GPU Speed что это такое? Что такое gpu в компьютере

В материнской плате расположено много важных составляющих частей компьютера, которые носят свои уникальные названия: CPU, GPU, HDD, SSD, ОЗУ и так далее. Каждая из этих аббревиатур имеет свою расшифровку, но в данный момент имеет значение, что же это - GPU?

Есть схожее название с этим термином - это CPU. Многие неопытные пользователи путают эти названия, что неверно. Для начала стоит пояснить, что CPU - это центральный процессор, который является мозгом всей системы. Расшифровывается эта аббревиатура так - Central Processor Unit.

Однако стоит знать, что GPU - это тоже процессор, только графического решения. В его задачу входит обработка и вывод на экран изображения. Полное название аббревиатуры выглядит таким образом - Graphic Processing Unit.

Благодаря этим пояснениям можно понять, что GPU - это не центральный процессор, который обрабатывает только данные графического типа. Он подчиняется протоколам центрального процессора и, в отличие от него, имеет свое логическое устройство. Так же, как и у главного процессора, у графического есть ядра, только их не десятки, а тысячи. Такое большое количество ядер необходимо для получения и обработки данных, связанных с прорисовкой и временными многочисленными задачами.

Теперь, когда уже имеется общее представление о том, что GPU - это графический процессор и его задачей является обработка графических данных, можно перейти к перечислению.

На данный момент есть два вида встроенных графических процессоров - это интегрированные в материнскую плату и встроенные в процессор.

В первом варианте чип графического процессора распаян прямо на текстолите материнской платы, и мало кто знает, что это GPU. Выглядит он как обычный чип черного цвета, на котором есть наименование марки, порядковый номер и комбинация цифр, которая указывает на некоторые параметры. Так как такие графические решения не имеют собственного объема памяти, они заимствуют данный параметр у оперативной памяти, используя ее объем.

В случае со встроенным в процессор чипом его сложно увидеть, получится это только при разборе самого центрального процессора. Практически во всех процессорах нового поколения имеется дополнительное ядро, которое именуется графическим. Цена процессора при этом вырастает не намного, зато избавляет от нужды в дискретной видеокарте.

Встроенные графические процессоры позволяют сэкономить на энергопотреблении на несколько десятков процентов, что положительно сказывается на теплоотдаче. Однако есть и значительные минусы, и один из них - это низкая производительность. Такая экономная графика хорошо подходит для работы с офисными программами и приложениями, не требующими больших мощностей.

GPU в компьютере - что это такое и как его определить? Если ранее было представлено два вида графических процессоров в интегрированном виде, то далее можно рассмотреть вариант дискретной видеокарты. Исходя из этого можно понять, что GPU - это такое обозначение лишь процессора, одной из деталей которого является видеокарта. Однако эта деталь является самой важной. Еще на плате видеокарты расположены чипы памяти, конденсаторы, разъем или разъемы для питания, защитный кожух, радиатор и кулер.

Различие интегрированной и дискретной видеокарты в том, что вторая гораздо мощнее и производительнее, чем встроенный вариант. Во-первых, имеется свой объем памяти, что напрямую влияет на скорость отрисовки объектов. Во-вторых, в ее параметры входит шина расширения, битность которой позволяет увеличить пропускную способность для передачи данных.

Такие графические адаптеры требуют дополнительного питания, чтобы просто запуститься и выдавать качественное изображение. Несмотря на всю мощь, есть и офисные варианты дискретных видеокарт, которые мало чем отличаются от интегрированных собратьев. Игровые варианты более мощные по строению и потенциалу, но потребляют гораздо больше энергии.

Температурный режим

Для лучшего функционирования нужно знать, что такое GPU в компьютере и его температура. Как охладить встроенный и дискретный GPU? Для охлаждения интегрированного графического процессора достаточно разместить вентиляторы в корпусе, а у дискретных вариантов есть собственная система охлаждения. В зависимости от того, сколько вентиляторов находится над чипом, будет ясно, как хорошо охлаждается чип.

Система охлаждения видеокарты достаточно проста - чип с помощью нанесенной на него термопасты соприкасается с трубками теплоотвода, они переходят к радиатору, который охлаждается с помощью кулера.

Рабочая температура чипа составляет не более 70 градусов, дальнейшее повышение температуры можно считать перегревом. Чтобы не допустить перегрева видеокарты, достаточно своевременно прочищать от пыли видеокарту, менять при этом термопасту. Для того чтобы узнать нынешнее состояние температуры в видеокарте, достаточно запустить соответствующие программы, например, AIDA 64. Там можно увидеть температуру не только графического адаптера, но и всей системы.

Доброго всем времени суток, мои дорогие друзья и гости моего блога. Сегодня я бы хотел поговорить немного об аппаратной части наших компьютеров. Скажите пожалуйста, вы слышали про такое понятие как GPU? Оказывается просто многие впервые слышат такую аббревиатуру.

Как бы банально это не звучало, но сегодня мы живем в эру компьютерных технологий, и порой сложно найти человека, который понятия не имеет, как работает компьютер. Так, например, кому-то достаточно осознания, что компьютер работает благодаря центральному процессору (CPU).

Кто-то пойдет дальше и узнает, что есть ещё и некий GPU. Такая замысловатая аббревиатура, но похожая на предыдущую. Так давайте же разберемся, что такое GPU в компьютере, какие они бывают и какие различия есть у него с CPU.

Небольшая разница

Простыми словами, GPU - это графический процессор, иногда его именуют видеокартой, что отчасти является ошибкой. Видеокарта - это готовое компонентное устройство, в состав которого как раз и входит нами описываемый процессор. Он способен обрабатывать команды для формирования трёхмерной графики. Стоит отметить, что он является для этого ключевым элементом, от его мощности зависит быстродействие и различные возможности видеосистемы в целом.

Графический процессор имеет свои отличительные особенности по сравнению с его собратом CPU. Основное различие кроется в архитектуре, на которой он построен. Архитектура GPU построена таким образом, что позволяет обрабатывать большие массивы данных более эффективно. CPU, в свою очередь, обрабатывает данные и задачи последовательно. Естественно, не стоит воспринимать эту особенность как минус.

Виды графических процессоров

Существует не так много видов графических процессоров, один из них именуется, как дискретный, и применяется на отдельных модулях. Такой чип достаточно мощный, поэтому для него требуется система охлаждения из радиаторов, кулеров, в особо нагруженных системах может применяться жидкостное охлаждение.

Сегодня мы можем наблюдать значительный шаг в развитие графических компонентов, это обуславливается появлением большого количества видов GPU. Если раньше любой компьютер приходилось снабжать дискретной графикой, чтобы иметь доступ к играм или другим графическим приложениям, то сейчас такую задачу может выполнять IGP - интегрированный графический процессор.

Интегрированной графикой сейчас снабжают практически каждый компьютер (за исключением серверов), будь то, ноутбук или настольный компьютер. Сам видео-процессор встроен в CPU, что позволяет значительно снизить энергопотребление и саму цену устройства. Кроме того, такая графика может быть и в других подвидах, например: дискретная или гибридно-дискретная.

Первый вариант подразумевает наиболее дорогое решение, распайку на материнской плате или же отдельный мобильный модуль. Второй вариант называется гибридным неспроста, фактически он использует видеопамять небольшого размера, которая распаяна на плате, но при этом способен расширять её за счёт оперативной памяти.

Естественно, такие графические решения не могут поравняться с полноценными дискретными видеокартами, но уже сейчас показывает достаточно хорошие показатели. В любом случае, разработчикам есть куда стремиться, возможно за таким решением будущее.

Ну а на этом у меня, пожалуй, все. Надеюсь, что статья вам понравилась! Жду вас снова у себя на блоге в гостях. Удачи вам. Пока-пока!

CPU и GPU очень похожи между собой. Они оба сделаны из миллионов транзисторов, способны совершать тысячи операций в секунду, поддаются . Но в чем разница между CPU и GPU ?

Что такое CPU?

CPU (Central Processing Unit) – это центральный процессор, другими словами – “мозг” компьютера. Это набор из нескольких миллионов транзисторов, которые могут выполнять сложные вычисления. Стандартный процессор имеет от одного до четырех ядер с тактовой частотой от 1 до 4 ГГц, хотя недавно .

CPU – достаточно мощное устройство, которое способно выполнять любые задачи на компьютере. Количество ядер и тактовая частота CPU это одни из ключевых

Что такое GPU?

GPU (Graphics Processing Unit) – это специализированный тип микропроцессора, который оптимизирован для отображения графики и решения специфичных задач. Тактовая частота GPU существенно ниже, чем в CPU, но обычно он имеет больше ядер.

В чем разница между CPU и GPU?

Графический процессор может совершать лишь часть из многих операций CPU, но делает он это с невероятной скоростью. GPU использует сотни ядер для расчетов в реальном времени, чтобы отображать тысячи пикселей на мониторе. Это позволяет плавно отображать сложную игровую графику.

Тем не менее, CPU являются более гибкими, чем GPU. Центральные процессоры имеют больший набор команд, так что они могут решать более широкий круг задач. CPU работают на более высоких максимальных частотах и могут управлять вводом и выводом всех компонентов компьютера. CPU способны работать с виртуальной памятью, которая нужна для современных операционных систем, а GPU – нет.

Немного об вычислениях на GPU

Несмотря на то, что графические процессоры являются лучшими для видео рендеринга, технически они способны сделать больше. Обработка графических данных это только один из видов повторяющихся и высоко параллельных задач. Другие задачи, такие как добыча Bitcoin или перебор паролей полагаются на те же типы больших наборов данных и математические операции. Вот почему многие люди используют GPU для “неграфических” целей.

Итог

Центральные и графические процессоры имеют схожие цели, но оптимизированы для разных вычислительных задач. В этом и разница между CPU и GPU. Для правильной и эффективной работы компьютер должен иметь оба типа микропроцессоров.

Время идет, процессоры становятся все мощнее и многоядернее. Видеокарты также наращивают количество вычислительных блоков и помимо создания 3D-изображения пытаются решать те задачи, которыми до сих пор занимались центральные процессоры. При этом разработчики видеокарт обещают значительное повышение производительности, что, в общем-то, подкрепляется цифрами. Но остается вопрос - на самом ли деле архитектура видеокарт лучше подходит для решения хорошо распараллеливаемых задач и потоковой обработки больших массивов данных? Если так, то зачем нам тогда многоядерные процессоры, может действительно стоит "переложить" нагрузку на видеокарты? Сегодня мы попытаемся ответить на вопрос - "кто кого поборет, кит или слон?", применительно к соревнованию CPU и GPU в части физических расчетов. Данный материал не претендует на полноту и всеохватность, более того - рассматриваемые здесь вопросы являются далеко не единственным примером "соревнования" CPU и GPU в области вычислений. Собственно, эти заметки и появились лишь в результате дискуссии с коллегами по поводу "кто сильнее, CPU или GPU". Не откладывая в долгий ящик, решено было проверить, а действительно - кто? Вы не поверите, но итог соревнования оказался не столь очевиден, и результаты удивили обе стороны. А почему так получилось, сейчас и увидим. В качестве тестового приложения мы решили взять 3DMark Vantage, а конкретно, один из входящих в пакет тестов - CPU Physics. Выбор, в общем-то, ничем особым не обусловлен, можно сказать - "что под руку попалось". Просто в 3DMark Vantage обычно мы тестируем видеокарты, а в него входит тест расчета "физики", который может выполнятся как на CPU, так и на видеоадаптерах NVIDIA. Вот давайте и посмотрим, кто считает "физику" быстрее.

Тестовое оборудование

Для сравнения мы взяли три процессора. Один из них уже довольно стар - Intel Core 2 Quad QX6850. Второй процессор более современный - AMD Phenom II X4 965. Третий еще современнее - AMD Athlon II X4 620. Конечно, надо было бы взять еще Core i7 или Core i5, но в это время они были заняты в других тестах. Впрочем, и трех имеющихся представителей "процессорного "лагеря будет вполне достаточно для получения качественных и количественных оценок.

Что касается видеокарт, то мы использовали три следующие модели NVIDIA:

  • GeForce 9500GT (32 унифицированных процессора)
  • GeForce 9600GT (64 унифицированных процессора)
  • GeForce GTX260 (216 унифицированных процессоров)
Мы не указываем частоты видеокарт, поскольку в процессе тестирования они постоянно менялись.

Тестирование

В качестве "удельной мощности" CPU или GPU мы будем рассматривать величину производительности в тесте 3DMark Vantage CPU Physics Test (которая измеряется в количестве кадров в секунду), поделенную на количество ядер или шейдерных блоков, а также частоту в мегагерцах. То есть, будем измерять "удельную мощность" в FPS/(МГц*количество вычислительных потоков). Собственно, для получения этой величины осталось измерить количество FPS в тесте при разных частотах процессоров и видеокарт, так как количество ядер CPU фиксировано, как и количество потоковых процессоров у видеокарт. Итак, приступим. Поскольку CPU до сих пор является "сердцем" компьютера, начнем именно с него. Мы решили немножко усложнить себе задачу и заодно выяснить, как масштабируется производительность CPU в данном тесте не только от частоты, но и от количества ядер. Ядра "отключались" путем задания соответствия на требуемое число ядер CPU для 3DMark Vantage в "Диспетчере задач". Данный метод неидеален, но для наших задач его вполне хватит. Кстати, несмотря на то, что процессор Intel Core 2 Quad QX6850 по сути состоит из двух ядер на одной подложке, какого либо влияния в данном тесте это не оказало. То есть, вариант, когда два ядра используют общий кэш объемом 4 Мб и случай, когда каждое из ядер использует кэш по 4 Мб, показали результаты, совпадающие в пределах погрешности. Ну а масштабирование по частоте осуществлялось путем изменения коэффициента умножения процессора в сторону понижения, прочие параметры системы оставались неизменными. Смотрим, что получилось.

Как видите, с увеличением частоты производительность в тесте растет практически линейно. Теоретически, прямые линии должны начинаться от начала координат, поскольку при нулевой частоте CPU мы просто не получим никаких результатов, то есть нулевой FPS. Давайте проведем прямые линии от начала координат и проверим, насколько они совпадут с экспериментальными кривыми.

Получаются весьма занятные результаты. Результаты Intel Core 2 Quad QX6850 практически идеально ложатся на прямые линии (за исключением случая для трех активных ядер, что может быть обусловлено как раз несимметричностью распределения кэш-памяти между ними в силу архитектуры). Результаты процессора AMD Athlon II X4 620 также хорошо ложатся на линию, проходящую через начало координат. А вот для AMD Phenom II X4 965 все несколько сложнее. Если проводить прямую от начала координат через точку, соответствующую минимальной частоте, то следующие точки отклоняются от этой прямой вниз (случай для одного и двух активных ядер). Если же проводить прямую через точки, соответствующие более высокой частоте CPU, то получается, что результаты на частоте 2000 МГц лежат сверху над прямой. Вероятно, такое поведение результатов можно объяснить наличием у AMD Phenom кэш-памяти третьего уровня. При частоте CPU равной 2000 МГц ядра и кэш-память L3 работают синхронно, поэтому результат максимален. При увеличении частоты ядер частота L3-кэш процессора остается неизменной, и он может вносить какие-то задержки, поэтому результаты "переходят" на прямую, коэффициент наклона которой ниже. Теперь давайте вычислим "удельную мощность" рассматриваемых процессоров в этом тесте. Напомним, что это по сути есть коэффициент наклона касательной, дополнительно разделенный на количество задействованных ядер CPU. Результаты приведены в таблице ниже.

"Удельная мощность" CPU, FPS/(МГц*кол-во ядер)
Кол-во ядер Core 2 Quad QX6850 Phenom II X4 965 Athlon II X4 620
1 0.001363 0.001467
2 0.001252 0.001381
3 0.001249 0.001331
4 0.00124 0.001346 0.001348

Удивительно, но в при расчетах "физики" в 3DMark Vantage рассматриваемые процессоры AMD показывают чуть лучшие результаты, чем представитель архитектуры Intel Core 2 Quad. Теперь давайте посмотрим, какую "удельную мощность" продемонстрируют GPU производства NVIDIA. Поскольку видеопроцессор является довольно сложным устройством, возник вопрос - а как вообще эту "удельную мощность" считать? Поскольку вычислениями в основном занимаются шейдерные блоки, было решено строить графики результатов на основе именно этого параметра. Что касается частоты блоков ROP, то она выбиралась максимально возможной при данной частоте шейдеров. Как оказалось, минимальный коэффициент частоты шейдерных блоков по отношению к частоте ROP-блоков равен двум. Именно такое соотношение частот и сохранялось на протяжении всех тестов. Для этой части тестов использовался тестовый стенд на основе Core 2 Quad QX6850, рабочая частота процессора - 3600 МГц, все четыре ядра активны. Результаты показаны на графике ниже.

Как видите, в данном тесте по абсолютным показателям видеокарты значительно опережают центральные процессоры в производительности. Причем даже самая слабая из присутствующих модель на минимальных частотах оказывается быстрее четырехъядерного CPU с частотой 3600 МГц. Однако поведение линий результатов несколько отличается от того, что мы видели для центральных процессоров. Более подробно это видно на графике ниже.

На этом графике через точки, соответствующие минимальным рабочим частотам видеокарт, мы провели прямые линии. Как оказалось, они сходятся не в начале координат, а пересекают ось ординат на уровне примерно 20 FPS. Странно, не правда ли? Как оказалось, ничего странного нет, а поведение линий вполне закономерно. Для этого достаточно было посмотреть на загрузку CPU во время выполнения теста - она достигала 100% для каждого из ядер. Если вернуться к данным графика №1, то легко заметить, что результат теста на процессоре Intel Core 2 Quad QX6850 @ 3600 МГц как раз и составляет 18 FPS. Мы пробовали снижать частоту процессора и уменьшать количество активных ядер, и каждый раз уровень вертикального смещения линий результатов для GPU с хорошей точностью совпадал с производительностью центрального процессора в данном тесте. Что касается отклонения линий результатов от построенных прямых, то это объясняется проще - начиная с определенного момента часть шейдерных блоков, по всей видимости, загружены не полностью. Возможно, сказываются ограниченные возможности по распараллеливанию нагрузки самого теста, а может играют роль какие-то ограничения в архитектуре видеопроцессора. Как бы там ни было, давайте вычислим "удельную мощность" GPU, используя, как и прежде, коэффициент наклона построенных прямых, поделенный на количество потоковых процессоров. Полученные результаты отображены в таблице ниже. Также в ней указана "удельная мощность" Intel Core 2 Quad QX6850.

"Удельная мощность" Коэффициент "отставания"
GPU от CPU
Intel Core 2 Quad QX6850 0.00124
9500GT (32 shaders) 0.00084 1.48
9600GT (64 shaders) 0.00063 1.97
GTX260 (216 shaders) 0.00050 2.46

В это трудно поверить, но в тесте 3DMark Vantage CPU Physics Test "удельная мощность" довольно старого, по нынешним меркам, центрального процессора оказывается как минимум в полтора раза больше "удельной мощности" современных видеопроцессоров NVIDIA. Такой вот парадоксальный результат. Впрочем, мы вовсе не предлагаем отказаться от расчетов на GPU в пользу центральных процессоров. У GPU есть еще один козырь - большая производительность на ватт потребляемой мощности. Эти прикидки сделать несложно, поэтому оставим эту возможность читателям. Ну а если сравнить абсолютные результаты CPU и GPU, полученные в рамках данного тестирования, то современные процессоры еще не скоро до них дорастут. Впрочем, и отрицать успехи процессоростроения не стоит. Не так давно были опубликованы результаты тестирования разогнанного шестиядерного процессора Intel Core i9 Gulftown . Разогнанный до частоты 5892 МГц, этот процессор в тесте 3DMark Vantage CPU Physics Test показал результат 63,01 FPS. Если подсчитать "удельную мощность" новинки, то получаем величину 0.00178 FPS/(МГц*кол-во ядер), что в 1.44 раза больше "удельной мощности" процессора Core 2 Quad QX6850. То есть 44% прибавки достигаются за счет преимуществ архитектуры Core i9 и технологии HyperThreading. И хотя прямого противостояния CPU и GPU по всему фронту решаемых задач пока не наблюдается, кто знает, где именно между ними развернется жестокая конкуренция. Стоит упомянуть AMD Radeon HD 5870 , обладающий вычислительной мощностью 2,7 TFLOPS, а также Microsoft DirectX 11 с поддержкой технологии Compute Shader, позволяющей переложить расчеты на GPU. То ли еще будет...

На что мы смотрим в первую очередь, выбирая себе смартфон? Если на минутку отвлечься от стоимости, то в первую очередь мы, конечно, выбираем размер экрана. Затем нас интересует камера, объем оперативной, количество ядер и частота работы процессора. И тут все просто: чем больше, тем лучше, а чем меньше, тем, соответственно, хуже. Однако в современных устройствах используется еще и графический процессор, он же GPU. Что это такое, как он работает и почему про него важно знать, мы расскажем ниже.

GPU (Graphics Processing Unit) — это процессор, предназначенный исключительно для операций по обработке графики и вычислений с плавающей точкой. Он в первую очередь существует для того, чтобы облегчить работу основного процессора, когда дело касается ресурсоемких игр или приложений с 3D-графикой. Когда вы играете в какую-либо игру, GPU отвечает за создание графики, цветов и текстур, в то время как CPU может заняться искусственным интеллектом или расчетами механики игры.

Архитектура графического процессора не сильно отличается от архитектуры CPU, однако она более оптимизирована для эффективной работы с графикой. Если заставить графический процессор заниматься любыми другими расчетами, он покажет себя с худшей стороны.


Видеокарты, которые подключаются отдельно и работают на высоких мощностях, существуют только в ноутбуках и настольных компьютерах. Если мы говорим об Android-устройствах, то мы говорим об интегрированной графике и том, что мы называем SoC (System-on-a-Chip). К примеру, в процессоре интегрирован графический процессор Adreno 430. Память, которую он использует для своей работы, это системная память, в то время как для видеокарт в настольных ПК выделяется доступная только им память. Правда, существуют и гибридные чипы.

В то время как процессор с несколькими ядрами работает на высоких скоростях, графический процессор имеет много процессорных ядер, работающих на низких скоростях и занимающихся лишь вычислением вершин и пикселей. Обработка вершин в основном крутится вокруг системы координат. GPU обрабатывает геометрические задачи, создавая трехмерное пространство на экране и позволяя объектам перемещаться в нем.

Обработка пикселей является более сложным процессом, требующим большой вычислительной мощности. В этот момент графический процессор накладывает различные слои, применяет эффекты, делает все для создания сложных текстур и реалистичной графики. После того как оба процесса будут обработаны, результат переносится на экран вашего смартфона или планшета. Все это происходит миллионы раз в секунду, пока вы играете в какую-нибудь игру.


Конечно же, этот рассказ о работе GPU является весьма поверхностным, но его достаточно для того, чтобы составить правильное общее представление и суметь поддержать разговор с товарищами или продавцом электроники либо понять — почему ваше устройство так сильно нагрелось во время игры. Позднее мы обязательно обсудим преимущества тех или иных GPU в работе с конкретными играми и задачами.

По материалам AndroidPit



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: