атома. Магнитный момент μ каждого электрона равен произведению q/2 m на g-фактор и момент количества движения J. Для отдельного электрона при отсутствии чисто орбитального движения g=2, а компонента J в любом направлении, скажем, в направлении оси z, равна ±h/2, так что компонента μ в направлении оси z будет

В атоме железа вклад в ферромагнетизм фактически дают только два электрона, так что для упрощения рассуждений мы будем говорить об атоме никеля, который является ферромагнетиком, подобно железу, но имеет на той же внутренней оболочке только один «ферромагнитный» электрон. (Все рассуждения нетрудно затем распространить и на железо.)

Все дело в том, что точно так же, как и в описанных нами парамагнитных материалах, атомные магнитики в присутствии внешнего магнитного поля В стремятся выстроиться по полю, но их сбивает тепловое движение. В предыдущей главе мы выяснили, что равновесие между силами магнитного поля, старающимися выстроить атомные магнитики, и действием теплового движения, стремящегося их сбить, приводит к тому, что средний магнитный момент единицы объема в направлении В оказывается равным

где под В а мы подразумеваем поле, действующее на атом, а под — тепловую (больцмановскую) энергию. В теории парамагнетизма мы в качестве В а использовали само поле В, пренебрегая при этом частью поля, действующего на каждый атом со стороны соседнего. Но в случае ферромагнетиков возникает усложнение. Мы уже не можем в качестве поля В а, действующего на индивидуальный атом, брать среднее поле в железе. Вместо этого нам следует поступить так же, как это делалось в случае диэлектрика: нам нужно найти локальное поле, действующее на отдельный атом. При точном решении нам следовало бы сложить вклады всех полей от других атомов кристаллической решетки, действующих на рассматриваемый нами атом. Но подобно тому как мы поступали в случае диэлектрика, сделаем приближение, состоящее в том, что поле, действующее на атом, будет таким же, как и в маленькой сферической полости внутри материала (предполагая при этом, как и раньше, что моменты соседних атомов не изменяются из-за наличия полости).

Следуя рассуждениям гл. 11 (вып. 5), мы можем надеяться, что должна получиться формула

похожая на формулу (11.25). Но это будет неправильно. Однако мы все же можем использовать полученные там результаты, если тщательно сравним уравнения из гл. 11 с уравнениями ферромагнетизма, которые мы напишем сейчас. Сопоставим сначала соответствующие исходные уравнения. Для областей, в которых токи проводимости и заряды отсутствуют, мы имеем:

Другими словами, если уравнения ферромагнетизма записать как

то они будут похожи на уравнения электростатики.

В прошлом это чисто алгебраическое соответствие доставило нам некоторые неприятности. Многие начинали думать, что именно Н и есть магнитное поле. Но, как мы уже убедились, физически фундаментальными полями являются Е и В, а поле Н — понятие производное. Таким образом, хотя уравне ния и аналогичны, физика их совершенно различна. Однако это не может заставить нас отказаться от принципа, что одинаковые уравнения имеют одинаковые решения.

Теперь можно воспользоваться нашими предыдущими результатами о полях внутри полости различной формы в диэлектриках, которые приведены на фиг. 36.1, для нахождения поля Н. Зная Н, можно определить и В. Например, поле Н внутри иглообразной полости, параллельной М (согласно результату, приведенному в § 1), будет тем же самым, что и поле Н внутри материала:

Но поскольку в нашей полости М равна нулю, то мы получаем

С другой стороны, для дискообразной полости, перпендикулярной М,

Наконец, для сферической полости аналогия с уравнением (36.3) дала бы

Результаты для магнитного поля, как видите, отличаются от тех, которые мы имели для электрического поля.

Конечно, их можно получить и более физически, непосредственно используя уравнения Максвелла. Например, уравнение (36.34) непосредственно следует из уравнения v·B = 0. (Возьмите гауссову поверхность, которая наполовину находится в материале, а наполовину — вне его.) Подобным же образом вы можете получить уравнение (36.33), воспользовавшись контурным интегралом по пути, который туда идет по полости, а назад возвращается через материал. Физически поле в полости уменьшается благодаря поверхностным токам, определяемым как v X М. На вашу долю остается показать, что уравнение (36.35) можно получить, рассматривая эффекты поверхностных токов на границе сферической полости.

При нахождении равновесной намагниченности из уравнения (36.29) удобнее, оказывается, иметь дело с Н, поэтому мы пишем

В приближении сферической полости коэффициент λ следует взять равным 1 / 3 но, как вы увидите позже, нам придется пользоваться несколько другим его значением, а пока оставим его как подгоночный параметр. Кроме того, все поля мы возьмем в одном и том же направлении, чтобы нам не нужно было заботиться о направлении векторов. Если бы теперь мы подставили уравнение (36.36) в (36.29), то получили бы уравнение, которое связывает намагниченность М с намагничивающим полем Н:

Однако это уравнение невозможно решить точно, так что мы будем делать это графически.

Сформулируем задачу в более общей форме, записывая уравнение (36.29) в виде

где М нас — намагниченность насыщения, т. е. , а х — величина μB a /kT . Зависимость М/М нас от х показана на фиг. 36.13 (кривая а). Воспользовавшись еще уравнением (36.36) для B а, можно записать х как функцию от М:

Эта формула определяет линейную зависимость между М/М нас и х при любой величине Н. Прямая пересекается с осью х в точке х=μН/kТ, и наклон ее равен ε 0 c 2 /tT/μλM нac . Для любого частного значения Н это будет прямая, подобная прямой b на фиг. 36.13. Пересечение кривых а и b дает нам решение для М/М нас. Итак, задача решена.

Посмотрим теперь, годны ли эти решения при различных обстоятельствах. Начнем с Н=0. Здесь представляются две возможности, показанные кривыми b 1 и b 2 на фиг. 36.14. Обратите внимание, что наклон прямой (36.38) пропорционален абсолютной температуре Т. Таким образом, при высоких темпера турах получится прямая, подобная b 1 . Решением будет только М/М нас =0. Иначе говоря, когда намагничивающее поле Н равно нулю, намагниченность тоже равна нулю. При низких температурах мы получили бы линию типа b 2 и стали возможны два решения для М/М нас: одно M/M нac =0, а другое M/M нас порядка единицы. Оказывается, что только второе решение устойчиво, в чем можно убедиться, рассматривая малые вариации в окрестности указанных решений.

В соответствии с этим при достаточно низких температурах магнитные материалы должны намагничиваться спонтанно. Короче говоря, когда тепловое движение достаточно мало, то взаимодействие между атомными магнитиками заставляет их выстраиваться параллельно друг другу, получается постоянно намагниченный материал, аналогичный постоянно поляризованным сегнетоэлектрикам, о которых мы говорили в гл. 11 (вып. 5).

Если мы отправимся от высоких температур и начнем двигаться вниз, то при некой критической температуре, называемой температурой Кюри Т с, неожиданно проявляется ферромагнитное поведение. Эта температура соответствует на фиг. 36.14 линии b 3 , касательной к кривой а, наклон которой равен единице. Так что температура Кюри определяется из равенства

При желании уравнение (36.38) можно записать в более простом виде через Т с:

Что же получается для малых намагничивающих полей H? Из фиг. 36.14 нетрудно понять, что получится, если нашу прямую линию сдвинуть немного направо. В случае низкой температуры точка пересечения немного сдвинется направо по слабо наклоненной части кривой а и изменения М будут сравнительно невелики. Однако в случае высокой температуры точка пересечения побежит по крутой части кривой а и изменения М станут относительно быстрыми. Эту часть кривой мы фактически можем приближенно заменить прямой линией а с единичным наклоном и написать

Теперь можно разрешить уравнение относительно М/М нас

Мы получаем закон, несколько напоминающий закон для парамагнетизма:

Отличие состоит, в частности, в том, что мы получили намагниченность как функцию Н, с учетом взаимодействия атомных магнитиков, однако главное то, что намагниченность обратно пропорциональна разности температур Т и Т с, а не просто абсолютной температуре Т. Пренебрежение взаимодействием между соседними атомами соответствует λ= 0, что, согласно уравнению (36.39), означает Т с = 0. Результат при этом получится в точности таким же, как и в гл. 35.

Нашу теоретическую картину можно сверить с экспериментальными данными для никеля. На опыте обнаружено, что ферромагнитные свойства никеля исчезают, когда температура поднимается выше 631° К. Это значение можно сравнить со значением Т с, вычисленным из равенства (36.39). Вспоминая, что М нас = μN, мы получаем

Из плотности и атомного веса никеля находим

А вычисление μ из уравнения (36.28) и подстановка λ = 1 / 3 дает

Различие с экспериментом примерно в 2600 раз! Наша теория ферромагнетизма полностью провалилась!

Можно попытаться «подправить» нашу теоршо, как это сделал Вейсс, предположив, что по каким-то неизвестным причинам λ равно не 1 / 3 , а (2600)· 1 /з. т. е. около 900. Оказывается, что подобная величина получается и для других ферромагнитных материалов типа железа. Вернемся к уравнению (36.36) и попробуем понять, что это может означать? Мы видим, что большая величина λ, означает, что В а (локальное поле, действующее на атом) должно быть больше, много больше, чем мы думали. Фактически, записывая Н = В -M/ε o c 2 , мы получили

В соответствии с нашей первоначальной идеей, когда мы принимали λ = 1 / 3 , локальная намагниченность М уменьшает эффективное поле В а на величину — 2М/Зε 0 . Даже если бы наша модель сферической полости была не очень хороша, мы все равно ожидали бы некоторого уменьшения. Вместо того чтобы объяснить явление ферромагнетизма, мы вынуждены считать, что намагниченность увеличивает локальное поле в огромное число раз: в тысячу и даже больше. По-видимому, не существует какого-то разумного способа для создания действующего на атом поля такой ужасной величины, ни даже поля нужного знака! Ясно, что наша «магнитная» теория ферромагнетизма потерпела досадный провал. Мы вынуждены заключить, что в ферромагнетизме мы имеем дело с какими-то немагнитными взаимодействиями между вращающимися электронами соседних атомов. Это взаимодействие должно порождать у соседних спинов сильную тенденцию к выстраиванию в одном направлении. Мы увидим позднее, что это взаимодействие связано с квантовой механикой и принципом запрета Паули.

И, наконец, посмотрим, что происходит при низких температурах, когда Т<Т С. Мы видели, что даже при Н=0 в этом случае должна существовать спонтанная намагниченность, определяемая пересечением кривых а и b г на фиг. 36.14. Если мы, изменяя наклон линии b 2 ,
будем находить М для различных температур, то получим теоретическую кривую, показанную на фиг. 36.15. Для всех ферромагнитных материалов, атомные моменты которых обусловлены одним электроном, эта кривая должна быть одной и той же. Для других материалов подобные кривые могут отличаться лишь немного.

В пределе, когда Т стремится к абсолютному нулю, М стремится к М нас. При увеличении температуры намагниченность уменьшается, падая до нуля при температуре Кюри. Точками на фиг. 36.15 показаны экспериментальные данные для никеля. Они довольно хорошо ложатся на теоретическую кривую. Хотя мы и не понимаем лежащего в основе механизма, но общие свойства теории, по-видимому, все же правильны.

Но в нашей попытке понять ферромагнетизм есть еще одна неприятная несогласованность, которая должна нас заботить. Мы нашли, что выше некоторой температуры материал должен вести себя как парамагнитное вещество, намагниченность которого пропорциональна Н (или В), а ниже этой температуры должна возникать спонтанная намагниченность. Но при построении кривой намагничивания для железа мы этого как раз и не обнаружили. Железо становится постоянно намагниченным только после того, как мы его «намагнитим». А в соответствии с только что высказанными идеями оно должно намагничиваться само! Что же неверно? Оказывается, что если вы рассмотрите достаточно маленький кристалл железа или никеля, то увидите, что он и впрямь полностью намагничен! А большой кусок железа состоит из массы таких маленьких областей, или «доменов», которые намагничены в различных направлениях, так что средняя намагниченность в большом масштабе оказывается равной нулю. Однако в каждом маленьком домене железо все же намагничивает само себя, причем М приблизительно равно М нас. Как следствие этой доменной структуры свойства большого куска материала должны быть совершенно отличны от микроскопических, как это и оказывается на самом деле.

Среди химических элементов

Среди химических элементов ферромагнитными свойствами обладают переходные элементы Fe, Со и Ni (3 d -металлы) и редкоземельные металлы Gd, Tb, Dy, Ho, Er (см. Таблицу 1).

Таблица 1. - Ферромагнитные металлы

¹ J s0 - величина намагниченности единицы объёма при абсолютном нуле температуры, называемая спонтанной намагниченностью. ² T c - критическая температура, выше которой ферромагнитные свойства исчезают, и вещество становится парамагнетиком, называемая точкой Кюри.

Для 3d-металлов и Gd характерна коллинеарная ферромагнитная атомная структура, а для остальных редкоземельных ферромагнетиков - неколлинеарная (спиральная и др.; см. Магнитная структура).

[править]Среди соединений

Ферромагнитны также многочисленные металлические бинарные и более сложные (многокомпонентные) сплавы и соединения упомянутых металлов между собой и с другими неферромагнитными элементами, сплавы и соединения Cr и Mn с неферромагнитными элементами (так называемые Гейслеровы сплавы), соединения ZrZn 2 и Zr x M 1-x Zn 2 (где М - это Ti, Y, Nb или Hf), Au 4 V, Sc 3 In и др. (Таблица 2), а также некоторые соединения металлов группы актиноидов (например, UH 3).

Соединение Tc, К Соединение Tc, К
Fe 3 AI TbN
Ni 3 Mn DyN
FePd 3 EuO
MnPt 3 MnB
CrPt 3 ZrZn 2
ZnCMn 3 Au 4 V 42–43
AlCMn 3 Sc 3 ln 5–6

Спонтанная намагниченность ферромагнетика падает с повышением температуры и при некоторой, характерной для каждого материала температуре, так называемой точке Кюри, становится равной нулю. При температурах выше Тк упорядоченное расположение магнитных моментов атомов полностью разрушается и ферромагнитные свойства исчезают. [1 ]

Спонтанную намагниченность ферромагнетиков объясняют следующим образом. Атом вещества обладает механическим и магнитным моментами, которые складываются из орбитальных и спиновых моментов электронов. Но у некоторых веществ типа железа, кобальта, никеля магнитные моменты небольшого числа электронов остаются нескомпенсированными (у атома железа четыре электрона, у атома кобальта три, у никеля два), что и обусловливает их специфические свойства. [2 ]


Спонтанная намагниченность

Намагниченность ферромагнитных материа­лов типа железа или никеля образуется благодаря магнитным моментам электронов одной из внутренних оболочек атома. Магнитный момент m каждого электрона равен произведению q/2m на g-фактор и момент количества движения J. Для отдель­ного электрона при отсутствии чисто орбитального движения g=2, а компонента J в любом направлении, скажем, в направ­лении оси z, равна ±h/2, так что компонента m в направлении оси z будет

m z =gh/2m=0,928 10 -23 а/м 2 . (36.28)

В атоме железа вклад в ферромагнетизм фактически дают толь­ко два электрона, так что для упрощения рассуждений мы будем говорить об атоме никеля, который является ферромагнетиком, подобно железу, но имеет на той же внутренней оболочке только один «ферромагнитный» электрон.

Атомные магнитики в присутствии внешнего магнитного поля В стремятся выстроиться по полю, но их сбивает тепловое движение. Равновесие между силами магнитного поля, стара­ющимися выстроить атомные магнитики, и действием теплового движения, стремящегося их сбить, приводит к тому, что сред­ний магнитный момент единицы объема в направлении В оказывается равным

где под В а мы подразумеваем поле, действующее на атом, а под kT - тепловую (больцмановскую) энергию. Но в случае ферромагнетиков возникает усложнение. Мы уже не можем в качестве поля В а, действующе­го на индивидуальный атом, брать среднее поле в железе. Вмес­то этого нам следует найти локальное поле, действующее на отдельный атом. При точном решении нам следовало бы сло­жить вклады всех полей от других атомов кристаллической решетки, действующих на рассматриваемый нами атом. Но сделаем приближение, состоящее в том, что поле, действующее на атом, будет таким же, как и в маленькой сферической полости внутри материала (предполагая при этом, как и раньше, что моменты соседних атомов не изменяются из-за наличия полости).

Следуя рассуждениям гл. 11 (вып. 5), мы можем надеяться, что должна получиться формула

похожая на формулу (11.25). Но это будет неправильно. Однако мы все же можем использовать полученные там результаты, если тщательно сравним уравнения из гл. 11 с уравнениями ферромагнетизма, которые мы напишем сейчас. Сопоставим сначала соответствующие исходные уравнения. Для областей, в которых токи проводимости и заряды отсутствуют, мы имеем:

Это то же самое, что и

Другими словами, если уравнения ферромагнетизма записать как

то они будут похожи на уравнения электростатики.

В прошлом это чисто алгебраическое соответствие доста­вило нам некоторые неприятности. Многие начинали думать, что именно Н и есть магнитное поле. Но, как мы уже убеди­лись, физически фундаментальными полями являются Е и В , а поле Н - понятие производное. Таким образом, хотяуравне­ния и аналогичны, физика их совершенно различна. Однако это не может заставить нас отказаться от принципа, что одина­ковые уравнения имеют одинаковые решения.

Теперь можно воспользоваться нашими предыдущими ре­зультатами о полях внутри полости различной формы в диэлект­риках, которые приведены на фиг. 36.1, для нахождения поля Н. Зная Н , можно определить и В . Например, поле Н внутри иглообразной полости, параллельной М (согласно результату, приведенному в § 1), будет тем же самым, что и поле Н внутри материала:

Но поскольку в нашей полости М равна нулю, то мы полу­чаем

С другой стороны, для дискообразной полости, перпендику­лярной М ,

что в нашем случае превращается в

или в величинах В:

Наконец, для сферической полости аналогия с уравнением (36.3) дала бы

Результаты для магнитного поля, как видите, отличаются от тех, которые мы имели для электрического поля.

Конечно, их можно получить и более физически, непосред­ственно используя уравнения Максвелла. Например, уравне­ние (36.34) непосредственно следует из уравнения Ñ B=0. (Возьмите гауссову поверхность, которая наполовину находит­ся в материале, а наполовину - вне его.) Подобным же обра­зом вы можете получить уравнение (36.33), воспользовавшись контурным интегралом по пути, который туда идет по полости, а назад возвращается через материал. Физически поле в полос­ти уменьшается благодаря поверхностным токам, определяемым как V X М. На вашу долю остается показать, что уравнение (36.35) можно получить, рассматривая эффекты поверхностных токов на границе сферической полости.

При нахождении равновесной намагниченности из уравне­ния (36.29) удобнее, оказывается, иметь дело сН , поэтому мы пишем

В приближении сферической полости коэффициент Я следует взять равным 1 / 3 , но, как вы увидите позже, нам придется пользоваться несколько другим его значением, а пока оставим его как подгоночный параметр. Кроме того, все поля мы возь­мем в одном и том же направлении, чтобы нам не нужно было заботиться о направлении векторов. Если бы теперь мы под­ставили уравнение (36.36) в (36.29), то получили бы уравнение, которое связывает намагниченность М с намагничивающим полем Н:

Однако это уравнение невозможно решить точно, так что мы будем делать это графически.

Сформулируем задачу в более общей форме, записывая уравнение (36.29) в виде

где М нас - намагниченность насыщения, т. е. N m , a x - вели­чина mB a /kT. Зависимость М/М нас от х показана на фиг. 36.13 (кривая а).

Фиг. 36.13. Графическое реше­ние уравнений (36.37) и (36.38),

Воспользовавшись еще уравнением (36.36) для В а, можно записать х как функцию от М:

Эта формула определяет линейную зависимость между М/М нас и х при любой величине Н. Прямая пересекается с осью х в точке x=mH/kT, и наклон ее равен e 0 с 2 kT/mlКМ нас. Для любого частного зна­чения Н это будет пря­мая, подобная прямой b на фиг. 36.13. Пересечение кривых а и о дает нам решение для М/М нас. Итак, задача решена.

Посмотрим теперь, годны ли эти решения при различных обстоятельствах. Начнем с H =0. Здесь представляются две возможности, показанные кривыми b 1 и b 2 на фиг. 36.14.

Фиг. 36.14. Определение намагниченности при Н=0.

Обра­тите внимание, что наклон прямой (36.38) пропорционален аб­солютной температуре Т. Таким образом, при высоких темпера­турах получится прямая, подобная b 1 Решением будет только М/М нас =0. Иначе говоря, когда намагничивающее поле Я равно нулю, намагниченность тоже равна нулю. Принизких температурах мы получили бы линию типа b 2 и стали возможны два решения для М/М нас: одно М/М нас =0, а другое М/М нас порядка единицы. Оказывается, что только второе решение устойчиво, в чем можно убедиться, рассматривая малые вариа­ции в окрестности указанных решений.

В соответствии с этим при достаточно низких температурах магнитные материалы должны намагничиваться спонтанно. Короче говоря, когда тепловое движение достаточно мало, то взаимодействие между атомными магнитиками заставляет их выстраиваться параллельно друг другу, получается постоянно намагниченный материал, аналогичный пос­тоянно поляризованным сегнетоэлектрикам, о которых мы говорили в гл. 11 (вып. 5).

Если мы отправимся от высоких температур и начнем дви­гаться вниз, то при некой критической температуре, называемой температурой Кюри Т c , неожиданно проявляется ферромагнит­ное поведение. Эта температура соответствует на фиг. 36.14 линии b 3 , касательной к кривой а, наклон которой равен еди­нице. Так что температура Кюри определяется из равенства

При желании уравнение (36.38) можно записать в более прос­том виде через Т c:

Что же получается для малых намагничивающих полей Н? Из фиг. 36.14 нетрудно понять, что получится, если нашу пря­мую линию сдвинуть немного направо. В случае низкой темпе­ратуры точка пересечения немного сдвинется направо по слабо наклоненной части кривой а и изменения М будут сравнительно невелики. Однако в случае высокой температуры точка пересе­чения побежит по крутой части кривой а и изменения М станут относительно быстрыми. Эту часть кривой мы фактически мо­жем приближенно заменить прямой линией а с единичным наклоном и написать

Теперь можно разрешить уравнение относительно М/М нас:

Мы получаем закон, несколько напоминающий закон для па­рамагнетизма:

Отличие состоит, в частности, в том, что мы получили намагни­ченность как функцию Н, с учетом взаимодействия атомных магнитиков, однако главное то, что намагниченность обратно пропорциональнаразности температур Т и Т с, а не просто абсолютной температуре Т. Пренебрежение взаимодействием между соседними атомами соответствует l=0, что, согласно уравнению (36.39), означает Т с = 0. Результат при этом полу­чится в точности таким же, как и в гл. 35.

Нашу теоретическую картину можно сверить с эксперимен­тальными данными для никеля. На опыте обнаружено, что ферромагнитные свойства никеля исчезают, когда температура поднимается выше 631° К. Это значение можно сравнить со значением Т с, вычисленным из равенства (36.39). Вспоминая, что M нас =mN, мы получаем

Из плотности и атомного веса никеля находим

N=9,1 10 28 м -3 . А вычисление m, из уравнения (36.28) и подстановка l= 1 / 3 дает

T с =0,24°K.

Различие с экспериментом примерно в 2600 раз! Наша теория ферромагнетизма полностью провалилась!

Можно попытаться «подправить» нашу теорию, как это сде­лал Вейсс, предположив, что по каким-то неизвестным причи­нам К равно не 1 / 3 , а (2600) 1 / 3 , т. е. около 900. Оказывается, что подобная величина получается и для других ферромагнит­ных материалов типа железа. Вернемся к уравнению (36.36) и попробуем понять, что это может означать? Мы видим, что большая величина Я означает, чтоВ а (локальное поле, дейст­вующее на атом) должно быть больше, много больше, чем мы думали. Фактически, записывая Н = В-M/e 0 c 2 , мы получили

В соответствии с нашей первоначальной идеей, когда мы при­нимали l= 1 / 3 , локальная намагниченность М уменьшает эффективное поле В а на величину - 2М/Зe 0 . Даже если бы наша модель сферической полости была не очень хороша, мы все равно ожидали бы некоторого уменьшения. Вместо того чтобы объяснить явление ферромагнетизма, мы вынуждены считать, что намагниченность увеличивает локальное поле в огромное число раз: в тысячу и даже больше. По-видимому, не существует какого-то разумного способа для создания действующего на атом поля такой ужасной величины, ни даже поля нужного знака! Ясно, что наша «магнитная» теория ферромагнетизма потерпела досадный провал. Мы вынуждены заключить, что в ферромагнетизме мы имеем дело с какими-то немагнитными взаимодействиями между вращающимися электронами соседних атомов. Это взаимодействие должно порождать у соседних спинов сильную тенденцию к выстраиванию в одном направлении. Мы увидим позднее, что это взаимодействие связано с квантовой механикой и принципом запрета Паули. И, наконец, посмотрим, что происходит при низких темпе­ратурах, когда Т Мы видели, что даже при Н=0 в этом случае должна существовать спонтанная намагниченность, определяемая пересечением кривых а и b 2 на фиг. 36.14. Если мы, изменяя наклон линии b 2 , будем находить М для различ­ных температур, то получим теоретическую кривую, пока­занную на фиг. 36.15.

Фиг. 36.15. Зависимость спонтан­ной намагниченности никеля от тем­пературы.

Для всех ферромагнитных материалов, атомные моменты которых обусловлены одним электроном, эта кривая должна быть одной и той же. Для других материалов подобные кривые могут отличаться лишь немного.

В пределе, когда Т стремится к абсолютному нулю, М стре­мится к M нac . При увеличении температуры намагниченность уменьшается, падая до нуля при температуре Кюри. Точками на фиг. 36.15 показаны экспериментальные данные для никеля. Они довольно хорошо ложатся на теоретическую кривую. Хотя мы и не понимаем лежащего в основе механизма, но общие свойства теории, по-видимому, все же правильны.

Но в нашей попытке понять ферромагнетизм есть еще одна неприятная несогласованность, которая должна нас заботить. Мы нашли, что выше некоторой температуры материал должен вести себя как парамагнитное вещество, намагниченность кото­рого пропорциональна Н (или В), а ниже этой температуры должна возникать спонтанная намагниченность. Но при пост­роении кривой намагничивания для железа мы этого как раз и не обнаружили. Железо становится постоянно намагниченным толькопосле того, как мы его «намагнитим». А в соответствии с только что высказанными идеями оно должно намагничиваться само! Что же неверно? Оказывается, что если вы рассмотрите достаточно маленький кристалл железа или никеля, то увидите что он и впрямь полностью намагничен! А большой кусок железа состоит из массы таких маленьких областей, или «доменов», которые намагничены в различных направлениях, так что средняя намагниченность в большом масштабе оказывается равной нулю. Однако в каждом маленьком домене железо все же намагничивает само себя, причем М приблизительно равно M нac . Как следствие этой доменной структуры свойства боль­шого куска материала должны быть совершенно отличны от микроскопических, как это и оказывается на самом деле.

* В системе, которой пользуется здесь автор, В=Н+1/e 0 c 2 М, но

D=e 0 E+P. В старой, доброй системе единиц писали В=m 0 Н=(1/e 0 c 2)Н и

D=e 0 Е или В=(Н+4pМ) и D=Е+4pР. Надо быть очень внима­тельным, когда формулы для магнетиков пишутся по аналогии с формулами для диэлектриков (ср. § 6).- Прим. ред.

* Или, если хотите, ток I на каждой грани может быть поровну; распределен на кубиках с двух сторон.

* Если бы все «другие» заряды находились на проводниках, то r др было бы тем же самым, что и r своб в гл. 10 (вып. 5).

§4 Ферромагнетики

Ферромагнетики - вещества, у которых внутреннее магнитное поле в сотни и тысячи раз превышает вызвавшее его внешнее магнитное поле.

Ферромагнетики обладают намагниченностью в отсутствии магнитного поля. Ферромагнетизм наблюдается у кристаллов переходных металлов Fe , Co , Ni и у ряда сплавов. Ферромагнетизм результат действия обменных сил

А > 0 - условие ферромагнетизма.

Ферромагнитные свойства наблюдается у веществ при температурах меньших так называемой температуры Кюри - Т К. При Т > Т К ферромагнетик переходит в парамагнитное состояние. При температурах ниже точки Кюри ферромагнетик разбивается на малые области однородной самопроизвольной (спонтанной) намагниченности - домены . Линейные размеры доменов: 10 -5 -10 -4 м. Внутри каждого домена вещество намагничено до насыщения. В отсутствии магнитного пола магнитные моменты доменов ориентированы в пространстве так, что результирующий магнитный момент всего ферромагнетика равен нулю. При наложении магнитного поля ферромагнетик намагничивается, т.е. приобретает отличный от нуля магнитный момент. С увеличением поля намагниченность растет сначала медленно (участок аб на рис.), затем намагниченность увеличивается в десятки раз (участок бв). Далее рост намагниченности снова замедляется (вг). Такое поведение намагниченности связано с тем, что действие поля на домены на разных стадиях процесса намагничивания - различно. В точке 0, когда ферромагнетик размагничен, площади доменов 1,3,5..., магнитные моменты которых составляют острый угол с направлением , равны площадям доменов 2,4,6..., у которых угол между направлением магнитного момента и внешнего поля - тупой. При увеличении внешнего магнитного поля вначале наблюдается увеличение площади доменов 1,3,5 за счет уменьшения площади доменов 2,4,8. В ферромагнетике появляется магнитный момент, направление которого совпадает с направлением магнитного момента доменов 1,3,5, С увеличением намагничивающего поля э тот процесс идет до тех пор, пока домены с острыми углами к полю (которые обладают в магнитном поле меньшей энергией) не поглотят целиком энергетически менее выгодные домены 2,4 ,8 - участок аб на рисунке. Около точки б происходит сливание сонаправленных доменов, и ферромагнетик переходит в монодоменное состояние. При дальнейшем увеличении внешнего поля магнитный момент ферромагнетика поворачивается в направлении внешнего поля (парамагнитный эффект) до тех пор, пока не совпадут направление ферромагнетика и (до точки в на рис.). Участок вг на рис. соответствует насыщению ферромагнетика, когда увеличение поля приводит к очень малому увеличение магнитного момента ферромагнетика за счет тех магнитных моментов, которые вследствие теплового движения и других причин случайно были ориентированы против поля. Магнитный гистерезис - заключается в том, что намагничивание и размагничивание ферромагнетика описывается разными кривыми (намагниченность отстает в своем уменьшении от поля). При уменьшении внешнего поля от В нас. до 0 намагниченность изменяется не по кривой - оабвг - основной кривой намагничивания , а в соответствии с кривой гд. При уменьшении внешнего поля до нуля ферромагнетик обладает намагниченностью, которая называется остаточной (точка д).

На участке гд происходит сначала переориентация магнитного момента, разбиение ферромагнетика на домены, увеличение площади доменов 2,4,6 и уменьшение площади доменов 1,3,5 за счет теплового движения. При приложении противоположно направленного поля, т.е. на участке де происходит дальнейший рост площадей "четных" доменов, магнитные моменты которых теперь составляют острый угол с полем, за счет уменьшения площадей "нечетных" доменов. В точке е площади " четных” доменов равны площадям "нечетных", суммарный магнитный момент ферромагнетика равен нулю.

Поле В К, размагничивающее ферромагнетик, называется коэрцитивной силой . При изменении магнитного ноля от В К до -В К и обратно, кривая, характеризующая намагниченность, образует замкнутую петлю - петлю гистерезиса . Материалы с большой коэрцитивной силой называются магнитожесткими, а с малой - магнитомягкими. Магнитомягкие материалы применяются для изготовления сердечников электромагнитов (где важно иметь большие значения максимальной индукции поля и малую коэрцитивную силу), в качестве сердечников трансформаторов и машин переменного тока (генераторов, двигателей), в сердечниках магнитов ускорителей. Магнитожесткие материалы используются в постоянных магнитах: благодаря большой коэрцитивной силе и относительно большой остаточной намагниченности эти магниты могут длительное время создавать сильные магнитные поля. Постоянные магниты применяются в магнитоэлектрических измерительных приборах, в динамиках, микрофонах, в небольших генераторах, в микроэлектродвигателях и т.д.

Антиферромагнетики - каждый магнитный момент окружен антипараллельным магнитным моментом. Спонтанная намагниченность не возникает, т.к. магнитные моменты атомов взаимно скомпенсированы. Отсутствие полной компенсации магнитных моментов подрешеток приводит к тому, что в антиферромагнетике возникает некоторая результирующая, отличная от нуля, спонтанная намагниченность.

Такие материалы как бы объединяют в себе свойства ферро- и антиферромагнетиков. Их называют ферримагнетиками или ферритами.


Обратимся теперь к вопросу, почему в ферромагнитных материалах даже малые магнитные поля приводят к такой большой намагниченности. Намагниченность ферромагнитных материалов типа железа или никеля образуется благодаря магнитным моментам электронов одной из внутренних оболочек атома. Магнитный момент каждого электрона равен произведению на -фактор и момент количества движения . Для отдельного электрона при отсутствии чисто орбитального движения , а компонента в любом направлении, скажем, в направлении оси , равна , так что компонента в направлении оси будет

. (36.28)

В атоме железа вклад в ферромагнетизм фактически дают только два электрона, так что для упрощения рассуждений мы будем говорить об атоме никеля, который является ферромагнетиком, подобно железу, но имеет на той же внутренней оболочке только один «ферромагнитный» электрон. (Все рассуждения нетрудно затем распространить и на железо.)

Все дело в том, что точно так же, как и в описанных нами парамагнитных материалах, атомные магнитики в присутствии внешнего магнитного поля стремятся выстроиться по полю, но их сбивает тепловое движение. В предыдущей главе мы выяснили, что равновесие между силами магнитного поля, старающимися выстроить атомные магнитики, и действием теплового движения, стремящегося их сбить, приводит к тому, что средний магнитный момент единицы объема в направлении оказывается равным

, (36.29)

где под мы подразумеваем поле, действующее на атом, а под - тепловую (больцмановскую) энергию. В теории парамагнетизма мы в качестве использовали само поле , пренебрегая при этом частью поля, действующего на каждый атом со стороны соседнего. Но в случае ферромагнетиков возникает усложнение. Мы уже не можем в качестве поля , действующего на индивидуальный атом, брать среднее поле в железе. Вместо этого нам следует поступить так же, как это делалось в случае диэлектрика: нам нужно найти локальное поле, действующее на отдельный атом. При точном решении нам следовало бы сложить вклады всех полей от других атомов кристаллической решетки, действующих на рассматриваемый нами атом. Но подобно тому как мы поступали в случае диэлектрика, сделаем приближение, состоящее в том, что поле, действующее на атом, будет таким же, как и в маленькой сферической полости внутри материала (предполагая при этом, как и раньше, что моменты соседних атомов не изменяются из-за наличия полости).

Следуя рассуждениям гл. 11 (вып. 5), мы можем надеяться, что должна получиться формула

(неверно)!,

похожая на формулу (11.25). Но это будет неправильно. Однако мы все же можем использовать полученные там результаты, если тщательно сравним уравнения из гл. 11 с уравнениями ферромагнетизма, которые мы напишем сейчас. Сопоставим сначала соответствующие исходные уравнения. Для областей, в которых токи проводимости и заряды отсутствуют, мы имеем:

(36.30)

.

Это то же самое, что и

. (36.31)

Другими словами, если уравнения ферромагнетизма записать как

(36.32)

то они будут похожи на уравнения электростатики.

В прошлом это чисто алгебраическое соответствие доставило нам некоторые неприятности. Многие начинали думать, что именно и есть магнитное поле. Но, как мы уже убедились, физически фундаментальными полями являются и , а поле - понятие производное. Таким образом, хотя уравнения и аналогичны, физика их совершенно различна. Однако это не может заставить нас отказаться от принципа, что одинаковые уравнения имеют одинаковые решения.

Теперь можно воспользоваться нашими предыдущими результатами о полях внутри полости различной формы в диэлектриках, которые приведены на фиг. 36.1, для нахождения поля . Зная , можно определить и . Например, поле внутри иглообразной полости, параллельной (согласно результату, приведенному в § 1), будет тем же самым, что и поле внутри материала:

.

Но поскольку в нашей полости равна нулю, то мы получаем

. (36.33)

С другой стороны, для дискообразной полости, перпендикулярной ,

,

что в нашем случае превращается в

,

или в величинах :

. (36.34)

Наконец, для сферической полости аналогия с уравнением (36.3) дала бы

. (36.35)

Результаты для магнитного поля, как видите, отличаются от тех, которые мы имели для электрического поля.

Конечно, их можно получить и более физически, непосредственно используя уравнения Максвелла. Например, уравнение (36.34) непосредственно следует из уравнения . (Возьмите гауссову поверхность, которая наполовину находится в материале, а наполовину - вне его.) Подобным же образом вы можете получить уравнение (36.33), воспользовавшись контурным интегралом по пути, который туда идет по полости, а назад возвращается через материал. Физически поле в полости уменьшается благодаря поверхностным токам, определяемым как . На вашу долю остается показать, что уравнение (36.35) можно получить, рассматривая эффекты поверхностных токов на границе сферической полости.

При нахождении равновесной намагниченности из уравнения (36.29) удобнее, оказывается, иметь дело с , поэтому мы пишем

. (36.36)

В приближении сферической полости коэффициент следует взять равным 1/3, но, как вы увидите позже, нам придется пользоваться несколько другим его значением, а пока оставим его как подгоночный параметр. Кроме того, все поля мы возьмем в одном и том же направлении, чтобы нам не нужно было заботиться о направлении векторов. Если бы теперь мы подставили уравнение (36.36) в (36.29), то получили бы уравнение, которое связывает намагниченность с намагничивающим полем :

.

Однако это уравнение невозможно решить точно, так что мы будем делать это графически.

Сформулируем задачу в более общей форме, записывая уравнение (36.29) в виде

где - намагниченность насыщения, т. е. , а - величина . Зависимость от показана на фиг. 36.13 (кривая ). Воспользовавшись еще уравнением (36.36) для , можно записать как функцию от :

. (36.38)

Эта формула определяет линейную зависимость между и при любой величине . Прямая пересекается с осью в точке , и наклон ее равен . Для любого частного значения это будет прямая, подобная прямой на фиг. 36.13. Пересечение кривых и дает нам решение для . Итак, задача решена.

Фиг. 36.13. Графическое решение уравнений (36.37) и (36.38).

Посмотрим теперь, годны ли эти решения при различных обстоятельствах. Начнем с . Здесь представляются две возможности, показанные кривыми и на фиг. 36.14. Обратите внимание, что наклон прямой (36.38) пропорционален абсолютной температуре . Таким образом, при высоких температурах получится прямая, подобная . Решением будет только . Иначе говоря, когда намагничивающее поле равно нулю, намагниченность тоже равна нулю. При низких температурах мы получили бы линию типа и стали возможны два решения для : одно , а другое порядка единицы. Оказывается, что только второе решение устойчиво, в чем можно убедиться, рассматривая малые вариации в окрестности указанных решений.

Фиг. 36.14. Определение намагниченности при .

В соответствии с этим при достаточно низких температурах магнитные материалы должны намагничиваться спонтанно. Короче говоря, когда тепловое движение достаточно мало, то взаимодействие между атомными магнитиками заставляет их выстраиваться параллельно друг другу, получается постоянно намагниченный материал, аналогичный постоянно поляризованным сегнетоэлектрикам, о которых мы говорили в гл. 11 (вып. 5).

Если мы отправимся от высоких температур и начнем двигаться вниз, то при некой критической температуре, называемой температурой Кюри , неожиданно проявляется ферромагнитное поведение. Эта температура соответствует на фиг. 36.14 линии , касательной к кривой , наклон которой равен единице. Так что температура Кюри определяется из равенства

При желании уравнение (36.38) можно записать в более простом виде через :

. (36.40)

Что же получается для малых намагничивающих полей ? Из фиг. 36.14 нетрудно понять, что получится, если нашу прямую линию сдвинуть немного направо. В случае низкой температуры точка пересечения немного сдвинется направо по слабо наклоненной части кривой и изменения будут сравнительно невелики. Однако в случае высокой температуры точка пересечения побежит по крутой части кривой и изменения станут относительно быстрыми. Эту часть кривой мы фактически можем приближенно заменить прямой линией с единичным наклоном и написать

.

Теперь можно разрешить уравнение относительно :

. (36.41)

Мы получаем закон, несколько напоминающий закон для парамагнетизма:

Отличие состоит, в частности, в том, что мы получили намагниченность как функцию , с учетом взаимодействия атомных магнитиков, однако главное то, что намагниченность обратно пропорциональна разности температур и , а не просто абсолютной температуре . Пренебрежение взаимодействием между соседними атомами соответствует , что, согласно уравнению (36.39), означает . Результат при этом получится в точности таким же, как и в гл. 35.

Нашу теоретическую картину можно сверить с экспериментальными данными для никеля. На опыте обнаружено, что ферромагнитные свойства никеля исчезают, когда температура поднимается выше 631° К. Это значение можно сравнить со значением , вычисленным из равенства (36.39). Вспоминая, что , мы получаем

Из плотности и атомного веса никеля находим

. означает, что (локальное поле, действующее на атом) должно быть больше, много больше, чем мы думали. Фактически, записывая , мы получили

.

В соответствии с нашей первоначальной идеей, когда мы принимали , локальная намагниченность уменьшает эффективное поле на величину . Даже если бы наша модель сферической полости была не очень хороша, мы все равно ожидали бы некоторого уменьшения. Вместо того чтобы объяснить явление ферромагнетизма, мы вынуждены считать, что намагниченность увеличивает локальное поле в огромное число раз: в тысячу и даже больше. По-видимому, не существует какого-то разумного способа для создания действующего на атом поля такой ужасной величины, ни даже поля нужного знака! Ясно, что наша «магнитная» теория ферромагнетизма потерпела досадный провал. Мы вынуждены заключить, что в ферромагнетизме мы имеем дело с какими-то немагнитными взаимодействиями между вращающимися электронами соседних атомов. Это взаимодействие должно порождать у соседних спинов сильную тенденцию к выстраиванию в одном направлении. Мы увидим позднее, что это взаимодействие связано с квантовой механикой и принципом запрета Паули.

Фиг. 36.15. Зависимость спонтанной намагниченности никеля от температуры.

В пределе, когда стремится к абсолютному нулю, стремится к . При увеличении температуры намагниченность уменьшается, падая до нуля при температуре Кюри. Точками на фиг. 36.15 показаны экспериментальные данные для никеля. Они довольно хорошо ложатся на теоретическую кривую. Хотя мы и не понимаем лежащего в основе механизма, но общие свойства теории, по-видимому, все же правильны.

Но в нашей попытке понять ферромагнетизм есть еще одна неприятная несогласованность, которая должна нас заботить. Мы нашли, что выше некоторой температуры материал должен вести себя как парамагнитное вещество, намагниченность которого пропорциональна (или ), а ниже этой температуры должна возникать спонтанная намагниченность. Но при построении кривой намагничивания для железа мы этого как раз и не обнаружили. Железо становится постоянно намагниченным только после того, как мы его «намагнитим». А в соответствии с только что высказанными идеями оно должно намагничиваться само! Что же неверно? Оказывается, что если вы рассмотрите достаточно маленький кристалл железа или никеля, то увидите, что он и впрямь полностью намагничен! А большой кусок железа состоит из массы таких маленьких областей, или «доменов», которые намагничены в различных направлениях, так что средняя намагниченность в большом масштабе оказывается равной нулю. Однако в каждом маленьком домене железо все же намагничивает само себя, причем приблизительно равно . Как следствие этой доменной структуры свойства большого куска материала должны быть совершенно отличны от микроскопических, как это и оказывается на самом деле.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: