Arduino uno начало работы. Простые схемы на Arduino для начинающих

Ядром платформы Arduino является микросхема-микроконтроллер известная как ATmega328.

ATmega328 на самом деле по всем параметрам является 8 битным компьютером: после включения, его процессор загружает байт из заданной ячейки памяти и интерпретирует это как команда. То что пойдет дальше зависит от значения этого байта. Только в отличие от известных нам компьютеров, ATmega328 не запускает никакую операционную систему: использование ресурсов находится под полным контролем программиста. Мы не можем полагаться на операционую систему, которая может коряво распределить память, переполнить её или привести к другим нежелательным для четкой автоматической системы последствиям. Кроме того, процессор может работать только с одной задачей одновременно (вы наверняка знаете, что так работают все процессоры, однако операционная система распределяет время работы различных задач таким образом, что складывается впечатление, что несколько програм на вашем компьютере работают одновременно).

У нового Arduino память совершенно пустая, следовательно, первый байт обрабатываемый процессором имеет нулевое значение: "Нет операции". Перед использованием Arduino вы должны загрузить в его память исполняемую программу, т.е. последовательность битов, первый из которых интерпретируется как команда и выполняется. Если команде нужны параметры для выполнения, они берутся из следующих байтов памяти. После выполнения команды, процессор загружает полученный байт в память и интерпретирует его как команду. Если выключить Arduino, память не стирается. Последовательность байтов, загруженных в него, хранится в энергонезависимой памяти, поэтому когда вы включите его снова, программа запускается опять с самого начала.

Частота выполнения операций процессора задается тактовым генератором 16 МГц. Питание можно подавать через разъем USB. Для работы без USB-питания Arduino требуется отдельный источник питания напряжением от 7 до 12 V (это напряжение нормализуется до необходимых уровней регулятором расположенным на борту, так что вам просто нужен недорогой источник питания для этого). На борту, оба уровня напряжения 5 В и 3,3 В доступны пользователю, из которых можно выжать максимум 50 мА тока.

Память Arduino состоит из трех типов: флэш-память, где хранится программа 32 Кб; оперативная память (SRAM) 2 КБ, где процессор хранит и перезаписывает переменные, используемые в программе; и постоянная память (EEP-ROM) 1 КБ, где программист может хранить данные, которые должны остаться при перезапуске контроллера (как флэш-память, где хранится программа). По сравнению с современными компьютерами, которые оперируют как минимум несколькими гигабайтами, 35 кбайт кажется смешным, но на самом деле этого достаточно для большинства целей. Из-за отсутствия операционной системы, использование памяти переносится под полную вашу ответственность: если случится переполнение памяти или будет обращение к несуществующей ячейке памяти, ваша программа может повести себя непредсказуемо, и это довольно трудно отследить во время отладки. Вы всегда должны держать количество переменных под контролем в вашей программе.

Процессор ATmega328 подключен к 14 дискретным портам ввода / вывода (пронумерованных от 0 до 13), 6 аналоговым входам и порту USB. Дискретный вход / выход это электрическое соединение, которое может иметь два логических состояния: 1 и 0, или TRUE и FALSE, или, как в синтаксисе Arduino, LOW и HIGH. Если сигнал в значении LOW, соответствующий вывод имеет нулевой потенциал 0 В - тоесть подключен к общему проводу. Если сигнал HIGH, то уровень напряжения между данным выводом и землей 5 В.

Контакты 0 и 1 используются для последовательного приема и передачи данных: через них плата Arduino может общаться с присоединенными к ней модулями (шилдами), используя последовательный протокол. Последовательные протоколы это коммуникационные протоколы, в которых каждый бит передается / принимается по очереди один за другим. Контакты 2 и 3 могут быть также использованы в качестве прерываний. Прерывание это электрический сигнал на дискретном входе, который прерывает текущую программу процессора при наступлении заданного логического состояния. Прерывания также существуют и у процессоров обычных компьютеров. После наступления прерывания, процессор сохраняет свое состояние в памяти и откладывает выполнение программы, перескакивает на выполнение обработчика прерывания: короткий кусок программного кода, необходимый для обслуживания прерывания. После завершения, процессор возобновляет статус, который он имел перед приходом прерывания, и возобновляет выполнение программы.

Контакты 3, 5, 6, 9, 10 и 11 могут использоваться как выходы ШИМ (широтно-импульсной модуляции PWM) и имеют некоторые аналоговые настройки. Соответственно, их ячейки памяти содержат значения между 0 и 255.

Рис.1 Arduino UNO, как он выглядит сверху и снизу. Обратите внимание на карту Италии на задней стороне.

Контакт 13 также подключен к светодиоду на борту. Когда сигнал LOW, светодиод выключен, а если сигнал HIGH светодиод светится.

Кроме стандартного использования в качестве дискретных входов / выходов, контакты 10, 11, 12 и 13 обеспечивают возможность коммуникации с внешними периферийными устройствами.

Аналоговые входы помечены A0 ... A5: каждый из них имеет цифровое разрешение 10 бит,

то есть они преобразовывают любое напряжение от 0 до 5 В в число между 0 и 1023, которое может быть доступно в памяти.

Все платформы смонтированы на плате, размером 60,6 мм × 53,4 мм и весом не больше 25 г (рис. 1).

На платах также имеются разъемы USB A / B, с помощью которых вы можете подключить их к компьютеру для коммуникации. Подключение USB-также обеспечивает питание для Arduino при подключении к компьютеру, так что для начала вам не нужен внешний источник питания.

Программа

Программа для Arduino, как и любая другая программа для процессора, является последовательностью битов на машинном языке. Для того, чтобы облегчить жизнь программистам, команда Arduino разработала язык программирования высокого уровня, компилятор и инструмент прошивки для заливки машинного кода в память Arduino.

Все эти инструменты входят в одну программу IDE (Integrated Development Environment), свободную

для скачивания на веб-сайте Arduino: выберите необходимую операционную систему вашего компьютера и скачайте программу. Она выглядит так же как и большинство обычных компьютерных программ. Она имеет несколько закладок на разные окна. Одно из таких окон используется для редактирования программы. Оно называется sketch на жаргоне Arduino. Скетчи пишутся в упрощенном C ++.


Рис.2 Программа Arduino появляется как окно, в котором можно ввести текст программы, которую попросту называют скетч.

Вы можете скомпилировать свой скетч в программе Arduino (рис. 2) нажав на кнопку Verify в верхнем левом углу окна: процесс компиляции транслирует C ++ программу в соответствующие машинные коды процессора ATmega328. После компиляции исполняемый скетч может быть загружен в память Arduino через USB кабель, при нажатии на кнопку Upload. Вам может понадобиться выбрать соответствующий COM-порт в меню, если есть более чем один доступный. Загрузка скетча всегда вызывает запуск компилятора, в первую очередь. Запуск скетча происходит сразу после окончания загрузки.

Дополнительные возможности добавлены к основному языку с помощью внешних библиотек, разработанных командой Arduino или сторонними разработчиками. Библиотеки могут быть включены в исполняемый код, выбрав соответствующий пункт меню. При необходимости, добавление библиотеки, автоматически добавит строки к скетчу сообщая компилятору о новом синтаксисе.

28 09.2016

Вы задумывались облегчить себе жизнь в быту? Чтобы были вещи, которые решали бы за вас повседневные, рутинные задачи. Умное устройство, которое бы осуществляло полезную функцию, например поливало огород, убирало комнату, переносило груз. Эти задачи может решать . Но просто купить её будет недостаточно. Любому промышленному логическому контроллеру или микросхеме нужен “мозг”, чтобы выполнять определённую последовательность действий. Для свершений операций в нашем случае подойдёт язык программирования ардуино.

Из этой статьи вы узнаете:

Приветствую вас, друзья! Для тех, кто меня не знает — меня зовут Гридин Семён. Вы можете прочитать обо мне . Сегодняшняя статья будет посвящена двум основным программам, без которых не будет у нас дальнейшего движения и взаимопонимания.

Общее описание языков программирования

Как я и писал выше, рассматривать мы с вами будем две популярные среды разработки. По аналогии с , можно разделить на графический редактор и “умный блокнот”. Это программы Arduino IDE и FLprog.

Основой среды разработки является Processing/Wiring — это обычный C++, дополненный функциями и различными библиотеками. Существует несколько версий для операционных систем windows, Mac OS и Linux.

В чём их принципиальное различие?? Arduino IDE — это среда разработки, в которой описывается код программы. А FLprog похож на CFC CoDeSyS, позволяющий рисовать диаграммы. Какая среда лучше? Обе хороши и удобны по своему, но если хотите заниматься контроллерами серьёзно, лучше всего изучить языки, похожие на СИ. Их главный плюс в гибкости и неограниченности алгоритма. Мне очень нравится Arduino IDE.

Описание Arduino IDE

Дистрибутив можно скачать на официальном сайте . Скачиваем архив, он занимает чуть более 100 мб. Установка стандартная, как и все приложения для Windows. Драйвера для всех типов плат должны быть установлены в пакете. И вот каким образом выглядит рабочее окно программы.

Среда разработки Arduino состоит из:

  • редактора программного кода;
  • области сообщений;
  • окна вывода текста;
  • панели инструментов с кнопками часто используемых команд;
  • нескольких меню

Настройки Arduino IDE

Программа, написанная в среде разработки Arduino, называется скетчем . Скетч пишется в текстовом редакторе, который имеет цветовую подсветку создаваемого программного кода. Пример простенькой программы на картинке ниже.

Дополнительная функциональность может быть добавлена с помощью библиотек, представляющих собой оформленный специальным образом код. В основном он находится в закрытом от разработчика доступе. Среда обычно поставляется со стандартным набором, который можно постепенно пополнять. Они находятся в подкаталоге libraries каталога Arduino.

Многие библиотеки снабжаются примерами, расположенными в папке example. Выбор библиотеки в меню приведет к добавлению в исходный код строчки:

Arduino

#include

#include

Это директива — некая инструкция, заголовочный файл с описанием объектов, функций, и констант библиотеки. Многие функции уже разработаны для большинства типовых задач. Поверьте, это облегчает жизнь программисту.

После того как мы подключили электронную плату к компьютеру. Мы осуществляем следующие настройки — выбираем плату Arduino и Com-порт по которому будем соединяться.

Arduino

void setup() { // initialize digital pin 13 as an output. pinMode(13, OUTPUT); } void loop() { digitalWrite(13, HIGH); delay(1000); digitalWrite(13, LOW); delay(1000);

void setup () {

// initialize digital pin 13 as an output.

pinMode (13 , OUTPUT ) ;

void loop () {

digitalWrite (13 , HIGH ) ;

delay (1000 ) ;

digitalWrite (13 , LOW ) ;

delay (1000 ) ;

Так, кстати говоря, удобно проверять работоспособность платы, пришедшей с магазина. Быстро и легко.

Есть ещё одна удобная вещь. Называется она Монитор последовательного порта (Serial Monitor ). Отображает данные, посылаемые в платформу Arduino. Я обычно смотрю, какие сигналы выдают мне различные датчики, подключённые к плате.

Подключение библиотек

Существуют разные способы для добавления пользовательских функции. Подключить библиотеки можно тремя способами:

  1. С помощью Library Manager
  2. С помощью импорта в виде файла.zip
  3. Установка вручную.

1. С помощью Library Manager. В рабочем окне программы выбираем вкладку Скетч. После этого нажимаем на кнопку Подключить библиотеку. Перед нами откроется менеджер библиотек. В окне будут отображаться уже установленные файлы с подписью installed, и те, которые можно установить.

2.С помощью импорта в виде файла.zip. Часто в просторах интернета можно встретить запакованные в архивы файлы библиотек с расширением zip. В нём содержится заголовочный файл.h и файл кода.cpp. При установке не нужно распаковывать архив. Достаточно в меню Скетч — Подключить библиотеку — Add .ZIP library

3.Установка вручную. Сначала закрываем программу Arduino IDE. Наш архив мы сначала распаковываем. И файлы с расширением.h и.cpp переносим в папку с тем же названием, как и архив. Закидываем папку в корневой каталог.

Мои документы\Arduino\libraries

Описание FLPprog

FLprog — это бесплатный проект независимых разработчиков, позволяющий работать с функциональными блоками, либо с релейными диаграммами. Эта среда удобна для людей — не программистов. Она позволяет визуально и наглядно видеть алгоритм при помощи диаграмм и функциональных блоков. Скачать дистрибутив можно на официальном сайте .

Я наблюдаю за проектом достаточно давно. Ребята развиваются, постоянно добавляют новый функционал и изменяют старый. Я вижу в этой среде перспективы. Так как она выполняет две важные функции: простоту и удобство использования .

Попробуем с вами создать простенький проект. Будем переключать 13 выход на светодиод.

Создаём новый проект. В верхнем окне добавляем нужное количество входов и выходов, задаём имя и присваиваем физический вход или выход платы.

Вытаскиваем нужные нам элементы из дерева объектов нужные нам элементы на холст редактирования. В нашем случае можно использовать простой RS-триггер для включения и выключения.

После создания алгоритма, кликнем на кнопочку компилировать, программа даёт готовый скетч на IDE.

Мы с вами рассмотрели возможности и удобства программ для разработки алгоритмов на контроллере серии Arduino. Есть ещё программы, которые позволяют создавать структурные диаграммы и визуальные картинки. Но я рекомендую использовать текстовый редактор, потому что потом вам будет проще. Скажите, а какая среда вам удобнее всего и почему??

22 сентября я участвовал в Краснодаре на семинаре “Сенсорные панельные контроллеры ОВЕН СПК”. Проводили конференцию в фешенебельном и красивом отеле “Бристоль”. Было очень интересно и круто.

В первой части семинара нам рассказывали о возможностях и преимуществах продукции компании ОВЕН. После был кофе-брейк с пончиками. Я понабрал кучу всего, и пончиков, и печенья, и конфет, так как был очень голодным.=)

Во второй части семинара после обеда нам презентовали . Много чего рассказали про Web — визуализацию. Эта тенденция начинает набирать обороты. Ну конечно, управлять оборудованием через любой интернет — браузер. Это реально круто. Вот кстати говоря само оборудование в чемоданчике.

Я в ближайшем будущем опубликую серию статей по CoDeSyS 3.5. Так что, если кому интересно подписывайтесь или просто заходите в гости. Буду всегда рад!!!

Кстати чуть не забыл, следующая статья будет о к электронной плате Arduino. Будет интересно, не пропустите.

До встречи, в следующих статьях.

С уважением, Гридин Семён.

» представляет учебный курс «Arduino для начинающих». Серия представлена 10 уроками, а также дополнительным материалом. Уроки включают текстовые инструкции, фотографии и обучающие видео. В каждом уроке вы найдете список необходимых компонентов, листинг программы и схему подключения. Изучив эти 10 базовых уроков, вы сможете приступить к более интересным моделям и сборке роботов на основе Arduino. Курс ориентирован на новичков, чтобы к нему приступить, не нужны никакие дополнительные сведения из электротехники или робототехники.

Краткие сведения об Arduino

Что такое Arduino?

Arduino (Ардуино) — аппаратная вычислительная платформа, основными компонентами которой являются плата ввода-вывода и среда разработки. Arduino может использоваться как для создания автономных интерактивных объектов, так и подключаться к программному обеспечению, выполняемому на компьютере. Arduino как и относится к одноплатным компьютерам.

Как связаны Arduino и роботы?

Ответ очень прост — Arduino часто используется как мозг робота.

Преимущество плат Arduino перед аналогичными платформами — относительно невысокая цена и практически массовое распространение среди любителей и профессионалов робототехники и электротехники. Занявшись Arduino, вы найдете поддержку на любом языке и единомышленников, которые ответят на вопросы и с которым можно обсудить ваши разработки.

Урок 1. Мигающий светодиод на Arduino

На первом уроке вы научитесь подключать светодиод к Arduino и управлять его мигать. Это самая простая и базовая модель.

Светодиод — полупроводниковый прибор, создающий оптическое излучение при пропускании через него электрического тока в прямом направлении.

Урок 2. Подключение кнопки на Arduino

На этом уроке вы научитесь подключать кнопку и светодиод к Arduino.

При нажатой кнопке светодиод будет гореть, при отжатой – не гореть. Это также базовая модель.

Урок 3. Подключение потенциометра на Arduino

В этом уроке вы научитесь подключать потенциометр к Arduino.

Потенциометр — это резистор с регулируемым сопротивлением. Потенциометры используются как регуляторы различных параметров – громкости звука, мощности, напряжения и т.п. Это также одна из базовых схем. В нашей модели от поворота ручки потенциометра будет зависеть яркость светодиода.

Урок 4. Управление сервоприводом на Arduino

На этом уроке вы научитесь подключать сервопривод к Arduino.

Сервопривод – это мотор, положением вала которого можно управлять, задавая угол поворота.

Сервоприводы используются для моделирования различных механических движений роботов.

Урок 5. Трехцветный светодиод на Arduino

На этом уроке вы научитесь подключать трехцветный светодиод к Arduino.

Трехцветный светодиод (rgb led) — это три светодиода разных цветов в одном корпусе. Они бывают как с небольшой печатной платой, на которой расположены резисторы, так и без встроенных резисторов. В уроке рассмотрены оба варианта.

Урок 6. Пьезоэлемент на Arduino

На этом уроке вы научитесь подключать пьезоэлемент к Arduino.

Пьезоэлемент — электромеханический преобразователь, который переводит электричеcкое напряжение в колебание мембраны. Эти колебания и создают звук.

В нашей модели частоту звука можно регулировать, задавая соответствующие параметры в программе.

Урок 7. Фоторезистор на Arduino

На этом уроке нашего курса вы научитесь подключать фоторезистор к Arduino.

Фоторезистор — резистор, сопротивление которого зависит от яркости света, падающего на него.

В нашей модели светодиод горит только если яркость света над фоторезистором меньше определенной, эту яркость можно регулировать в программе.

Урок 8. Датчик движения (PIR) на Arduino. Автоматическая отправка E-mail

На этом уроке нашего курса вы научитесь подключать датчик движения (PIR) к Arduino, а также организовывать автоматическую отправку e-mail.

Датчик движения (PIR) — инфракрасный датчик для обнаружения движения или присутствия людей или животных.

В нашей модели при получении с PIR-датчика сигнала о движении человека Arduino посылает компьютеру команду отправить E-mail и отправка письма происходит автоматически.

Урок 9. Подключение датчика температуры и влажности DHT11 или DHT22

На этом уроке нашего вы научитесь подключать датчик температуры и влажности DHT11 или DHT22 к Arduino, а также познакомитесь с различиями в их характеристиках.

Датчик температуры и влажности — это составной цифровой датчик, состоящий из емкостного датчика влажности и термистора для измерения температуры.

В нашей модели Arduino считывает показания датчика и осуществляется вывод показаний на экран компьютера.

Урок 10. Подключение матричной клавиатуры

На этом уроке нашего курса вы научитесь подключать матричную клавиатуру к плате Arduino, а также познакомитесь с различными интересными схемами.

Матричная клавиатура придумана, чтобы упростить подключение большого числа кнопок. Такие устройства встречаются везде - в клавиатурах компьютеров, калькуляторах и так далее.

Урок 11. Подключение модуля часов реального времени DS3231

На последнем уроке нашего курса вы научитесь подключать модуль часов реального времени из семейства
DS к плате Arduino, а также познакомитесь с различными интересными схемами.

Модуль часов реального времени - это электронная схема, предназначенная для учета хронометрических данных (текущее время, дата, день недели и др.), представляет собой систему из автономного источника питания и учитывающего устройства.

Приложение. Готовые каркасы и роботы Arduino


Начинать изучать Arduino можно не только с самой платы, но и с покупки готового полноценного робота на базе этой платы — робота-паука, робота-машинки, робота-черепахи и т.п. Такой способ подойдет и для тех, кого электрические схемы не особо привлекают.

Приобретая работающую модель робота, т.е. фактически готовую высокотехнологичную игрушку, можно разбудить интерес к самостоятельному проектированию и робототехнике. Открытость платформы Arduino позволяет из одних и тех же составных частей мастерить себе новые игрушки.

Еще один вариант — покупка каркаса или корпуса робота: платформы на колесиках или гусенице, гуманоида, паука и т.п. В этом случае начинку робота придется делать самостоятельно.

Приложение. Мобильный справочник


– помощник для разработчиков алгоритмов под платформу Arduino, цель которого дать конечному пользователю возможность иметь при себе мобильный набор команд (справочник).

Приложение состоит из 3-х основных разделов:

  • Операторы;
  • Данные;
  • Функции.

Где купить Arduino


Наборы Arduino

Курс будет пополняться дополнительными уроками. Подпишитесь на нас

Сегодня речь пойдет об использовании SD и micro SD карт в Arduino. Мы разберемся как можно подключить SD карты к Ардуино, как записывать и считывать информацию. Использование дополнительной памяти может быть очень полезно во многих проектах. Если вы не знаете что такое SPI, I2C и аналоговые выводы, то советую вам посмотреть прошлые уроки и разобраться с этими интерфейсами связи Ардуино.

В этом уроке мы поговорим о беспроводной связи между двумя платами Arduino. Это может быть очень полезно для передачи команд с одной ардуино на другую, или обменом информации между вашими самоделками. Возможность беспроводной передачи данных открывает новые возможности в создании своих проектов.

В этом уроке мы познакомимся с шиной I2C. I2C это шина связи, использующая всего две линии. С помощью этого интерфейса Arduino может по двум проводам обмениваться данными со множеством устройств. Сегодня мы разберемся как подключить датчики и сенсоры к Ардуино по шине I2C, как обращаться к конкретному устройству и как получать данные с этих устройств.

В этом уроке мы будем говорить о Serial интерфейсе связи Arduino. Мы уже использовали этот интерфейс в прошлых уроках, когда выводили значения с датчиков на экран компьютера. Сегодня мы подробнее разберем как работает это соединение, а так же мы узнаем как можно использовать данные переданные в монитор порта компьютера используя Processing.

Сегодня мы поговорим о транзисторах и подключении нагрузки к Arduino. Сама Ардуино не может выдать напряжение выше 5 вольт и ток больше 40 мА с одного пина. Этого достаточно для датчиков, светодиодов, но если мы хотим подключить устройства более требовательные по току, нам придется использовать транзисторы или реле.

В этом уроке мы поговорим об основах схемотехники, применительно к Arduino. И начнем, конечно же, с закона Ома, так как это основа всей схемотехники. Так же в этом уроке мы поговорим о сопротивлении, стягивающих и подтягивающих резисторах, расчете силы тока и напряжения.

Подробно Arduino язык программирования для начинающих представлен в таблице далее. Микроконтроллер Arduino программируется на специальном языке программирования, основанном на C/C ++. Язык программирования Arduino является разновидностью C++, другими словами, не существует отдельного языка программирования для Arduino. Скачать книгу PDF можно в конце страницы.

В Arduino IDE все написанные скетчи компилируются в программу на языке C/C++ с минимальными изменениями. Компилятор Arduino IDE значительно упрощает написание программ для этой платформы и создание устройств на Ардуино становится намного доступней людям, не имеющих больших познаний в языке C/C++. Дадим далее небольшую справку с описанием основных функций языка Arduino с примерами.

Подробный справочник языка Ардуино

Язык можно разделить на четыре раздела: операторы, данные, функции и библиотеки.

Язык Arduino Пример Описание

Операторы

setup() void setup ()
{
pinMode (3, INPUT );
}
Функция используется для инициализации переменных, определения режимов работы выводов на плате и т.д. Функция запускается только один раз, после каждой подачи питания на микроконтроллер.
loop() void loop ()
{
digitalWrite (3, HIGH );
delay(1000);
digitalWrite (3, LOW );
delay(1000);
}
Функция loop крутится в цикле, позволяя программе совершать вычисления и реагировать на них. Функции setup() и loop() должны присутствовать в каждом скетче, даже если эти операторы в программе не используются.

Управляющие операторы

if
if (x >
if (x < 100) digitalWrite (3, LOW );
Оператор if используется в сочетании с операторами сравнения (==, !=, <, >) и проверяет, достигнута ли истинность условия. Например, если значение переменной x больше 100, то включается светодиод на выходе 13, если меньше — светодиодвыключается.
if..else
if (x > 100) digitalWrite (3, HIGH );
else digitalWrite (3, LOW );
Оператор else позволяет cделать проверку отличную от указанной в if, чтобы осуществлять несколько взаимо исключающих проверок. Если ни одна из проверок не получила результат ИСТИНА, то выполняется блок операторов в else.
switch…case
switch (x)
{


case 3: break ;

}
Подобно if, оператор switch управляет программой, позволяя задавать действия, которые будут выполняться при разных условиях. Break является командой выхода из оператора, default выполняется, если не выбрана ни одна альтернатива.
for void setup ()
{
pinMode (3, OUTPUT );
}
void loop ()
{
for (int i=0; i <= 255; i++){
analogWrite (3, i);
delay(10);
}
}
Конструкция for используется для повторения операторов, заключенных в фигурные скобки. Например, плавное затемнение светодиода. Заголовок цикла for состоит из трех частей: for (initialization; condition; increment) — initialization выполняется один раз, далее проверяется условие condition, если условие верно, то выполняется приращение increment. Цикл повторяется пока не станет ложным условие condition.
while void loop ()
{
while (x < 10)
{
x = x + 1;
Serial.println (x);
delay (200);
}
}
Оператор while используется, как цикл, который будет выполняться, пока условие в круглых скобках является истиной. В примере оператор цикла while будет повторять код в скобках бесконечно до тех пор, пока x будет меньше 10.
do…while void loop ()
{
do
{
x = x + 1;
delay (100);
Serial.println (x);
}
while (x < 10);
delay (900);
}
Оператор цикла do…while работает так же, как и цикл while. Однако, при истинности выражения в круглых скобках происходит продолжение работы цикла, а не выход из цикла. В приведенном примере, при x больше 10 операция сложения будет продолжаться, но с паузой 1000 мс.
break
continue
switch (x)
{
case 1: digitalWrite (3, HIGH );
case 2: digitalWrite (3, LOW );
case 3: break ;
case 4: continue ;
default : digitalWrite (4, HIGH );
}
Break используется для принудительного выхода из циклов switch, do, for и while, не дожидаясь завершения цикла.
Оператор continue пропускает оставшиеся операторы в текущем шаге цикла.

Синтаксис

;
(точка с запятой)

digitalWrite (3, HIGH );
Точка с запятой используется для обозначения конца оператора. Забытая в конце строки точка с запятой приводит к ошибке при компиляции.
{}
(фигурные скобки)
void setup ()
{
pinMode (3, INPUT );
}
Открывающая скобка “{” должна сопровождаться закрывающей скобкой “}”. Непарные скобки могут приводить к скрытым и непонятным ошибкам при компиляции скетча.
//
(комментарий)
x = 5; // комментарий


Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: