Теорема о собственных векторах линейного оператора отвечающих. Собственные векторы и собственные значения линейного оператора. Правило отыскания собственных чисел и собственных векторов

Свойства жидкостей.

Особенности жидкого состояния вещества. Молекулы вещества в жидком состоянии расположены вплотную друг к другу, как и в твердом состоянии. Поэтому объем жидкости мало зависит от давления. Постоянство занимаемого объема является свойством, общим для жидких и твердых тел и отличающим их от газов, способных занимать любой предоставленный им объем.

Возможность свободного перемещения молекул относительно друг друга обусловливает свойство текучести жидкости. Тело в жидком состоянии, как и в газообразном, не имеет постоянной формы. Форма жидкого тела определяется формой сосуда, в котором находится жидкость, действием внешних сил и сил поверхностного натяжения. Большая свобода движения молекул в жидкости приводит к большей скорости диффузии в жидкостях по сравнению с твердыми телами, обеспечивает возможность растворения твердых веществ в жидкостях.


Поверхностное натяжение.

Поверхностное натяжение. С силами притяжения между молекулами и подвижностью молекул в жидкостях связано проявление сил поверхностного натяжения.

Внутри жидкости силы притяжения, действующие на одну молекулу со стороны соседних с ней молекул, взаимно компенсируются. Любая молекула, находящаяся у поверхности жидкости, притягивается молекулами, находящимися внутри жидкости. Под действием этих сил молекулы с поверхности жидкости уходят внутрь жидкости и число молекул, находящихся на поверхности, уменьшается до тех пор, пока свободная поверхность жидкости не достигнет минимального из возможных в данных условиях значения. Минимальную поверхность среди тел данного объема имеет шар, поэтому при отсутствии или пренебрежимо малом действии других сил жидкость под действием сил поверхностного натяжения принимает форму шара.

Свойство сокращения свободной поверхности жидкости во многих явлениях выглядит таким образом, будто жидкость покрыта тонкой растянутой упругой пленкой, стремящейся к сокращению.

Силой поверхностного натяжения называют силу, которая действует вдоль поверхности жидкости перпендикулярно к линии, ограничивающей эту поверхность, и стремится сократить ее до минимума.

Подвесим на крючок пружинного динамометра П-образную проволоку. Длина стороны АВ равна l . Начальное растяжение пружины динамометра под действием силы тяжести проволоки можно исключить из рассмотрения установкой нулевого деления шкалы против указателя действующей силы.

Опустим проволоку в воду, затем будем медленно опускать вниз сосуд с водой (рис. 92). Опыт показывает, что при этом вдоль проволоки образуется пленка жидкости и пружина динамометра растягивается. По показаниям динамометра можно определить силу поверхностного натяжения. При этом следует учесть, что пленка жидкости имеет две поверхности (рис. 93) и сила упругости равна по модулю удвоенному значению силы поверхностного натяжения :

Если взять проволоку со стороной АВ, вдвое большей длины, то значение силы поверхностного натяжения оказывается вдвое большим. Опыты с проволоками разной длины показывают, что отношение модуля силы поверхностного натяжения, действующей на границу поверхностного слоя длиной l , к этой длине есть величина постоянная, не зависящая от длины l . Эту величину называют коэффициентом поверхностного натяжения и обозначают греческой буквой «сигма»:

. (27.1)

Коэффициент поверхностного натяжения выражается в ньютонах на метр (Н/м). Поверхностное натяжение различно у разных жидкостей.

Если силы притяжения молекул жидкостей между собой меньше сил притяжения молекул жидкости к поверхности твердого тела, то жидкость смачивает поверхность твердого тела. Если же силы взаимодействия молекул жидкости и молекул твердого тела меньше сил взаимодействия между молекулами жидкости, то жидкость не смачивает поверхность твердого тела.


Капиллярные явления.

Капиллярные явления. Особенности взаимодействия жидкостей со смачиваемыми и несмачиваемыми поверхностями твердых тел являются причиной капиллярных явлений.

Капилляром называется трубка с малым внутренним диаметром. Возьмем капиллярную стеклянную трубку и погрузим один ее конец в воду. Опыт показывает, что внутри капиллярной трубки уровень воды оказывается выше уровня открытой поверхности воды.

При полном смачивании жидкостью поверхности твердого тела силу поверхностного натяжения можно считать направленной вдоль поверхности твердого тела перпендикулярно к границе соприкосновения твердого тела и жидкости. В этом случае подъем жидкости вдоль смачиваемой поверхности продолжается до тех пор, пока сила тяжести , действующая на столб жидкости в капилляре и направленная вниз, не станет равной по модулю силе поверхностного натяжения , действующей вдоль границы соприкосновения жидкости с поверхностью капилляра (рис. 94):

,

.

Отсюда получаем, что высота подъема столба жидкости в капилляре обратно пропорциональна радиусу капилляра:

(27.2)

Формула Лапласа.

В этой главе мы изучим явления, происходящие вблизи поверхности раздела между двумя сплошными средами (в действительности, конечно, соприкасающиеся тела разделены узким переходным слоем, который вследствие его весьма малой толщины можно рассматривать как поверхность).

Если поверхность раздела двух сред искривлена, то вблизи нее давления в обеих средах различны. Для определения этой разности давлений (называемой поверхностным давлением) напишем условие термодинамического равновесия обоих тел друг с другом с учетом свойств поверхности их раздела.

Пусть поверхность раздела подвергается бесконечно малому смещению. В каждой точке несмещенной поверхности проведем нормаль к ней. Отрезок нормали, заключенный между ее пересечениями с несмещенной и смещенной поверхностями, обозначим посредством Тогда объем каждого элемента пространства, заключенного между поверхностями, есть где элемент поверхности. Пусть - давления в первой и второй средах и будем считать положительным, если смещение поверхности раздела производится, скажем, в сторону второй среды. Тогда работа, которую надо произвести для описанного изменения объема, равна

Полная работа смещения поверхности получится путем прибавления сюда еще работы, связанной с изменением площади самой этой поверхности. Эта часть работы пропорциональна, как известно, изменению площади поверхности и равна , где а - поверхностное натяжение. Таким образом, полная работа равна

Условие термодинамического равновесия определяется, как известно, обращением в нуль.

Тогда элементы длины на поверхности, проведенные в плоскостях ее главных сечений, получают при бесконечно малом смещении поверхности приращения, равные соответственно надо рассматривать как элементы дуги окружностей с радиусами . Поэтому элемент поверхности будет равен после смещения

т. е. изменится на величину

Отсюда видно, что полное изменение площади поверхности раздела есть

Подставляя полученные выражения в (61,1) и приравнивая нулю, получим условие равновесия в виде

Это условие должно выполняться при произвольном бесконечно малом смещении поверхности, т. е. при произвольном Поэтому необходимо, чтобы стоящее под интегралом в скобках выражение тождественно обращалось в нуль, т. е.

Это и есть формула (формула Лапласа), определяющая поверхностное давление. Мы видим, что если положительны, то . Это значит, что из двух тел давление больше в том, поверхность которого выпукла. Если т. е. поверхность раздела плоская, то давления в обоих телах, как и должно было быть, одинаковы.

Применим формулу (61,3) для исследования механического равновесия соприкасающихся тел. Предположим, что ни на поверхность раздела, ни на сами тела не действуют никакие внешние силы. Тогда вдоль каждого из тел давление постоянно. Имея в виду формулу (61,3), мы можем поэтому написать условие равновесия в виде

(61,4)

Таким образом, сумма обратных радиусов кривизны должна быть постоянной вдоль всей свободной поверхности раздела. Если вся поверхность свободна, то условие (60,4) означает, что поверхность должна иметь шарообразную форму (например, поверхность маленькой капли, влиянием силы тяжести на которую можно пренебречь). Если же поверхность закреплена вдоль какой-нибудь линии (например, у жидкой пленки на твердой рамке), то ее форма является более сложной.

В применении к равновесию тонких пленок жидкости, закрепленных на твердой рамке, в условии (61,4) справа должен стоять нуль. Действительно, сумма должна быть одинаковой вдоль всей свободной поверхности пленки и в то же время на двух своих сторонах она должна иметь противоположный знак, поскольку если одна сторона выпукла, то другая вогнута с теми же радиусами кривизны, которые, однако, должны считаться теперь отрицательными. Отсюда следует, что условие равновесия тонкой пленки есть

Рассмотрим теперь условие равновесия на поверхности тела, находящегося в поле тяжести. Предположим для простоты, что второй средой является просто атмосфера, давление которой на протяжении размеров тела можно считать постоянным. В качестве самого тела рассмотрим несжимаемую жидкость. Тогда имеем , а давление в жидкости равно согласно (координата z отсчитывается вертикально вверх). Таким образом, условие равновесия приобретает вид

(61,6)

Надо, впрочем, отметить, что для определения равновесной формы поверхности жидкости в конкретных случаях обычно бывает удобным пользоваться условием равновесия не в виде (61,6), а непосредственно решая вариационную задачу о минимуме нолной свободной энергии. Внутренняя свободная энергия жидкости зависит только от объема, но не от формы поверхности. От формы зависит, во-первых, поверхностная свободная энергия

и, во-вторых, энергия во внешнем поле (поле тяжести), равная

Таким образом, условие равновесия можно написать в виде

Определение минимума должно производиться при дополнительном условии

(61,8)

выражающем неизменность полного объема жидкости.

Постоянные входят в условия равновесия (61,6-7) только в виде отношения . Это отношение имеет размерность квадрата длины. Длину

называют капиллярной постоянной. Форма поверхности жидкости определяется только этой величиной. Если капиллярная постоянная велика (по сравнению с размерами тела), то при определении формы поверхности можно пренебречь полем тяжести.

Для того чтобы определить из условия (61,4) или (61,6) форму поверхности, надо иметь формулы, определяющие радиусы кривизны по форме поверхности. Эти формулы известны из дифференциальной геометрии, но имеют в общем случае довольно сложный вид. Они значительно упрощаются в том случае, когда форма поверхности лишь слабо отклоняется от плоской. Мы выведем здесь соответствующую приближенную формулу непосредственно, не пользуясь общей формулой дифференциальной геометрии.

Пусть - уравнение поверхности; мы предполагаем, что везде мало, т. е. что поверхность слабо отклоняется от плоскости Как известно, площадь f поверхности определяется интегралом

или приближенно при малых

Определим вариацию

Интегрируя по частям, находим:

Сравнив это выражение с (61,2), получаем:

Это и есть искомая формула, определяющая сумму обратных радиусов кривизны слабо изогнутой поверхности.

При равновесии трех соприкасающихся друг с другом фаз их поверхности раздела устанавливаются таким образом, чтобы была равна нулю равнодействующая трех сил поверхностного натяжения, действующих на общую линию соприкосновения трех сред. Это условие приводит к тому, что поверхности раздела должны пересекаться друг с другом под углами (так называемые краевые углы), определяющимися значениями поверхностного натяжения.

Наконец, остановимся на вопросе о граничных условиях, которые должны соблюдаться на границе двух движущихся жидкостей при учете сил поверхностного натяжения. Если поверхностное натяжение не учитывается, то на границе двух жидкостей имеем:

что выражает равенство сил трения, действующих на поверхности обеих жидкостей. При учете поверхностного натяжения надо написать в правой части этого условия дополнительную силу, определяемую по величине формулой Лапласа и направленную по нормали к поверхности:

Иначе можно написать это уравнение в виде

Условие (61,13), однако, еще не является наиболее общим. Дело в том, что коэффициент поверхностного натяжения а может оказаться не постоянным вдоль поверхности (например, в результате непостоянства температуры). Тогда наряду с нормальной силой (исчезающей в случае плоской поверхности) появляется некоторая дополнительная сила, направленная тангенциально к поверхности. Аналогично тому как при неравномерном давлении появляется объемная сила, равная (на единицу объема) - здесь имеем для тангенциальной силы действующей на единицу площади поверхности раздела, .

Мы пишем здесь градиент со знаком плюс перед ним, а не со знаком минус, как в силе - в связи с тем, что силы поверхностного натяжения стремятся уменьшить площадь поверхности, между тем как силы давления стремятся увеличить объем тела. Прибавляя эту силу к правой стороне равенства (61,13), получим граничное условие

(единичный вектор нормали направлен внутрь первой жидкости). Отметим, что это условие может быть выполнено только у вязкой жидкости. Действительно, у идеальной жидкости тогда левая сторона равенства (61,14) будет представлять собой вектор, направленный по нормали, а правая - вектор, направленный по касательной к поверхности. Но такое равенство невозможно (за исключением, разумеется, тривиального случая, когда эти величины равны нулю каждая в отдельности).

Соприкасающаяся с другой средой, находится в особых условиях по сравнению с остальной массой жидкости. Силы, действующие на каждую молекулу поверхностного слоя жидкости, граничащей с паром, направлены в сторону объёма жидкости, то есть внутрь жидкости. Вследствие этого для перемещения молекулы из глубины жидкости на поверхность требуется совершить работу. Если при постоянной температуре увеличить площадь поверхности на бесконечно малую величину dS , то необходимая для этого работа будет равна . Работа по увеличению площади поверхности совершается против сил поверхностного натяжения, которые стремятся сократить, уменьшить поверхность. Поэтому работа самих сил поверхностного натяжения по увеличению площади поверхности жидкости будет равна:

Здесь коэффициент пропорциональности σ называется коэффициентом поверхностного натяжения и определяется величиной работы сил поверхностного натяжения по изменению площади поверхности на единицу. В СИ коэффициент поверхностного натяжения измеряется в Дж/м 2 .

Молекулы поверхностного слоя жидкости обладают избыточной по сравнению с глубинными молекулами, потенциальной энергией, которая прямо пропорциональна площади поверхности жидкости:

Приращение потенциальной энергии поверхностного слоя связано только с приращением площади поверхности: . Силы поверхностного натяжения - консервативные силы , поэтому выполняется равенство: . Силы поверхностного натяжения стремятся уменьшить потенциальную энергию поверхности жидкости. Обычно та энергия, которая может быть преобразована в работу, называется свободной энергией U S . Поэтому можно записать. Используя понятие свободной энергии, можно записать формулу (6.36) так: . Используя последнее равенство можно определить коэффициент поверхностного натяжения как физическую величину, численно равную свободной энергии единицы площади поверхности жидкости.

Действие сил поверхностного натяжения можно наблюдать с помощью простого эксперимента над тонкой плёнкой жидкости (например, мыльного раствора), которая обволакивает проволочный прямоугольный каркас, у которого одна сторона может перемешаться (рис.6.11). Предположим, что на подвижную сторону, длиной l, действует внешняя сила F B , перемещающая подвижную сторону рамки равномерно на очень малое расстояние dh. Элементарная работа этой силы будет равна , так как сила и перемещение сонаправлены. Поскольку плёнка имеет две поверхности и, то вдоль каждой из них направлены силы поверхностного натяжения F, векторная сумма которых равна внешней силе. Модуль внешней силы равен удвоенному модулю одной из сил поверхностного натяжения: . Минимальная работа, совершаемая внешней силой, равна по величине сумме работ сил поверхностного натяжения: . Величина работы силы поверхностного натяжения будет определяться так:


, где . Отсюда . То есть коэффициент поверхностногонатяжения может быть определён как величина, равная силе поверхностного натяжения, действующей по касательной к поверхности жидкости, приходящейся на единицу длины линии раздела. Силы поверхностного натяжения стремятся сократить площадь поверхности жидкости. Это заметно для малых объёмов жидкости, когда она принимает форму капель-шариков. Как известно, именно сферическая поверхность имеет минимальную площадь при данном объёме. Жидкость, взятая в большом количестве, под действием силы тяжести растекается по поверхности, на которой она находится. Как известно, сила тяжести зависит от массы тела, поэтому её величина по мере уменьшения массы тоже уменьшается и при определённой массе становится сравнимой или даже много меньше величины силы поверхностного натяжения. В этом случае силой тяжести можно пренебречь. Если жидкость находится в состоянии невесомости, то даже при большом объёме её поверхность стремится к сферической. Подтверждение тому - знаменитый опыт Плато. Если подобрать две жидкости с одинаковой плотностью, то действие силы тяжести на одну из них (взятую в меньшем количестве) будет скомпенсировано архимедовой силой и она примет форму шара. При этом условии она будет плавать внутри другой жидкости.

Рассмотрим, что происходит с каплей жидкости 1, граничащей с одной стороны с паром 3, с другой стороны с жидкостью 2 (рис.6.12). Выберем очень малый элемент границы раздела всех трёх веществ dl. Тогда силы поверхностного натяжения на границах раздела сред будут направлены по касательным к контуру границ раздела и равны:

Действием силы тяжести пренебрежём. Капля жидкости 1 находится в равновесии, если выполняются условия:

(6.38)

Подставив (6.37) в (6.38), сократив на dl обе части равенств (6.38), возведя в квадрат обе части равенств (6.38) и сложив их, получим:

где - угол между касательными к линиям раздела сред, называется краевым углом.

Анализ уравнения (6.39) показывает, что при получим и жидкость 1 полностью смачивает поверхность жидкости 2, растекаясь по ней тонким слоем (явление полного смачивания ).

Аналогичное явление можно наблюдать и при растекании тонким слоем жидкости 1 по поверхности твёрдого тела 2. Иногда жидкость наоборот не растекается по поверхности твёрдого тела. Если , то и жидкость 1 полностью не смачивает твёрдое тело 2 (явление полного несмачивания ). В этом случае есть только одна точка касания жидкости 1 и твёрдого тела 2. Полное смачивание или несмачивание являются предельными случаями. Реально можно наблюдать частичное смачивание , когда краевой угол острый () и частичное несмачивание , когда краевой угол тупой ().

На рисунке 6.13 а приведены случаи частичного смачивания, а на рис.6.13 б приведены примеры частичного несмачивания. Рассмотренные случаи показывают, что наличие сил поверхностного натяжения граничащих жидкостей или жидкости на поверхности твёрдого тела приводит к искривлению поверхностей жидкостей.

Рассмотрим силы, действующие на кривую поверхность. Кривизна поверхности жидкости приводит к появлению сил, действующих на жидкость под этой поверхностью. Если поверхность сферическая, то к любому элементу длины окружности (см. рис.6.14) приложены силы поверхностного натяжения, направленные по касательной к поверхности и стремящиеся её сократить. Результирующая этих сил направлена к центру сферы.

Отнесённая к единице площади поверхности эта результирующая сила оказывает дополнительное давление, которое испытывает жидкость под искривлённой поверхностью. Это дополнительное давление называется давлением Лапласа . Оно всегда направлено к центру кривизны поверхности. На рисунке 6.15 приведены примеры вогнутой и выпуклой сферических поверхностей и показаны давления Лапласа, соответственно.

Определим величину давления Лапласа для сферической, цилиндрической и любой поверхности.

Сферическая поверхность . Капля жидкости . При уменьшении радиуса сферы (рис.6.16) поверхностная энергия уменьшается, а работа производится силами, действующими в капле. Следовательно, объём жидкости под сферической поверхностью всегда несколько сжат, то есть испытывает давление Лапласа, направленное к центру кривизны радиально. Если под действием этого давления шар уменьшит свой объём на dV , то величина работы сжатия будет определяться формулой:

Уменьшение поверхностной энергии произошло на величину, определяемую формулой: (6.41)

Уменьшение поверхностной энергии произошло за счёт работы сжатия, следовательно, dA=dU S . Приравнивая правые части равенств (6.40) и (6.41), а также учитывая, что и , получим давление Лапласа: (6.42)

Объём жидкости под цилиндрической поверхностью также как и под сферической всегда несколько сжат, то есть испытывает давление Лапласа, направленное к центру кривизны радиально. Если под действием этого давления цилиндр уменьшит свой объём на dV , то величина работы сжатия будет определяться формулой (6.40), только величина давления Лапласа и приращение объёма будут другими. Уменьшение поверхностной энергии произошло на величину, определяемую формулой(6.41). Уменьшение поверхностной энергии произошло за счёт работы сжатия, следовательно, dA=dU S . Приравнивая правые части равенств (6.40) и (6.41), а также учитывая, что для цилиндрической поверхности и , получим давление Лапласа:

Используя формулу (6.45), можно перейти к формулам (6.42) и (6.44). Так для сферической поверхности, следовательно, формула (6.45) упростится до формулы (6.42); для цилиндрической поверхности r 1 = r , а , тогда формула (6.45) упростится до формулы (6.44). Чтобы отличить выпуклую поверхность от вогнутой, принято считать давление Лапласа положительным для выпуклой поверхности, а соответственно и радиус кривизны выпуклой поверхности будет тоже положительным. Для вогнутой поверхности радиус кривизны и давление Лапласа считают отрицательными.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: