Советы пользователю. телевизоры. Что такое яркость, контрастность и насыщенность и с чем их едят

1. Линейное изменение яркости и контраста. При линейном изменении яркость и контраст в большинстве графических про­грамм (например, в программе Adobe Photoshop) оптимизируются одновременно и объединены одним диалогом.

Для линейного изменения яркости и контраста нужно выбрать из меню Изображение команду Коррекция и включить функцию Яр-


кость/Контраст. Затем в открывшемся диалоговом окнезадать нужное значение яркости и контраста 1 (рис. 209).

Рис. 209. Изображение, подвергнутое обработке, и диалоговое окно линейного изменения яркости и контраста

В диалоговом окне Яркость/Контраст всего две полосы, в ко­торых перемещением движков изменяют яркость и контраст. Для того чтобы изображение сделать более светлым, движок значения яркости перемещают вправо, более темным - влево. Аналогично увеличивают и уменьшают общий контраст изображения.

Данная функция изменения яркости и контраста позволяет пред­варительно оценить эффект обработки, для этого в диалоговом окне должен быть включен флажок Просмотр. В случае, если результат обработки устраивает пользователя, то нажимают кнопку Да.

При линейной коррекции яркость каждого элемента увеличива­ется на фиксированную величину. Например, указывая в про­граммном диалоге величину 10 единиц, программа должна следить

Команды и функции по обработке изображений приведены для программы Adobe Photoshop версии 4. 0. В более современных версиях программы названия команд и функций по обработке изображений могут отличаться.


за тем, чтобы интервал яркостей не выходил за верхний (255) и нижний (0) пределы.

Линейное изменение яркости и контраста при значительной сте­пени коррекции приводит к потере деталей изображения. Так, при выявлении деталей в светах они теряются в тенях и наоборот. Приемлемые результаты получают при небольшой коррекции ярко­сти или же, когда действие изменения ограничивается определен­ным диапазоном яркостей.

Кроме того, при линейном «осветлении», т. е. увеличении ярко­стей всех градаций на одну величину, не учитывается физиология зрения человека.

Человек воспринимает изменения яркости почти логарифмиче­ски, и поэтому, чтобы добиться равномерного осветления, адекват­но учитывающего физиологию зрения человека, его следует произ­водить нелинейно, например в соответствии с экспоненциальной (показательной) функцией. При этом потери информации будут уменьшаться.

2. Нелинейное изменение яркости и контраста. Нелинейно изменять яркость и контраст можно, используя различные функции:

Функция «Кривые», позволяющая изменять яркость и кон­
траст с помощью градационной кривой или таблицы сопоставления
значений;


Функция «Уровни», изменяющая яркость и контраст:

а) глобально, с помощью гамма-характеристики;

б) селективно, для «светов», теней и средних тонов изображения.
Такие стандартные функции имеются в каждой современной

программе обработки изображений, например в программе Adobe Photoshop.

А. Изменение яркости и контраста с помощью градационной кривой.

Яркость и контраст цифровых изображений можно изменять произвольно, задавая вид градационной кривой.

Для того чтобы воспользоваться этой функцией, нужно в меню Изображение выбрать команду Коррекция и включить функцию Кривые. При этом откроется диалоговое окно (см. рис. 200), в кото­ром нужно задать вид градационной кривой для обрабатываемого изображения.

При этом необходимо на графике зафиксировать точки, которые будут ограничивать корректируемый участок тонового диапазона, например область «светов». Для этого подводят курсор к опреде­ленной точке на градационной кривой и, нажав левую кнопку мыши, фиксируют ее. Далее в отмеченном диапазоне графика изменяют вид градационной кривой до получения требуемого результата.


Под графикам представлены две кнопки инструментов для по-строения кривых: слева - инструмент для работы с гладкой кри­вой, справа - для работы с произвольной кривой. Чем больше угол наклона градационной кривой к горизонтали, тем выше кон­траст изображения.

Если результат обработки устраивает пользователя, то нажи­мают кнопку Да в диалоговом окне.

На рис. 210 представлены обработанное изображение и вид градационной кривой, позволяющие получить более светлое изо­бражение и выявить детали в области теней.

Когда речь заходит об измерении тех или иных параметров изображения, сразу возникает неприятная тонкость. Человек и компьютер воспринимают изображения по-разному. Человек вычленяет объекты из шума, может рассмотреть что-то при слабом освещении, а компьютер понимает картинку как набор координат с соответствующими яркостями. И когда человека и компьютер спросят о каких-нибудь отличительных чертах изображения, они сразу разойдутся в показаниях. Нужно каким-то образом сделать так, чтобы выводы, которые они делали, были схожи.
Рассмотрим методы, которые используются для анализа контраста в черно-белых изображениях, и постараемся выбрать что-то более-менее объективное.

Метод первый
Метод канонический, от 1977 года .

Контраст определяется отношением разности яркостей объекта наблюдения 1 и фона 2 к одной из этих яркостей. Диапазон выводимых значений - от 0 до 1.
По факту - не показывает ничего. Идем дальше.

Метод второй
Был предложен отечественными учеными в 1979 году, для разбора сюжетных изображений.
Суть в следующем: поскольку изображение имеет сложный сюжетный характер, это порождает необходимость при определении его контрастности исходить из контраста отдельных комбинаций элементов изображения. При этом все элементы считаются равнозначными, и контраст каждой их пары вычисляется по формуле:

где элементы числителя и знаменателя - яркости элементов сюжетного изображения. Сюжетность изображения предполагает возможность его использования человеком. Поэтому при оценке контраста, как одного из параметров качества изображения, необходимо учитывать ряд особенностей зрительного восприятия человека. Далее, применяя правило суммирования контрастов, вычисляют набор величин, которые определяют восприятие каждой пары элементов изображения. Проводя усреднение матрицы локальных контрастов, получают суммарный контраст .
Метод слишком сложный, не подойдет.
Метод третий
Изложен в ГОСТ 18862-73 от 1983 года:

Яркости участков изображения измеряются фотометром в канделлах на метр квадратный, погрешность 10%, что многовато. И если есть фотометр (я вот его вживую не видел никогда). В отсутствии такового лично имел опыт измерения осциллографом:
берется провод, куда выведен сигнал (допустим, композит), подается тестовый сигнал (полосы или шахматная доска), выводится осциллограмма, и, сравниваясь со стандартом на видеосигнал, измеряется перепад, потом нормируется относительно максимального. Точность - думаю, где-то 20-25%, что за гранью рациональности использования. Диапазон выводимых значений - от 0 до 1. Необъективен.
Очевидно, не подходит, идем дальше.
Метод четвертый
Аналогично федеральный стандарт США 1037C от 1996 года:
гласит лишь о том, что «контраст есть отношение яркости некоторого элемента изображения (пикселя) к яркости всего остального изображения». Стоит отметить также, что этот стандарт определяет яркость, как неизмеримую величину.
Совсем нам не подходит. Лишь отметим, что и такое есть.
Метод пятый
Обоснован Воробелем в 1999, упомянут на таком солидном ресурсе, как MATLAB.Exponenta.

Уже интересно, потому что нормировано в диапазоне яркостей от 0 до 1, и оно весьма объективное.

С вычислением контраста имеется одна тонкость. Есть два объекта рядом, у одного яркость 10, у другого 20, по первому и третьему методу получим 0.5, во второму - 0.3. Яркости 100 и 200, по первому и третьему методу получаем те же 0.5, по второму - опять 0.3, однако при яркостях 10 и 20 разницу можно и не увидеть.

Контраст, на мой взгляд, объективнее считать по методу Воробеля, если качество плохое и много шумов, брать в расчет области объектов, и с них усреднять значения яркостей объектов.

Теперь посмотрим на это в действии:


Подряд идут три изображения - обычное, с эквализованной гистограммой, и идеальное. Анализировались выделенные области, в формате.bmp, диапазон яркостей 0 - 255.

Контраст обычного изображения К = 0,67.
- контраст эквализованного изображения К = 0,88.
- контраст идеального изображения К = 1.

Вот такая история, спасибо за внимание!

Все прекрасно знаете, что фотоаппараты не идеальны и не всегда точно подбирают цвет (свет) на фото. Бывает, вспышка не успевает зарядиться и мы наблюдаем практически черный квадрат Малевича, бывает она сработает чересчур сильно и мы наблюдаем белый квадрат неизвестного художника с красными точками посередине (глазенки хомячка), а бывает что мы пытаемся не зависеть от вспышки, пробуем снять без нее, а фото получается желтовато-коричневатого мутного оттенка. Все это с легкость можно вылечить средствами Photoshop (безусловно, в разумных пределах! Конечно же, полностью черный или полностью засвеченный кадр восстановить не удастся).

Как правильно менять яркость, контрастность и насыщенность

Давайте начнем сначала с некратких, а затем кратких определений, чтобы понимать что же мы с вами меняем.

Что нам говорят по этой теме словари:

Яркость — световая характеристика тел. Отношение силы света, излучаемого поверхностью, к площади ее проекции на плоскости, перпендикулярной оси наблюдения.

Контрастность — различимость предмета наблюдения от окружающего его фона (монохроматическое излучение); цветовая контрастность - разновидность оптической контрастности, связанная с разницей цветовых оттенков.

Насыщенность — в физическом плане насыщенность цвета определяется характером распределения излучения в спектре видимого света.

Гхм… Неудобоваримые термины… Попробую сформулировать попроще и касательно данной темы:

Яркость — количество белого цвета на вашем фото. Чем выше вы ставите яркость, тем светлее становится кадр.

Контрастность — разница между разными, расположенными рядом цветами. Чем выше контрастность, тем более резко мы наблюдаем переход от одного цвета к другому (иногда контрастность срабатывает как повышение резкости).

Насыщенность — насколько сочно и ярко у вас выглядит тот или иной цвет. Можно увеличивать ее в нескромных пределах — тогда фото начинает даже «резать» глаз.

Можно, конечно, расписать по пунктам каждую из этих характеристик, но это было бы неправильно. Правильно комплексно менять все три настройки кадра. Как? Сейчас разберем…

Возьмем для рассмотрения вот такое вот темное, слабоконтрастное фото…

Команды эти прячутся в меню «Изображение», далее «Коррекция», затем «Яркость / Контрастность» и «Цветой тон / Насыщенность»:

и

При нажатии кнопки «Яркость / Контрастность» мы наблюдаем такое вот окошко:

При выборе «Цветой фон / Насыщенность» вот такое:

Для начала открываем «Яркость / Контрастность» и спокойно и умиротворенно двигаем оба ползунка вправо до требуемого значения яркости и контраста (все это делается чисто интуитивным образом и в каждом случае по-своему!). Не следует выставлять всегда точно такие же значения как на этом вот кадре:

Мне вот показалось что сначала нужно выставить яркость на +120, а контрастность на +30. Но всем заметно что цвета чересчур яркие и ненатуральные. Хорошо, что мы знаем где находится меню «Цветовой фон / Насыщенность», которая нам поможет это исправить:

Мне кажется, что если сбросить значение насыщенности на 13 пунктов получается неплохо. Вот, вроде бы, и все, но я всегда перестраховываюсь и еще разок захожу в «Яркость / Контрастность», проверяя, может что -то еще следует поменять для достижения наиболее красивого результата и реалистичного фото.

Перевод с CNET

Хотите узнать, почему такой важный параметр изображения, как контрастность, бесконечно растет и остается непонятным для многих?


Понимание того, что такое контрастность и как ее оценить, поможет выбрать лучший телевизор, исходя из ваших возможностей. Но это несколько сложнее, чем может показаться.

По сути, контрастность определяется разницей между самым ярким и наиболее темным изображением, которые телевизор может воспроизвести. Более точная формула:

уровень белого / уровень черного = контрастность.

Если телевизор может излучать яркость 45 фут-ламберт при белом экране и только 0,01 фут-ламберт с черным экраном, он имеет коэффициент контрастности 4 500:1. К сожалению, в реальности все становится сложнее.

Есть несколько способов измерения контрастности. Например, производитель может измерить максимальную светоотдачу одного пикселя на некотором, недоступном в обычном режиме, максимуме, затем измерить светоотдачу от того же пикселя при полном отсутствии сигнала. Такая ситуация вряд ли возможно при обычном просмотре фильмов и телепрограмм, но без общепринятого стандарта для измерения такие мелочи не волнуют производителей телевизоров.

Более того, показатели контрастности в последнее время доросли до таких экстремальных значений, что иногда нет буквально никакой возможности измерить их. Почему же сложилась такая ситуация? Отдел маркетинга заявляет численные значения, с которыми он сможет продать товар. Специалистам-разработчикам, в конце концов, приходится хитрить и, о чудо, телевизор получает необходимую контрастность. Единственной возможностью узнать реальные способности телевизоров остается чтение обзоров, но даже и они не всегда точны, как мы увидим далее.

Коэффициент контрастности: хороший и плохой

Поскольку вы читаете эту статью с дисплея, который имеет ​​свой коэффициент контрастности, нельзя дать вам реальные примеры, как выглядит хорошая и плохая контрастность, так что придется искать другие способы.

Проверить, насколько хорошо настроен ваш монитор можно, прочитав специальные статьи. А ниже приведены два изображения, слева с хорошей контрастностью, справа с плохой.


Левое изображение более точное, с хорошей контрастностью. Справа контрастность хуже, уровень черного более высокий.

Довольно легко отметить, что картинка слева более правильная. Изображение справа имеет более высокий уровень черного, и если выбирать из двух телевизоров, поставленных рядом, выбор однозначен.

Контрастность: естественная и динамическая

Есть два типа контрастности. Чаще всего их называют естественной (родной) и динамической. Естественная контрастность та, которую позволяет без ухищрений представлять технология дисплея. У LCD дисплея эту возможность определяет жидкокристаллическая панель. В случае DLP технологии все определяется одним или тремя DMD чипами.

Представьте представленные выше изображения на экране вашего телевизора. Естественная контрастность определяется сравнением наиболее темной части изображения с самыми яркими элементами в этом же сюжете. Назовем это "внутренней контрастностью сюжета", хотя, у кого- то может быть есть и более удачные определения на этот счет?

Подобная контрастность отличается от той, что сегодня приписывают большинству телевизоров и которая называется динамической. Динамическая контрастность – расширенный термин для описания технологии, который позволяет беспредельно завышать показания, в сравнении с естественной контрастностью. При воспроизведении фильма или телепрограммы телевизор регулирует общий световой поток в соответствии с характером отображаемого сюжета. Возможно вам доводилось вручную регулировать подсветку ЖК дисплея, телевизор делает то же самое автоматически, анализируя в режиме реального времени воспроизводимый видеосюжет.


Эта шкала серого пример относительной яркости дисплея. С установленной на максимум подсветкой ЖК дисплей демонстрирует наибольшую яркость, но имеет плохой уровень черного цвета. Если уровень подсветки установить на минимум, будет приличный уровень черного, а общий световой поток станет недостаточным.

Автоматическая регулировка подсветки (аналогично у проектора регулировка отверстия диафрагмы) выполняется схемой контроля видеосигнала и позволяет в режиме реального времени корректировать общий световой поток в зависимости от того, что в это время на экране. Пример изображения с использованием динамической контрастности:


В темном сюжете телевизор затемняет подсветку (или прикрывает отверстие диафрагмы проектор), поэтому изображение становится темнее. При этом проигрывают яркие области на экране, которые тоже темнеют.


В светлом сюжете телевизор повышает общий световой поток, но, как вы можете заметить по серой шкале, повышенная яркость достигается за счет потери достойного уровня черного.

Светлые сюжеты становятся ярче, а темные чернее. Это очень хорошо, и действительно увеличивает видимый контраст дисплея, но не настолько сильно, как хотелось бы предположить, исходя из заявленных параметров контрастности. Телевизор с коэффициентом контрастности 5000000:1 это фантастика. Очень хотелось бы посмотреть на него, жаль, что он не существует. HDTV с высоким коэффициентом динамической контрастности может смотреться лучше, в сравнении с телевизором, который не имеет такой схемы, но он не будет также хорош, как дисплей с высокой естественной контрастностью.

Да, LED источники подсветки LCD панели можно отключить, создав истинный черный цвет, но это далеко не всегда можно делать в процессе воспроизведения реального фильма. Дисплей с высокой естественной контрастностью покажет яркий белый текст на глубоком черном фоне. Дисплей с высокой динамической контрастностью может иметь такой же темный фон, но текст не будет таким ярким.

Сравнительно, это выглядит вот так:


Изображение слева имитирует дисплей с высокой естественной контрастностью. То, что справа имеет пониженную естественную контрастность, но расширенную динамическую. Правое изображение способно представить низкий уровень черного, но делает это за счет снижения общего светового потока. Высокая естественная контрастность дисплея (слева) позволяет без технических ухищрений воспроизводить максимально черный, и в то же время яркий белый цвет.

Как вы можете видеть, дисплей с высокой естественной контрастностью – это то, что нужно. На фоне чернильно-черного неба ясно различимы блики уличных фонарей. Днем небо яркое, но черная куртка достаточно темная. Это больше похоже на картинку на экранах ЭЛТ телевизоров, больше похоже на фильм в кинотеатре, более соответствует реальному изображению.

Сегодня технология с наиболее высокой естественной контрастностью – используемая в домашних проекторах LCOS . В настоящее время в проекторах JVC используется фирменная версия этой технологии (D-ILA). Такие проекторы обладают самым высоким измеренным коэффициентом естественной контрастности. Версия от Sony (SXRD) достаточно отстает, но занимает второе место. Третьими по уровню естественной контрастности можно считать плазменные HDTV, хотя и некоторые DLP проекторы близки к ним.

ЖК (LCD) телевизоры достигли большого прогресса за последнее десятилетие, но все еще отстают от других технологий по ряду параметров. К счастью, лучшие производители знают об этом и придумали несколько способов, чтобы имитировать свойственную другим технологиям высокую естественную контрастность.

Лучший способ для LCD телевизоров добиться высокой контрастности внутри сюжета – использовать локальное затемнение. В этом случае подсветка дисплея представляет собой массив из светодиодов (LED источников), яркость каждого из них может меняться в зависимости от того, что показывается на экране. Хотя это не сделано и не на уровне пикселей, а светодиоды управляются не индивидуально, а по зонам, как правило, общий эффект очень хороший.

К сожалению, сегодня большинство производителей отказались от использования полной LED подсветки, которая является единственным типом хорошего локального затемнения. Такие телевизоры дороже обходятся в производстве.

Большинство LCD LED дисплеев сегодня используют боковую (краевую) подсветку, при которой светодиоды подсветки размещаются сверху и снизу LCD панели. Несколько компаний разработали методы для затемнения отдельных областей экрана и для такой подсветки (Edge LED), но эффект не так хорош, как при использовании полного LED массива позади экрана. Хотя многие телевизоры с боковой подсветкой и выглядят великолепно.

Измерение и все прочие проблемы

Однако у вас естественно давно уже возник вопрос: Как же, выяснить какой телевизор в магазине имеет лучшую контрастность? Вопрос хороший. Однако повышенная яркость освещения искажает реальные возможности телевизора. К тому же, одни модели могут иметь глянцевое покрытие экрана, а другие антибликовое, что тоже затрудняет сравнение. Как уже упоминалось, все производители дают завышенные показатели контрастности, которое имеют мало общего с реальными возможностями телевизоров. Поэтому не стоит особо доверять спецификациям.

Так что остается читать обзоры. К сожалению, лишь на немногих сайтах в процессе тестирования делают измерения контрастности. А полученные показатели порой могут сильно различаться, что объяснимо, к тому же нет единого стандарта для измерения контрастности. Кто-то может оценить контрастность в 20000:1, в то время как другой тестировщик получит только 1000:1.

Многое зависит от того, что измерять. Можно взять черное поле (яркость 0 IRE) с настроечного диска или генератора сигналов, а потом белое поле (100 IRE) из тех же источников. При этом получим приличную общую контрастность, но она не очень актуальна при реальном просмотре видео (которое никогда не бывает полностью темным или полностью белым). Кроме того, на реальном материале начинают работать многочисленные системы видеообработки, которые оказывают влияние на яркость отдельных участков изображения.

Хорошим дополнением будет измерение контрастности по методике ANSI. В этом случае на экран в шахматном порядке выводится восемь черных и белых полей. Все измерения усредняются. Это дает хорошее представление о возможностях дисплея, и гораздо более актуальное для фактического видео. Определенной проблемой является то, что яркость белых полей может влиять на показатели измерений черных квадратов. Таким образом, чтобы все сделать правильно придется потратить очень много времени.

Заключение

В данном случае однозначного ответа нет. Именно такой вывод можно сделать из всего написанного выше. Лучшее, на что сегодня можно надеяться с тем, чтобы получить общее представление о приглянувшихся моделях HDTV – достаточно точные измерения, приводимые в обзорах телевизоров с компетентных сайтов. А также очень пригодятся и почерпнутые из этой статьи познания, чтобы представить, какие потенциальные возможности телевизора наилучшим образом раскроются в условиях просмотра в вашем доме.

Как и во многих руководствах по выбору телевизора можно сказать следующее. Многое зависит от условий, в которых предполагается смотреть телевизор. Если вы любитель кино и смотрите телевизор в темной комнате или в ночное время, повышенная контрастность плазм будет смотреться очень кинематографично.

Если же вы чаще смотрите телевизор в дневное время, по яркости с LED LCD ничто не может сравниться. Где-то между ними располагаются LCD телевизоры с системой местного или зонного затемнения светодиодной (LED) подсветки. Они могут представить лучшую "внутреннюю контрастность сюжета", в сравнении с обычными LCD дисплеями, но при наличии достаточного запаса по уровню светоотдачи.

Независимо от того, какой у вас дома телевизор, очень важно правильно его настроить, так как начальные заводские настройки не могут полностью раскрыть весь потенциал телевизора.

Главный редактор - Владимир Крылов, к.т.н.
Зам. главного редактора - Михаил Никуличев, к.ф.н.

Первая часть статьи посвящена характеристикам современных светодиодных экранов, влияющим на качество изображения – управления яркостью методами ШИМ, формирование изображения с временным разделением и частоте рефреша экранов. Во второй части статьи рассмотрены - динамический диапазон яркости, цветопередача и контрастность экранов, драйверы и современные системы управления светодиодными экранами, электромагнитная совместимость и индустриальные помехи экранов.

Светодиодный экран – сложное электронное устройство, содержащее большое количество компонентов. Качество изображения и эксплуатационные характеристики светодиодного экрана зависят как от параметров компонентов, используемых в экране, так и от возможностей системы управления данным экраном.

С точки зрения качества изображения важны следующие характеристики экрана:

  • разрешение экрана (т.н. пространственное разрешение), в случае светодиодных экранов обычно выражаемое в виде расстояния между пикселями (pitch size);
  • максимальная яркость (измеряемая в Нитах);
  • динамический диапазон яркости, выражаемый в количестве уровней яркости, которые возможно отобразить на светодиодном экране (эта характеристика носит также название радиометрического или энергетического разрешения);
  • частота смены кадров, выражаемая в количестве кадров, показываемых за секунду (fps) (это временное разрешение);
  • частота обновления кадра (частота рефреша), измеряемая в Герцах (это тоже временное разрешение);
  • спектральное разрешение – насколько много спектральных составляющих формируют изображение;
  • однородность цвета по всему экрану;
  • баланс белого цвета и возможность его настройки;
  • линейность восприятия яркости – субъективная характеристика качества изображения, которая выражается в возможности различать глазом близкие уровни яркости, как на темных участках изображения, так и на ярких;
  • контрастность изображения экрана;
  • характеристика изменения качества изображения экрана в зависимости от угла обзора;

Кроме качества изображения отметим также такие эксплуатационные характеристики светодиодного экрана:

  • наличие системы мониторинга состояния светодиодного экрана;
  • развитость ПО (программного обеспечения) системы управления (возможность построения сетей светодиодных экранов, в том числе сетей, содержащих как светодиодные, так и LCD экраны, возможность управления экранами через Internet, наличие встроенной подсистемы информационной безопасности);
  • уровень электромагнитного излучения в виде индустриальных радиопомех, создаваемых светодиодным экраном.

Рассмотрим некоторые из вышеперечисленных характеристик подробнее.

Формирование изображения на светодиодном экране и управление яркостью

Широтно-импульсная модуляция (PWM) и частота рефреша (refresh rate)

Исходное изображение для вывода на светодиодный экран формируется в виде компьютерного файла, чаще всего в виде видеоролика в некотором формате (*.avi, *.mpg). Этот файл декодируется управляющим компьютером (или видеоконтроллером), затем преобразуется в специальный цифровой поток, подающийся на микросхемы драйверов постоянного тока, которые, в свою очередь обеспечивают пропускание электрического тока через светодиод, что и вызывает излучение в определенном спектре.

Для формирования различных уровней яркости излучения светодиодов применяют технику широтно-импульсной модуляции - ШИМ (PWM - Pulse-width modulation). Суть этой техники заключается в том, что в зависимости от необходимого уровня яркости ток не постоянно подается на светодиод, а только в течение некоторого времени (зависящего от требуемого уровня яркости), затем прекращает подаваться, затем снова подается и т.д. Например, для формирования яркости в половину от максимальной надо пропускать ток половину времени некоторого цикла, в четверть яркости – четверть времени, и т. д. Иными словами, светодиод работает в режиме “включен-выключен”, причем время включения пропорционально требуемому уровню яркости.

Из этой техники следует, что на светодиоде (а значит и на экране) изображение формируется циклично. Время минимального цикла, за который происходит последовательное «включение» и “выключение” светодиода называется периодом обновления (рефреша, refresh time). Чаще используется обратная величина – частота рефреша (refresh rate).

Рассмотрим пример. Пусть частота рефреша светодиодного экрана равна 100 Гц. Если нам нужно обеспечить полную яркость – 100%, то мы постоянно подаем ток на светодиод весь период рефреша, равный в данном случае 1/100 с = 10 мс. Если требуется яркость 50%, то за это время мы в течение 5 мс подаем ток, в течение следующих 5 мс не подаем, в следующий цикл снова 5 мс подаем, 5 мс – нет и т.д. Если требуется яркость в 1% от максимальной, то ток подается в течение 0,1 мс и не подается в течение 9,9 мс.

Кроме этой техники применяются модифицированные методы PWM: Scrambled PWM (Macroblock), Sequential Split Modulation (Silicon Touch), Adaptive Pulse Density Modulation (MY-Semi). Суть этих техник заключается в “размазывании” времени “включения” светодиода по всему периоду рефреша. Так формирование 50%-ой яркости при частоте рефреша 100 Гц может выглядеть так: 1 мс - светодиод включен, 1 мс – выключен, 1 мс – включен, 1 мс – выключен и т.д. То есть для 50% яркости можно сказать, что период рефреша уменьшился в 5 раз и стал равен 2 мс. Соответственно частота рефреша увеличилась и стала 500 Гц. Но эти цифры справедливы лишь для формирования 50% яркости. Для каждой схемы формирования яркости есть минимальная яркость – 1 импульс (некоторое минимальное время) включения светодиода и остальное время он выключен.

Таким образом, четкая цикличность присущая традиционному PWM при применении модифицированных методов искажается, поскольку, в зависимости от уровня яркости можно выделить периоды с меньшим временем (и следовательно большей частотой рефреша). Можно, например, сказать, что для данного светодиодного экрана частота рефреша изменяется от 100 Гц до 1 кГц. Это означает, что минимальную яркость на светодиодном экране мы показываем с периодом рефреша 100 Гц. А при формировании больших уровней яркости можно выделить периоды (“включения-выключения” светодиодов) с меньшей длительностью.

Итак, для модифицированных методов PWM такое понятие как частота рефреша может трактоваться неоднозначно. Однако, если рассматривать период рефреша как минимальное время, за которое происходит обновление изображения для всех уровней яркости , то это значение не зависит от схемы формирования PWM.

Чересстрочная развертка или временное разделение (time division) светодиодных экранов

В ряде случаев конструкцией светодиодного экрана предусмотрен такой метод формирования изображения, при котором в один момент времени ток не может быть подан на все светодиоды сразу. Все светодиоды экрана разбиваются на несколько групп (как правило, две, четыре или восемь), которые включаются поочередно. То есть описанные выше методы формирования изображения применяются поочередно к каждой из этих групп. В случае двух таких групп формирование изображения аналогично применяемой в аналоговом телевидении чересстрочной развертке.

Данный способ применяется, в основном, для удешевления светодиодных экранов, так как для его реализации требуется меньше светодиодных драйверов (в два, четыре, восемь раз - в число раз соответствующее количеству поочередно включаемых групп), которые составляют существенную часть стоимости светодиодного экрана. Кроме этого, метод временного деления практически неизбежен при высоком разрешении (то есть малом шаге) светодиодного экрана, так как в этом случае чрезвычайно сложно обеспечить размещение большого количества драйверов и их теплоотвод.

Следует понимать, что при применении этого метода снижается максимальная яркость светодиодного экрана, а также уменьшается частота рефреша (в количество раз соответствующее количеству групп).

Предположим, что мы производим временное деление между двумя группами светодиодов. На одну группу подается ток в соответствии с требуемой яркостью и используемым методом PWM. Другая группа в это время отключена от источника тока. По прошествии периода рефреша группы меняются – теперь на вторую подается ток, а первая отключена. Поэтому, общий период, за который обновляется вся информация на светодиодном экране, увеличивается в два раза.

Понятие частота рефреша в этом случае еще более размывается. Строго говоря, период рефреша как минимальное время, за которое происходит обновление изображения для всего светодиодного экрана, увеличивается. Однако, если для каждой группы рассматривать только период, на котором формируется изображение методом PWM, то частота рефреша – прежняя.

Частота рефреша светодиодного экрана и человеческий глаз

Частота рефреша, в первую очередь, влияет на восприятие изображения глазом человека. Изображение, образно говоря, постоянно “мерцает”, хотя и с достаточно высокой частотой. Восприятие человеком световых образов – явление психофизическое и устроено таким образом, что отдельные вспышки света суммируются во времени. Это суммирование происходит в течение определенного времени (10 мс) и зависит от яркости вспышек (закон Блоха). Если свет “мерцает” достаточно быстро, с частотой выше некоторой пороговой (CFF – Critical Flicker Frequency), то глаз человека воспринимает этот свет так же, как если бы он горел постоянно (закон Тальбо-Плато). Пороговая частота CFF зависит от множества факторов, таких как спектр источника света, расположение источника по отношению к глазу, уровень яркости. Однако, можно с уверенностью сказать, что при обычных условиях эта частота не превышает 100 Гц.

Таким образом, если рассматривать восприятие изображения на светодиодном экране, сформированного методом PWM или модифицированным PWM, человеческим глазом, то изображение с частотой рефреша 100 Гц и 1 кГц будут восприниматься одинаково.

Частота рефреша экрана и видеокамера

Однако, в качестве воспринимающей системы может выступать не только глаз человека, но и видеозаписывающая аппаратура, которая имеет характеристики, отличные от глаза. Это особенно актуально для светодиодных экранов, установленных на стадионах, спортивных сооружениях или концертных площадках, с которых обычно ведется видеотрансляция. Время экспозиции, или выдержка (shutter speed), в современных видеокамерах может меняться от секунд до тысячных долей секунды.

Рассмотрим светодиодный экран, в котором изображение формируется традиционным методом PWM с частотой рефреша 100 Гц. На экране демонстрируется статическое изображение. Предположим также, что мы снимаем светодиодный экран видеокамерой с выдержкой 1/8 с, т.е. время экспозиции 125 мс. За это время на фотосенсор попадет свет от 12,5 периодов рефреша. Когда мы делаем серию кадров с данной выдержкой, то разница в световом потоке, попадающем на светочувствительный элемент, не превышает потока, сформированного светодиодами за 0,5 периода рефреша, т.е. не более 4% от всего потока. Разница образуется за счет того, что видеокамера и светодиодный экран, естественно, не синхронизированы и каждый кадр, сделанный видеокамерой, попадает в разное время относительно начала цикла рефреша светодиода. Таким образом, видеоизображение с камеры будет показывать достаточно ровную картинку со светодиодного экрана.

Теперь уменьшим выдержку, с которой мы снимаем до 1/250 с, время экспозиции равно 4 мс. Это время в 2,5 раза меньше периода рефреша. Теперь соотношение между временем начала кадра видеокамеры и началом цикла PWM будет иметь существенное значение. Одни кадры могут попасть в начало цикла, другие в середину, третьи в конец. Таким образом, образуется значительная погрешность в световом потоке в разных кадрах. То есть, изображение, проигрываемое на видеокамере, будет случайно менять яркость, будет “плыть”. Кроме того, уменьшится яркость изображения, что, впрочем, характерно для всех снимаемых на короткой выдержке объектов. Если еще уменьшить выдержку, то с большей вероятностью будут появляться черные кадры (когда начало кадра видеокамеры попадает на тот участок цикла PWM, где светодиод “выключен”) и изображение с камеры начнет мерцать.

Таким образом, если мы хотим снимать на видеокамеру светодиодный экран, на котором изображение формируется с использованием традиционного PWM, то частота рефреша должна быть сопоставимой или превосходить выдержку, с которой снимает камера.

В случае применения модифицированных методов PWM можно провести те же рассуждения. В силу “размазывания” времени включения светодиода по циклу PWM на больших яркостях, изображение, снятое на видеокамеру будет более стабильно, чем при применении традиционного PWM. Но на малых яркостях ситуация остается прежней – картинка будет либо менять яркость, либо мерцать. Поскольку реальное изображение содержит, как правило, различные уровни яркости, то изображение, снятое на видеокамеру также будет иметь погрешности, хотя и иного свойства.

Итак, при видеосъемке избежать наличия искажения изображения при произвольных параметрах съемки не удается. Всегда можно найти значение выдержки, при которой видео будет искажено. Ситуация аналогична съемке аналогового телевизора аналоговой же камерой. В силу различий в частоте развертки при подобной съемке на снимаемом телевизоре видны диагональные черные полосы.

Более важным для видеосъемки светодиодного экрана представляется вопрос однородности изображения, снятого на видеокамеру. Светодиодный экран – конструкция модульная, состоящая из нескольких блоков, изображение на которых непосредственно формируется различными контроллерами. Если эти контроллеры не синхронизируют начало цикла PWM, то есть начало цикла на разных участках светодиодного экрана приходится на разное время, то при съемке может произойти следующая ситуация. На одном участке светодиодного экрана начало кадра видеокамеры может совпасть с началом цикла PWM, а на другом, например, на середину. Если выдержка сопоставима с периодом рефреша, то на одном участке изображение будет светлее, а на другом темнее. Все изображение на светодиодном экране в этом случае будет разбиваться на прямоугольники разной яркости, что представляет больший дискомфорт для зрителя.

Стоимость увеличения частоты рефреша светодиодных экранов

Независимо от способа генерации PWM схемы их реализующие имеют общие черты. Схема генерации PWM имеет некоторую тактовую частоту F pwm . Пусть требуется сгенерировать N уровней яркости. В этом случае частота рефреша F r не может превышать F pwm /N .

Для иллюстрации приведем некоторые примеры:

Приведенные цифры предполагают, что существуют независимые схемы формирования PWM для каждого светодиода, то есть схема PWM реализована непосредственно в светодиодных драйверах экрана.

В случае применения простых драйверов и формирования PWM на контроллере светодиодного экрана, необходимо учитывать, сколько драйверов соединены последовательно и обслуживаются одной схемой PWM. Если одной схемой PWM обслуживаются M драйверов с 16-ю выходами, то частота рефреша не может превышать F pwm /(N*M*16) , что приводит к значительному уменьшению частоты рефреша либо необходимости существенно увеличивать тактовую частоту.

В случае применения временного деления (чересстрочной развертки), как мы уже говорили, частота рефреша уменьшается пропорционально коэффициенту деления.

Итак, для увеличения частоты рефреша светодиодных экранов возможны следующие варианты:

  • применение “интеллектуальных” драйверов;
  • увеличение тактовой частоты схемы генерации PWM;
  • уменьшение количества уровней яркости (глубины цвета).

Каждый из этих способов имеет свои достоинства и недостатки. Так интеллектуальные драйверы дороже обычных, повышение тактовой частоты увеличивает энергопотребление (а значит тепловыделение, необходимость теплоотвода во избежание перегрева), уменьшение количества уровней яркости снижает качество изображения.

Рефреш светодиодных экранов: Выводы

Часто такой параметр как частота рефреша светодиодных экранов используется в маркетинговых целях как один из показателей качества изображения. Предполагается, что чем выше частота рефреша, тем лучше светодиодный экран при прочих равных условиях. Однако, иногда приводятся цифры, вводящие в заблуждение потенциального покупателя. Например, указание частоты рефреша в несколько килогерц, как мы видели, может означать либо применение модифицированных методов PWM, для которых частота рефреша различна для различных уровней яркости, либо уменьшение глубины цвета.

Следует понимать, что высокие значения частоты рефреша и, одновременно, глубины цвета, скорее всего, предполагают, что этот рефреш в светодиодном экране достигается на определенных (высоких) уровнях яркости.

В случае применения чересстрочной развертки может быть указана частота соответствующая одному циклу PWM для одной группы светодиодов, в то время как реальная частота рефреша экрана (которая влияет на восприятие) в несколько раз ниже.

Более информативным, видимо, является указание глубины цвета и тактовой частоты PWM, с возможным добавлением диапазона частоты рефреша экрана (например, 200-1000 Гц) в случае использования модифицированных методов PWM. Если в светодиодном экране применено временное деление, то необходимо явно указать на этот метод формирования изображения (например time division = 1:1 – нет временного деления, time division = 1:2 – одновременно PWM работает на половине экрана и т. д.).

Для восприятия глазом этот параметр светодиодного экрана вообще несущественен. Для частот выше 100 Гц глаз человека не увидит разницу в качестве изображения. Следовательно, необходимо понять, нужна ли высокая частота рефреша и стоит ли за нее платить.

В случае активного использования светодиодного экрана в процессе видеосъемки этот показатель становится существенным, но следует также обратить внимание на однородность изображения при видеосъемке. Для таких светодиодных экранов, возможно, лучше провести тестовые съемки, чем полагаться лишь на такой параметр как частота рефреша.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: