Линейное программирование найти оптимальное решение. Нетрадиционные методы

Аннотация: Данная лекция раскрывает ряд вопросов, посвященных линейному программированию как одному из разделов математического программирования; в частности, формулирует основные виды задач линейного программирования, раскрывает отличия данных задач от классических задач математического анализа; знакомит с различными формами записи данных задач, осуществляет их постановку и исследование структуры. Наиболее полно раскрыт вопрос о решении задач линейного программирования симплекс-методом.

1. Понятие математического программирования

– это математическая дисциплина, в которой разрабатываются методы отыскания экстремальных значений целевой функции среди множества ее возможных значений, определяемых ограничениями.

Наличие ограничений делает задачи принципиально отличными от классических задач математического анализа по отысканию экстремальных значений функции. Методы математического анализа для поиска экстремума функции в задачах математического программирования оказываются непригодными.

Для решения задач математического программирования разработаны и разрабатываются специальные методы и теории. Так как при решении этих задач приходится выполнять значительный объем вычислений, то при сравнительной оценке методов большое значение придается эффективности и удобству их реализации на ЭВМ.

Можно рассматривать как совокупность самостоятельных разделов, занимающихся изучением и разработкой методов решения определенных классов задач.

В зависимости от свойств целевой функции и функции ограничений все задачи математического программирования делятся на два основных класса:

  • задачи линейного программирования,
  • задачи нелинейного программирования .

Если целевая функция и функции ограничений – линейные функции, то соответствующая задача поиска экстремума является задачей линейного программирования. Если хотя бы одна из указанных функций нелинейна, то соответствующая задача поиска экстремума является задачей нелинейного программирования .

2. Понятие линейного программирования. Виды задач линейного программирования

Линейное программирование (ЛП) – один из первых и наиболее подробно изученных разделов математического программирования . Именно линейное программирование явилось тем разделом, с которого и начала развиваться сама дисциплина " математическое программирование ". Термин "программирование" в названии дисциплины ничего общего с термином "программирование (т.е. составление программы) для ЭВМ" не имеет, т.к. дисциплина " линейное программирование " возникла еще до того времени, когда ЭВМ стали широко применяться для решения математических, инженерных, экономических и др. задач.

Термин " линейное программирование " возник в результате неточного перевода английского " linear programming ". Одно из значений слова "programming" - составление планов, планирование. Следовательно, правильным переводом английского " linear programming " было бы не " линейное программирование ", а "линейное планирование", что более точно отражает содержание дисциплины. Однако, термины линейное программирование , нелинейное программирование, математическое программирование и т.д. в нашей литературе стали общепринятыми и поэтому будут сохранены.

Итак, линейное программирование возникло после второй мировой войны и стало быстро развиваться, привлекая внимание математиков, экономистов и инженеров благодаря возможности широкого практического применения, а также математической стройности.

Можно сказать, что линейное программирование применимо для решения математических моделей тех процессов и систем, в основу которых может быть положена гипотеза линейного представления реального мира.

Линейное программирование применяется при решении экономических задач, в таких задачах как управление и планирование производства; в задачах определения оптимального размещения оборудования на морских судах, в цехах; в задачах определения оптимального плана перевозок груза (транспортная задача); в задачах оптимального распределения кадров и т.д.

Задача линейного программирования (ЛП), как уже ясно из сказанного выше, состоит в нахождении минимума (или максимума) линейной функции при линейных ограничениях.

Общая форма задачи имеет вид: найти при условиях

Наряду с общей формой широко используются также каноническая и стандартная формы. Как в канонической, так и в стандартной форме

Т.е. все переменные в любом допустимом решении задачи должны принимать неотрицательные значения (такие переменные принято называть неотрицательные в отличие от так называемых свободных переменных, на область значений которых подобное ограничение не накладывается). Отличие же между этими формами состоит в том, что в одном случае I 2 = 0 , а в другом - I 1 = 0 .

Задача ЛП в канонической форме.

Линейное программирование сформировалось как отдельный раздел прикладной математики в 40 – 50-х гг. ХХ в. благодаря работам советского ученого, лауреата Нобелевской премии Л.В. Канторовича. В 1939 году им была опубликована работа «Математические методы организации и планирования производства», в которой он с использованием математики решил экономические задачи о наилучшей загрузке машин, раскрое материалов с наименьшими расходами, распределении грузов по нескольким видам транспорта и другие, предложив метод разрешающих множителей 8 .

Л.В. Канторович впервые сформулировал такие широко используемые экономико-математические понятия, как оптимальный план, оптимальное распределение ресурсов, объективно обусловленные оценки, указав многочисленные области экономики, где они могут быть применены.

Понятие линейного программирования было введено американским математиком Д. Данцигом, который в 1949 г. предложил алгоритм решения задачи линейного программирования, получивший название «симплексный метод».

Математическое программирование, в которое входит линейное программирование, в настоящее время является одним из направлений исследования операций. В зависимости от вида решаемых задач в нем выделяют такие области, как линейное, нелинейное, дискретное, динамическое программирование и др. Термин «программирование» введен в связи с тем, что неизвестные переменные, которые находятся в процессе решения задачи, обычно определяют программу или план работы некоторого экономического объекта.

В классическом математическом анализе исследуются общая постановка задачи определения условного экстремума. Однако в связи с развитием промышленного производства, транспорта, агропромышленного комплекса, банковского сектора традиционных результатов математического анализа оказалось недостаточно. Потребности практики и развитие вычислительной техники привели к необходимости определения оптимальных решений при анализе сложных экономических систем.

Главным инструментом для решения таких задач является математическое моделирование. При этом сначала строится простая модель, затем проводится ее исследование, позволяющее понять, какие из интегрирующих свойств объекта не улавливаются формальной схемой, после чего за счет усложнения модели обеспечивается большая ее адекватность реальности. Во многих случаях первым приближением к действительности является модель, в которой все зависимости между переменными, характеризующими состояние объекта, являются линейными. Практика показывает, что достаточное количество экономических процессов достаточно полно описывается линейными моделями. Следовательно, линейное программирование как аппарат, позволяющий отыскивать условный экстремум на множестве, заданном линейными уравнениями и неравенствами, играет важную роль при анализе этих процессов.

Линейное программирование получило широкое развитие в связи с тем, что было установлено: ряд задач сферы планирования и управления может быть сформулирован в виде задач линейного программирования, для решения которых имеются эффективные методы. По оценкам специалистов примерно 80–85 % всех решаемых на практике задач оптимизации относится к задачам линейного программирования.

Созданный математический аппарат в сочетании с компьютерными программами, производящими трудоемкие расчеты, позволяет широко использовать модели линейного программирования в экономической науке и практике.

Определение 1 9 . Линейное программирование (ЛП) – это область математического программирования, являющегося разделом математики и изучающего методы поиска экстремальных (наибольших и наименьших) значений линейной функции конечного числа переменных, на неизвестные которой наложены линейные ограничения.

Эта линейная функция называется целевой, а ограничения, которые представляют количественные соотношения между переменными, выражающие условия и требования экономической задачи и математически записываются в виде уравнений или неравенств, называются системой ограничений.

К задачам линейного программирования сводится широкий круг вопросов планирования экономических процессов, где ставится задача поиска наилучшего (оптимального) решения.

Общая задача линейного программирования (ЗЛП) состоит в нахождении экстремального значения (максимума или минимума) линейной функции, называемой целевой 10:

от n переменных x 1 , x 2 , …, х n при наложенных функциональных ограничениях:

(3.2)

и прямых ограничениях (требовании неотрицательности переменных)

, (3.3)

где a ij , b i , c j – заданные постоянные величины.

В системе ограничений (3.2) знаки «меньше или равно», «равно», «больше или равно» могут встречаться одновременно.

ЗЛП в более краткой записи имеет вид:

,

при ограничениях:

;

.

Вектор `Х = (x 1 , x 2 , …, х n ) компоненты которого удовлетворяют функциональным и прямым ограничениям задачи называют планом (или допустимым решением ) ЗЛП.

Все допустимые решения образуют область определения задачи линейного программирования, или область допустимых решений (ОДР). Допустимое решение, которое доставляет максимум или минимум целевой функции f (`X ), называется оптимальным планом задачи и обозначается f (`X * ), где ` Х * =(x 1 * , x 2 * , …, х n * ).

Еще одна форма записи ЗЛП:

,

где f (`X * ) есть максимальное (минимальное) значение f (С , х ), взятое по всем решениям, входящим в множество возможных решений Х .

Определение 2 11 . Математическое выражение целевой функции и ее ограничений называются математической моделью экономической задачи.

Для составления математической модели необходимо:

1) обозначить переменные;

2) составить целевую функцию исходя из цели задачи;

3) записать систему ограничений, учитывая имеющие в условии задачи показатели и их количественные закономерности.

Большое число экономических задач сводится к линейным математиче­ским моделям. Традиционно их называют моделями линейного программиро­вания. Под линейным программированием понимается линейное планирование, т.е. получение оптимального плана-решения в задачах с линейной структурой. Обычно его используют специалисты штабных подразделений для разрешения производственных трудностей. Типичными примерами применений модели линейного программирования являются следующие:

    укрупненное планирование производства (составление графиков производства, минимизирующих общие издержки в связи с изменением ставки процента);

    планирование ассортимента изделий (определение оптимальной структуры производства продуктов питания для человека);

    маршрутизация производства изделий (определение оптимального технологического маршрута изготовления изделия);

    регулирование запасов (определение оптимального сочетания продуктов на складе);

    календарное планирование производства (составление календарных планов, минимизирующих издержки с учетом расходов на содержание запасов, оплату сверхурочной работы и заказов на стороне);

    планирование распределения продукции и пр.

В самом общем виде линейное программирование сводится к оптимизационной задаче и записывается в следующем виде:

Чтобы решить задачу оптимизации, достаточно найти ее оптимальное решение, т.е. указать
такое, чтоf (X 0 )≥ f (X ) при любом
, или для случая минимизации -f (X 0 )≤ f (X ) при любом
.

Оптимизационная задача является неразрешенной, если она не имеет оптимального решения. В частности, задача максимизации будет неразрешенной, если целевая функция f (X ) не ограничена сверху на допустимом множестве W .

Методы решения оптимизационных задач зависят как от вида целевой функции f (X ) , так и от строения допустимого множества W . Если целевая функция в задаче является функцией п переменных, то методы решения называются методами математического программирования.

Задачей линейного программирования называется задача исследования операций, математическая модель которой имеет вид:

При этом система линейных уравнений (2) и неравенств (3), (4), определяющая допустимое множество решений задачи W , называется системой ограничений задачи линейного программирования, а линейная функция f (X ) называется целевой функцией, или критерием оптимальности.

Если математическая модель задачи линейного программирования имеет вид:

то говорят, что задача представлена в канонической форме.

Любую задачу линейного программирования можно свести к задаче линейного программирования в канонической форме, переводя максимизацию к минимизации, от ограничений неравенств к ограничениям равенств и заменяя переменные, которые не подчиняются условию неотрицательности. Максимизация некоторой функции эквивалента минимизации той же функции, взятой с противоположным знаком и наоборот.

Правило приведения задачи линейного программирования к каноническому виду состоит в следующем:

1) если в исходной задаче требуется определить максимум линейной функции, то следует изменить знак и искать минимум этой функции;

2) если в ограничениях правая часть отрицательна, то следует умножить это ограничение на (-1);

3) если среди ограничений имеются неравенства, то путем введения дополнительных неотрицательных переменных, они преобразуются в равенства;

4) если некоторая переменная x k не имеет ограничений по знаку, то она заменяется (в целевой функции и во всех ограничениях) разностью между двумя новыми неотрицательными переменными: x k = x k - x 1 , где 1 – свободный индекс, x k 0, x 1 0.

Обобщая сказанное можно сделать следующие выводы:

1. Ограничения в задачах линейного программирования могут быть выражены как равенствами, так и неравенствами.

2. Линейная функция может стремиться как к максимуму, так и к минимуму.

3. Переменные в модели всегда неотрицательны.

4. От любой задачи линейного программирования можно перейти к канонической (основной) задаче линейного программирования.

Каждой задаче линейного программирования можно противопоставить другую задачу линейного программирования, двойственную по отношению к исходной (прямой).

Рассмотрим задачу линейного программирования следующего вида:

………………………..

В задаче требуется максимизировать целевую функцию; все ограничения являются неравенствами со знаком ≤, все переменные х 1 , х 2 ,…,х п п управляющих переменных и m ограничений. Коэффициенты при переменных в целевой функции: c 1 , c 2 ,…, c n ; свободные члены: b 1 , b 2 ,…, b m .

Двойственная задача линейного программирования имеет вид:

………………………..

В двойственной задаче требуется найти минимум целевой функции, ограничения – неравенства со знаком ≥, управляющие переменные y 1 , y 2 ,…, y m неотрицательны. Задача содержит m управляющих переменных и n ограничений. Коэффициенты целевой функции задачи b 1 , b 2 ,…, b m являются свободными членами исходной задачи линейного программирования, а свободные члены двойственной задачи c 1 , c 2 ,…, c n – коэффициентами целевой функции исходной задачи линейного программирования. Матрица коэффициентов двойственной задачи транспонирована, т.е. строки заменены столбцами, а столбцы – строками.

Задачи (9) –(10) и (11) – (12) образуют пару задач, называемую в линейном программировании двойственной парой.

Двойственная задача по отношению к исходной составляется по следующим правилам:

1. Целевая функция исходной задачи задается на максимум, а целевая функция двойственной – на минимум.

2. Матрица А (13)

,

составленная из коэффициентов при неизвестных в системе ограничений (10) исходной задачи (9) – (10) и аналогичная матрица в двойственной задаче (11) – (12) получаются друг из друга транспонированием.

3. Число переменных в двойственной задаче (11) – (12) равно числу ограничений в системе (10) исходной задачи, а число ограничений в системе (12) двойственной задачи – числу переменных в исходной задаче.

4. Коэффициентами при неизвестных в целевой функции (11) двойственной задачи являются свободные члены в системе (10) исходной задачи, а правыми частями в ограничениях системы (12) двойственной задачи - коэффициенты при неизвестных в целевой функции (9) исходной задачи.

5. Если переменная x j исходной задачи (9) –(10) может принимать только лишь неотрицательные значения, то j - е ограничение в системе (12) двойственной задачи является неравенством вида ≥. Если же переменная x j может принимать как положительные, так и отрицательные значения, то j - е ограничение в системе (12) представляет собой уравнение. Аналогичные связи имеют место между ограничениями (10) исходной задачи и переменными двойственной задачи. Если i - е ограничение в системе (10) исходной задачи является неравенством, то i - я переменная двойственной задачи y i 0. Если же i - е ограничение есть уравнение, то переменная y i может принимать как положительные, так и отрицательные значения.

Идея последовательного улучшения решения легла в основу универсального метода решения задач линейного программирования – симплекс-метода. Геометрический смысл этого метода состоит в последовательном переходе от одной вершины многогранника ограничений (называемой первоначальной) к соседней, в которой линейная функция принимает лучшее (по крайней мере, не худшее) значение (по отношению к цели задачи) до тех пор, пока не будет найдено оптимальное решение – вершина, где достигается оптимальное значение функции цели (если задача имеет конечный оптимум). Идеи метода были опубликованы российским ученым Л.В. Канторовичем в 1939 г.

Для применения симплекс-метода в ограничения задачи вводятся дополнительные переменные y 1 , y 2 ,…, y i и условие исходной задачи принимает вид:

……….…………………..

Эту постановку можно представить в виде таблицы – первой таблицы симплекс-метода (табл. 1.1).

Таблица 1.1.

Первая симплекс-таблица

Свободные члены

Свободные переменные

x 1

x 2

x n

y 1

b 1

a 11

a 12

a 1n

y 2

b 2

a 21

a 22

a 2n

y m

b m

a m1

a m2

a mn

Индексная строка

-c 1

-c 2

-c n

Для составления симплекс-таблицы можно применить определенные правила.

1. Для первой таблицы:

а) в первый столбец записывают y m – базисные переменные, которые находятся в уравнениях слева;

б) свободные переменные a mn выносят в верхнюю строку таблицы;

в) в остальные столбцы записывают коэффициенты перед свободными переменными.

2. Для последующих таблиц:

а) выбирается наименьший отрицательный элемент в индексной строке при отыскании максимума, но наибольший положительный – при отыскании минимума, исключая вектор свободных членов;

б) этот элемент определяет ключевой вектор-столбец и он вводится в базис;

в) компоненты вектора свободных членов делятся на положительные элементы ключевого столбца;

г) из полученных отношений выбирается наименьшее;

д) вектор-строка, содержащая наименьшее положительное частное - ключевая и выводится из базиса;

е) на пересечении ключевых строк и столбца находится разрешающий элемент;

ж) преобразование матрицы:

Каждый элемент ключевой строки делится на разрешающий элемент. Полученные частные являются элементами ключевой строки следующей таблицы,

Ключевой столбец в новой таблице – нули, за исключением разрешающего элемента,

Остальные элементы новой таблицы рассчитываются по схеме:

Новый элемент = Старый элемент –

- Элемент ключевой строки*Элемент ключевого столбца

Разрешающий элемент

Если нулевая строка (столбец) содержит нуль, то соответствующий столбец (строка0 в новой таблице не изменится.

3. Пункты «а» - «ж» повторяются до тех пор, пока в индексной строке не останется ни одного отрицательного элемента при отыскании максимума (но ни одного положительного при отыскании минимума).

Пример 1.1. Требуется принять решение об оптимальном плане производства трикотажа на месяц на ОАО «Свияж» с применением симплекс-методы.

Определим план выпуска моделей мужского трикотажа с целью получения максимальной прибыли при заданных ресурсах с помощью построения математической модели. Исходные данные представлены в таблице 1.2.

Таблица 1.2.

Исходные данные

Ресурсы (i )

Вид продукции (j )

Запас ресурса (b i )

Брюки спортивные модель 7060

Свитер мужской модель 55-1

Джемпер мужской модель 38-0

Костюм спортивный модель

удельный расход ресурса (a ij )

Трудовые

Материальные

Оборудование

x 1

x 2

x 3

x 4

Исходные данные по удельному расходу материальных, трудовых ресурсов проставлены в табл. 1.2 в соответствии с действующей в организации нормативной и технологической документацией. По строке «Материальные ресурсы» зафиксирована норма расхода наиболее дефицитного (лимитируемого0 вида материалов – пряжа шерстяная. Этот материал имеет самую высокую норму расхода и стоимость.

По строке «Оборудование» проставлена сводная трудоемкость изготовления единицы изделия в нормо-часах как суммарная по всем детале-операциям. Остальные виды ресурсов также взяты в натуральных единицах: трудовые ресурсы – в часах; материальные – в дм 2 .

Строка «Прибыль» отражает прибыль от реализации единицы изделия, взята в из плановой калькуляции на единицу изделия.

Через x 1 , x 2 , x 3 , x 4 обозначили количество выпускаемой продукции каждого вида ассортимента.

Согласно правилу построения стандартной задачи линейного программирования составим математическую модель:

В ограничениях задачи введем дополнительные переменные y 1 , y 2 , y 3 и перепишем условие задачи в виде уравнения:

Последнюю постановку можно представить в виде таблицы 1.3 – первой таблицы симплекс-метода, которой воспользуемся для решения задачи линейного программирования.

Таблица 1.3.

Первая симплекс-таблица

Свободные члены

Свободные переменные

x 1

x 2

x 3

x 4

y 1

y 2

y 3

Индексная строка

В первый столбец записаны y i базисные переменные, которые находятся в уравнении слева, а свободные переменные x j вынесены в верхнюю строку таблицы. В остальных столбцах записаны коэффициенты перед свободными переменными. Индексная строка – результат вычитания из нуля коэффициентов перед свободными переменными.

Для построения следующей таблицы выбирается наименьший отрицательный элемент в индексной строке (это 222). Этот элемент определяет ключевой вектор-столбец и он вводится в базис. Компоненты вектора свободных членов делятся на положительные элементы ключевого столбца и из полученных отношений выбирается наименьшее. Вектор-строка, содержащая наименьшее положительное частное, - ключевая и выводится из базиса (y 2 ). На пересечении ключевых строк и столбца находится разрешающий элемент (это 55,50).

Затем каждый элемент ключевой строки делится на разрешающий элемент. Полученные частные являются элементами ключевой строки следующей таблицы. В итоге получена вторая симплекс-таблица (табл. 1.4).

Таблица 1.4.

Вторая симплекс-таблица

Свободные члены

Свободные переменные

x 1

x 2

x 3

x 4

y 1

y 2

y 3

Индексная строка

Так как в индексной строке появился отрицательный элемент, следует повторить все аналогичные этапы и построить третью симплекс-таблицу.

В итоге получена табл. 1.5.

Таблица 1.5.

Итоговая симплекс-таблица

Свободные члены

Свободные переменные

x 1

x 2

x 3

x 4

y 1

y 2

y 3

Индексная строка

На основании таблицы 1.5 можно сделать выводы: в столбце свободных членов все элементы положительны (это значит, что полученное решение является допустимым); в индексной строке все элементы также положительны (это значит, что полученное решение – оптимально, т.е. максимизирует целевую функцию); оптимальным планом будут величины:
(значит, они базисные);
(так как они свободны); целевая функцияL = 4 201 195.

Из таблицы 1.5 также следует, что базисная переменная y 3 =9716, а свободные переменные y 1 = y 2 = 0, т.е. в оптимальном плане резервы трудовых и материальных ресурсов равны нулю, так как они используются полностью. А резерв ресурсов оборудования y 2 = 9716, что свидетельствует о его излишках.

Таким образом, в результате применения метода линейного программирования принято решение о производстве джемперов мужских выбранной модели в количестве 3981 шт., свитеров мужских модели 55-1 в количестве 29 875 шт.

Методы линейного программирования применяются для решения многих экстремальных задач, с которыми довольно часто приходится иметь дело в экономике. Решение таких задач сводится к нахождению крайних значений (максимума и минимума) некоторых функций переменных величин.
Линейное программирование основано на решении системы линейных уравнений (с преобразованием в уравнения и неравенства), когда зависимость между изучаемыми явлениями строго функциональна. Для него характерны математическое выражение переменных величин, определенный порядок, последовательность расчетов (алгоритм), логический анализ. Применять его можно только в тех случаях, когда изучаемые переменные величины и факторы имеют математическую определенность и количественную ограниченность, когда в результате известной последовательности расчетов происходит взаимозаменяемость факторов, когда логика в расчетах, математическая логика совмещаются с логически обоснованным пониманием сущности изучаемого явления.
С помощью этого метода в промышленном производстве, например, исчисляется оптимальная общая производительность машин, агрегатов, поточных линий (при заданном ассортименте продукции и иных заданных величинах), решается задача рационального раскроя материалов (с оптимальным выходом заготовок). В сельском хозяйстве он используется для определения минимальной стоимости кормовых рационов при заданном количестве кормов (по видам и содержащимся в них питательным веществам). Задача о смесях может найти применение и в литейном производстве (состав металлургической шихты). Этим же методом решаются транспортная задача, задача рационального прикрепления предприятий-потребителей к предприятиям-производителям.
Все экономические задачи, решаемые с применением линейного программирования, отличаются альтернативностью решения и определенными ограничивающими условиями. Решить такую задачу - значит выбрать из всех допустимо возможных (альтернативных) вариантов лучший, Оптимальный. Важность и ценность использования в экономике метода линейного программирования состоят в том, что оптимальный вариант выбирается из весьма значительного количества альтернативных вариантов. При помощи других способов решать такие задачи практически невозможно.

В качестве примера рассмотрим решение задачи рациональности использования времени работы производственного оборудования.
В соответствии с оперативным планом участок шлифовки за первую неделю декабря выпустил 500 колец для подшипников типа А, 300 колец для подшипников типа Б и 450 колец для подшипников типа В. Все кольца шлифовались на двух взаимозаменяемых станках разной производительности. Машинное время каждого станка составляет 5000 мин. Трудоемкость операций (в минутах на одно кольцо) при изготовлении различных колец характеризуется следующими данными (табл. 6.5).
Таблица 6.5
Следует определить оптимальный вариант распределения операций по станкам и время, которое было бы затрачено при этом оптимальном варианте. Задачу выполним симплексным методом.
Для составления математической модели данной задачи введем следующие условные обозначения: jc, х2, хъ, - соответственно количество колец для подшипников типов Л, Б, В, производимых на станке I; х4, х5, х6, - соответственно количество колец для подшипников типов А, Б, В, производимых на станке II.
Линейная форма, отражающая критерий оптимальности, будет иметь вид:
min а(х) = 4x,-f 10x2-f 10x3-f 6x4-f 8х5+20х6 при ограничениях
4х, -f 10х2 -f 10;t3 lt; 5000
6х4 -f 8х5 -f 20х6 ~lt; 5000
х, = 500
х2 +х5 = 300
х3 +х6 = 450
Xj^0,j=l, ..., 6

Преобразуем условие задачи введением дополнительных (вспомогательных) и фиктивных переменных. Условие запишем так:
шіп lt;х(х) = 4дг, + 10x2+ 10x3 + 6x4 + 8x5 + 20x6+
+ Мх9 + Мх{0+Мх{,
Система уравнений, отражающая ограничительные условия машинного времени и количество произведенной продукции:
4х, + l(bc2 + 10х3 +х1 = 5000
6х4 + 8х5 + 20х6 + xs = 5000
Xj +х4 +х9 = 500
х2 +х5 +х10 = 300
XJ +X6 + *!1 = 450
-*,^0,7=1, ..., 11
Решение этой задачи представлено в табл. 6.6. Оптимальный вариант получен на седьмом этапе (итерации). Если бы на станке I производилось 125 колец подшипников типа А, 450 колец подшипников типа В, на станке II - 375 колец подшипников типа А и 300 колец подшипников типа Б, то при такой загрузке оборудования было бы высвобождено 350 мин машинного времени станка II. Общие затраты времени по оптимальному варианту составили бы 9650 мин, тогда как фактически затрачено 10000 мин машинного времени.
Весьма типичной задачей, решаемой с помощью линейного программирования, является транспортная задача. Ее смысл заключается в минимизации грузооборота при доставке товаров широкого потребления от производителя к потребителю, с оптовых складов и баз в розничные торговые предприятия. Она решается симплекс-методом или распределительным методом.
Решение транспортной задачи распределительным методом было дано в третьем издании учебника «Теория экономического анализа» («Финансы и статистика», 1996).

Решение задачи рациональности использования станков симплексным методом


Базис

с

Ро

4

10

10

6

8

20

0

0

м

м

м

Л

Рг

Ръ

Л

Р ъ


Pi

Р8

р*

Л 0

Л,

Л

0

5000

4

10

0

0

0

0

і

0

0

0

0

Р,

0

5000

0

0

0

6

8

20

0

1

0

0

0

Л

м

500

1

0

0

1

0

0

0

0

1

0

0

Л 0

м

300

ш

0

0

0

1

0

0

0

0

1

0

Л.

м

450

0

0

1

0

0

1

0

0

0

0

1

Zj-Cj


1250М

М-4

М-10

М-10

М-6

М-8

М-20

0

0

0

0

0

Pi

0

3000

0

10

10

-4

0

0

0

0

-4

0

0

р*

0

5000

0

0

0

6

8

20

1

1

0

0

0

Ро

4

500

1

0

0

1

0

0

0

0

1

0

0

Ло

м

300

0

1

0

0

ш

0

0

0

0

1

0

Л.

м

450

0

0

1

0

0

1

0

0

0

0

1

zr-9


750Л/+2000

0

М-10

М-10

-2

М-8

О
2

0

0

-М + 4

0

0

Базис

С

Р0

4

Pi

10

6

8

20

0

0

м

м

М



Pi

10

^3

л

Р5

р6

Pi

р«

р9

Pi 0

Рц

Pi

0

3000

0

10

10

-4

0

0

1

0

-4

0

0

Р*

0

2600

0

-8

0

6

0

20

0

1

0

-8

0

Pi

4

500

1

0

0

1

0

0

0

0

1

0

0

Р5

8

300

0

1

0

0

1

0

0

0

0

1

0

РП

М

450

0

0

1

0

0

1

0

0

0

0

1

Zj-Cj


450Л/+4400

0

-2

М-10

-2

0

М-20

0

0

-М+4

-М+8

0

Ръ

10

300

0

1

1

4
10

0

0

1
10

0

4
10

0

0

Р%

0

2600

0

-8

0

6

0

20

0

1

0

-8

0

Pi

4

500

1

0

0

1

0

0

0

0

1

0

0

Р5

8

300

0

1

0

0

1

0

0

0

0

1

0

Рц

М

150

0

-1

0

j4_
10

0

1

_ J_ 10

0

4
10

0

1

zrCj


150Л/+7400

0

-M+S

0

- М-6 10

0

М-20

- ~М+1 10

0

-±м
10

- Af+8"

0

Базис

с

Л,

4

10

10

6

8

20

0

0

М

М

м

Л

Рг

Л

л

PS

р6

Pi

рamp;

Р9

Ло

л.

Л

10

300

0

1

1

4

0

0

1


0


4

0

0







“10



То




“ 10



р6

20

130

0

4

0

3

0

1

0


1


0

4

0





~Ї0


10





20



10


л

4

500

1

0

0

1

0

0

0


0


1

0

0

Ps

8

300

0

1

0

0

1

0

0


0


0

1

0

Р\\

М

20

0

6

0

1

0

0

1


1


4

4

1





10


~10



То


20

То

10


Zj-Cj


20М+10000

0


0


0

0

м+\


-м+\

--М

-*М

0





10


10



10

20


10

10


л

10

380

0

14

1

0

0

0

3


2


12

0

0





10





10


10

10



р%

20

70

0

14

0

0

0

1

3


2


12

16

-3





10





10


10


10

10


Л

4

300

1

6

0

0

0

0

1


1


-3


-10












2





р5

8

300

0

1

0

0

1

0

0


0


0

1

0

Р4

6

200

0

-6

0

1

0

0

-1


1


4

4

10












’ 2





Z.-Ci


10000

0

0

0

0

0

0

1

1




Базис


Лgt;

4

10

10

6

8

20

0

0

м

м

л/

о

Л

Рг

ръ

Р*

Р5

Р6

Л

Рamp;

р9

Л 0

л.

Рг

10

450

0

0

1

0

0

1

0

0




Р%

0

350

0

7

0

0

0

5

3
5

1




Л

4

125

1

5
2

0

0

0

5
2

1
4

0




Ps

8

300

0

1

0

0

1

0

0

0




Р4

6

375

0

5
2

0

1

0

5
2

1
4

0




Zj-Cj


9650

0

-7

0

0

0

-5

1
2

0



Линейное программирование рассматривается как революционное достижение, давшее человеку способность формулировать общие цели и находить посредством симплекс-метода оптимальные решения для широкого класса практических задач принятия решений большой сложности.

Линейное программирование – математическая дисциплина, посвящённая теории и методам решения задач об экстремумах линейных функций на множествах n -мерного векторного пространства, задаваемых системами линейных уравнений и неравенств.

Можно сказать, что линейное программирование применимо для решения математических моделей тех процессов и систем, в основу которых может быть положена гипотеза линейного представления реального мира.

Задача линейного программирования (ЛП), состоит в нахождении минимума (или максимума) линейной функции при линейных ограничениях.

Линейное программирование применяется при решении следующих экономических задач:

1. Задача управления и планирования производства.

2. Задач определения оптимального размещения оборудования на морских судах, в цехах.

3. Задача определения оптимального плана перевозок груза (транспортная задача).

4. Задача оптимального распределения кадров.

5. Задач о смесях, диете (планирование состава продукции) и т.д.

3. МОДЕЛЬ ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ, ЕЁ ПРЕДСТАВЛЕНИЕ В ЭЛЕКТРОННЫХ ТАБЛИЦАХ MS EXCEL.

Традиционно наукой управления называют построение детально разработанных моделей, в результате анализа которых принимаются управленческие решения. Сегодня миллионы менеджеров для анализа деловых задач применяют электронные таблицы. Современные электронные таблицы имеют много мощных средств, которые можно использовать для более точного анализа моделей, в результате чего могут приниматься более взвешенные и близкие к оптимальным решения. С учетом все более широкого применения электронных таблиц в процессе управления будущим специалистам необходимо владеть профессиональными навыкам разработки моделей – как «спланировать» чистый рабочий лист так, чтобы получить полезную и практическую модель деловой ситуации, не углубляясь в алгоритмические и математические тонкости расчетов.

Основные этапы создания модели линейного программирования в Excel:

1. Написание и проверка символической модели линейного программирования. Модель записывается на бумаге в математическом виде.

2. Создание и отладка табличной модели линейного программирования. На основе символической модели ЛП создается ее представление в Excel.

3. Попытка оптимизации модели с помощью надстройки ПОИСК РЕШЕНИЯ.

4. ИСПОЛЬЗОВАНИЕ НАДСТРОЙКИ ПОИСК РЕШЕНИЯ .

С помощью электронных таблиц можно моделировать реальные ситуации и оценивать полученные результаты. Другими словами с помощью электронных таблиц можно делать анализ результатов деятельности и прогнозирования будущих перспектив предприятия. Эти задачи в среде MS Excel дает возможность решать надстройка Поиск решения.


Поиск решения – это надстройка, которая предназначена для оптимизации моделей при наличии ограничений. Она состоит из двух программных компонентов: программы написанной на языке Visual Basic, который транслирует представленную на рабочем письме информацию для внутреннего представления, которая используется другой программой. Вторая программа находится в памяти компьютера в виде отдельного программного модуля. Она выполняет оптимизацию и возвращает найденное решение первой программе, которая возобновляет данные на рабочем листе. С помощью ее можно найти оптимальное значение формулы, которая сохраняется в целевой ячейке. Эта процедура работает с группой ячеек, которые непосредственно связанные с формулой в целевой ячейке. Чтобы получить результат по формуле в целевой ячейке, процедура изменяет значение в ячейках, которые влияют на поиск. Для того, чтобы уменьшить множественное число значений, которые используются в модели задачи, применяют ограничение. Эти ограничения могут содержать ссылку на другие ячейки, которые влияют на поиск.

Общий алгоритм работы с надстройкой Поиск решения.

  1. В меню Сервис выбрать команду Поиск решения .
  2. В поле Установит целевую ячейку введите адрес ячейки, в которй находится формула, для оптимизации модели.
  3. Для того, чтобы максимизировать значение целевой ячейки путем изменения значений влияющих ячеек, установите переключатель в положение Максимальному значению . Для того, чтобы минимизировать значение целевой ячейки путем изменения значений влияющих ячеек, установите переключатель в положение Минимальному значению . Для того, чтобы целевая ячейка приобретала значение конкретного числа, установите переключатель в положение Значение и введите соответствующее число.
  4. В поле Изменяя ячейки введите адреса ячеек, которые изменяют свои значения, разделяя их запятыми. Изменяемые ячейки должны быть прямо или непрямо связанные с целевой ячейкой. Допускается установка до 200 изменяемых ячеек.
  5. В поле Ограничения введите все ограничения, которые налагаются на поиск решения.
  6. Нажмите кнопку Выполнить .
  7. Для сохранения найденного решения установите переключатель в диалоговом окне Результаты поиска решения в положение Сохранить найденное решение . Для возобновления входных данных установите переключатель в положение Восстановить исходные значения.
  8. Для того, чтобы прервать поиск решения, нажмите клавишу Еsс . MS Excel пересчитает лист с учетом найденных значений ячеек, которые влияют на результат.

Алгоритм роботи з надбудовою Поиск решения.

5. РЕШЕНИЕ ЗАДАЧИ ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ ПРИ ПОМОЩИ ПРОГРАММЫ MS EXCEL.

Пример. Кондитерский цех для изготовления трех видов карамели А, В, С использует три основных вида сырья: сахар, патоку и фруктовое пюре. Нормы затрат сахара на изготовление 1кг карамели каждого вида соответственно уровни: 0,8кг; 0,5кг; 0,6кг; патоки – 04кг; 0,4кг; 0,3кг; фруктового пюре – 0кг; 0,1кг; 0,1кг. Конфеты можно производить в любых количествах (реализация обеспечена), но запас сырья ограниченный: запасы сахара – 80кг, патоки – 60кг, фруктового пюре – 12кг. Прибыль от реализации 1кг карамели вида А составляет 10грн., вида В – 11грн., вида С – 12грн.

Таблица 1

Определить план производства карамели, которая обеспечивает максимальную прибыль от деятельности кондитерского цеха.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: